地物的光谱特性资料重点
地物光谱特征名词解释
地物光谱特征名词解释
地物光谱特征是指地球表面不同地物所具有的光学特性,它是遥感技
术进行地物分类和识别的重要依据。
下面是一些地物光谱特征的解释:
1. 反射率:地物表面反射的光线中,被地物表面反射回来的光线与入
射光线之比,即反射率。
不同地物反射率差异很大,可用于地物分类
和识别。
2. 吸收特征:地物对某些波长光线具有吸收特征,如植被对红外光线
的吸收特征可用于植被覆盖度和类型的识别。
3. 反射峰:地物光谱曲线上的突出波峰,如水体的反射峰在短波红外
波段,植被的反射峰在近红外波段,可用于地物识别。
4. 色彩特征:地物的颜色可视为一种光谱特征。
如草地呈现绿色,沙
漠呈现褐色,水体呈现蓝色。
5. 形态特点:不同地物的形态特点也会对光谱特征产生影响,如建筑
物和道路呈现直线形态,农田则呈现规则的圆形或矩形。
6. 空间分布特征:地物的空间分布特征也会对光谱特征产生影响,如
山地和平原地貌的植被和水体分布不同,从而产生不同的光谱特征。
7. 混合像元:地物在遥感影像中可能出现混合像元现象,即在一个像元中同时混合了多种地物,这时候需要采取合适的处理方法进行分类和识别。
综上所述,地物光谱特征是遥感影像中地物分类和识别的重要依据,不同地物的光谱特征具有明显的差异,需要通过对光谱特征的分析和应用,进行地物的准确识别和分类。
地物的光谱特性
入射电磁波的波长 入射角的大小 地表颜色与粗糙度
2. 地物的反射光谱:地物的反射率随入 射波长变化的规律。
1) 地物反射光谱曲线:根据地物反射率 与波长之间的关系而绘成的曲线。地 物电磁波光谱特征的差异是遥感识别 地物性质的基本原理。
2) 不同地物在不同波段反射率存在差异: 雪、 沙漠、湿地、小麦的光谱曲线
2) 微波辐射比红外辐射弱得多,但技术上 可以经过处理来接收。
3) 瑞里—金斯公式
黑体辐射的微波功率与温度成正比, 与波长的平方成反比。
W( )
2kT
2
微波波段与红外波段发射率的比较:不同地 物之间微波发射率的差异比红外发射率要明显得 多,因此,在可见光和红外波段中不易识别的地 物,在微波波段中则容易识别。(表2-6)
6、地物的发射光谱
① 发射光谱:地物的发射率随波长变化的 规律。
② 发射光谱曲线:按照发射率和波长之间 的关系绘成的曲线。
③ 岩石的发射光谱分析(图2-12)
亮度温度:衡量地物辐射特征的重要指标。指等 物体的辐射功率等于某一黑体的辐射功率时, 该黑体的绝对温度即为亮度温度。 The temperature of the black body which radiates the same radiant energy as an observed object is called the brightness temperature of the object. 亮度温度与实地温度的关系:总小于实地温度。
4) 地物的光谱特性具有时间特性和空间特
性。
时间特性
空间特性
地物发射电磁波的能力以发射率作为衡量 标准;地物的发射率是以黑体辐射作为参 照标准。
各典型地物的光谱曲线-文档资料
常见地物比较光谱曲线 植被光谱曲线 土壤光谱曲线 水体光谱曲线 岩石光谱曲线
地物波谱特征
在可见光与近红外波段,地表物体自身的辐射几乎等于零。地物
发出的波谱主要以反射太阳辐射为主。太阳辐射到达地面之后, 物体除了反射作用外,还有对电磁辐射的吸收作用。电磁辐射未 被吸收和反射的其余部分则是透过的部分,即: 到达地面的太阳辐射能量=反射能量+吸收能量+透射能量 一般而言,绝大多数物体对可见光都不具备透射能力,而有些物 体如水,对一定波长的电磁波透射能力较强,特别是对0. 45 ~ 0. 56μm的蓝绿光波段,一般水体的透射深度可达10~20 m,清澈 水体可达100 m的深度。 对于一般不能透过可见光的地面物体,波长5 cm的电磁波却有透 射能力,如超长波的透射能力就很强,可以透过地面岩石和土壤。
土壤的光谱曲线
自然状态下,土壤表面的 反射率没有明显的峰值和 谷值,一般来说,土质越 细反射率越高。有机质和 含水量越高反射率越低, 土类与肥力也对土壤反射 率有影响。但由于其波谱 曲线较平滑,所以在不同 光谱段的遥感影像上土壤 亮度区别并不明显。
水体的光谱曲线
水体反射率较低,小于 10%,远低于大多数的其 他地物,水体在蓝绿波段 有较强反射,在其他可见 光波段吸收都很强。纯净 水在蓝光波段最高,随波 长增加反射率降低。在近 红外波段反射率为0;含叶 绿素的清水反射率峰值在 绿光段,水中叶绿素越多 则峰值越高。这一特征可 监测和估算水藻浓度。 而浑浊水、泥沙水反射率 高于以上,峰值出现在黄 红区。
岩石的光谱曲线
岩石反射曲线无统一特 征,矿物成分、矿物含 量、风化程度、含水状 况、颗粒大小、表面光 滑度、色泽都有影响。 例如:浅色矿物与暗色 矿物对其影响较大,浅 色矿物反射率高,暗色 矿物反射率低。 自然界岩石多被植、被 土壤覆盖,所以与其覆 盖物也有关
遥感地学分析地物光谱特征与遥感数字图像信息提取课件.ppt
一般而言,绝大多数物体对可见光都不具备透射能力,而 有些物体如水,对一定波长的电磁波透射能力较强,特别是对 0. 45 ~ 0. 56μm的蓝绿光波段,一般水体的透射深度可达 10~20 m,清澈水体可达100 m的深度。
对于一般不能透过可见光的地面物体,波长5 cm的电磁波 却有透射能力,如超长波的透射能力就很强,可以透过地面岩 石和土壤。
相关布局(association):是指多个目标地 物间的空间配置关系。
3.2.2 遥感图像解译方法与步骤
1、目视解译的认知过程
自下向上过程
图像信息获取 特征提取 识别证据选取
自上向下过程
特征匹配 提出假设 图像辨识
3.2.2 遥感图像解译方法与步骤
2、图像解译方法
遥感资料的选择及影像处理
1、岩石的反射光谱特征
岩石的波谱特征是地质遥感的基础,不同的矿物 成分、矿物含量、风化程度、含水状况、颗粒大小、 表面的光滑程度、色泽等都会影响到其反射波谱特征。
3.1.2 典型地物的反射光谱特征
2、土壤的反射光谱特征
自然状况的土壤表面的反射率没有明显 的峰值和谷值,一般来说土质越细,反射率 越高,有机质含量越高和含水量越高反射率 越低。此外土壤的肥力也会对反射率产生影 响。
3.1.1 遥感图像地物特征
1、地物的反射光谱特性
反射率
地物的反射能量Pe占总入射能量Po的百分比, 称为反射率ρ
Pe 100%
Po
反射类型
镜面反射(Specular reflection)
入射波与反射波在同一平面内,入射角与反射角相等 时,所形成的反射现象
漫反射(Diffuse reflection)
地物光谱特征范文
地物光谱特征范文1.反射特性:不同地物对太阳辐射的反射能力不同。
光谱曲线的形态和反射率的大小可以表明地物的光谱特征。
例如,植被通常具有较高的反射率,在可见光区域的光谱曲线呈现出绿色的特征,而被砂石覆盖的地表反射率相对较低。
2.吸收特性:地物对不同波段的光有不同的吸收能力。
通过研究光谱曲线在吸收带附近的表现,可以了解不同地物对一些特定波段的吸收情况。
例如,水体在近红外波段表现出较强的吸收特性,而植被则在可见光和近红外波段表现出较强的吸收能力。
3.阴影特性:地物表面的阴影也会对光谱特征产生影响。
阴影特性主要由地物的高度、坡度和坡向等因素决定。
阴影的存在会使得光谱曲线在一些频段显示出明显的变化,影响地物的光谱特征的解译和分析。
4.多光谱特性:通过对地物的多个频段的光谱曲线进行组合分析,可以获得更多的地物特征。
不同频段的光谱特征可以互相补充和验证,提高地物的识别和分类的准确性。
例如,针对植被分类的研究中通常采用可见光、近红外波段的数据进行组合分析。
5.光谱变化特征:地物的光谱特征具有一定的时空变化规律。
通过长时间序列的光谱数据分析,可以了解地物在不同季节、不同环境条件下的变化情况。
这对于农业、植被监测、气候变化等研究具有重要意义。
6.灵敏度特性:不同地物对光谱响应的灵敏度不同。
光谱曲线中较为剧烈的变化通常表明地物在一些波段具有较高的响应,这可以用于定量研究和遥感应用。
总之,地物光谱特征是地物与光之间的相互作用过程的反映,通过对光谱特征的分析可以深入了解地表地物的组成、结构、功能等信息,为地理、生态环境研究以及资源勘探和管理提供了重要的科学依据。
地物的反射光谱与地物波谱特性
地物的反射光谱曲线
不同的地物在不 同波段反射率存在差 异。
右图为雪地、小
麦地的光谱曲线。
植物反射波谱特性
由于植物均进行光合 作用,因此各类绿色植物 具有很相似的反射波谱特 性: 在可见光波段 0.55μm(绿光)附近有 反射率为10%-20%的一个 波峰; 在近红外波段0.81.0μm间有一个反射的陡 坡,至1.1μm附近有一个 峰值,形成植被的独有特 征。
地物的反射光谱
物体是反射波谱限于紫外、可见光
和近红外,尤其是后两波段。
物体的反射波谱是特征主要取决于该
物体与入射辐射相互作用的波长选择,即:
对入辐射是反射、吸收和投射的选择性,其 中反射作用是主要的。
地物的反射光谱
地物的反射光谱有如下特征: (1)不同的地物在不同波段反射率存在差异 (如雪地、小麦地的光谱曲线) (2)相同地物光谱曲线有相似性,但是也存在 差异性(如患虫害的小麦与正常小麦的光谱曲线) (3)地物光谱特征具有事件性和空间性(不同 时间与空间光谱特征不同
完善等很多问题仍然缺乏一套系统的、规范的我
国典型地物的波普数据。
国外地物波谱库研究现状
美国NASA于70年代初就初步建立了地
球资源信息系统(ERSIS)。包括植被、土
壤、岩矿和水体等2000余种地物的实验室 反射波谱数据。
地物波谱仪
地物波谱仪
逐渐摆脱“看图识字”的阶段,越来越依赖于地
物波谱特性的研究和发展。
我国地物波谱特性发展现状
地物波谱特性是遥感探测的基础,遥感优
化组合的依据,是定量遥感的技术与应用发展的 先决条件,但我国在地物波谱特性研究中还存在 在很多问题,尽管我国近年引进了一大批代表国 际前沿的地物波谱测试的设备,但其辅助装置不
电磁辐射与地物光谱特征
► 辐射亮度(L):假定有一辐射源呈面状,向外辐射的强度随辐射方 向而不同,则L定义为辐射源在某一方向,单位投影表面,单位立体 角内的辐射通量,即
► 朗伯源:辐射亮度L与观察角无关的辐射源,称为朗伯源。太阳通常 近似地被看作朗伯源。严格地说,只有绝对黑体才是朗伯源。
2 电磁波辐射源
2.1 黑体辐射 2.2 黑体辐射定律 2.3 一般辐射体和发射率 2.4 基尔霍夫定律
1.2 电磁波谱
定义:按照电磁波的波长长短(或频率的大小),依次 排列,就构成了电磁波谱。
遥感较多应用的电磁波波谱段
可见光:波长范围为0.38~0.76μm,人眼对可见光有
敏锐的感觉,是遥感技术应用中的重要波段。
红外线:波长范围为0.76~1000μm,根据性质分为近
红外、中红外、远红外和超远红外。 微波:波长范围为1 mm~1 m,穿透性好,不受云雾 的影响。
电磁辐射与地物光谱特征
提纲 1 电磁波和电磁波谱
遥感之所以能够根据收集到的电磁波来 判断地物目标和自然现象,是因为一切物体, 由于其种类、特征和环境条件的不同.而具 有完全不同的电磁波的反射或发射辐射特征。 因此遥感技术主要是建立在物体反射或发射 电磁波的原理之上的。要深入学习遥感技术, 首先要学习和掌握电磁波以及电磁波谱的性 质。
H 磁场矢量
E 电场矢量
电磁波的性质
►横波(质点振动方向和传播方向一致) ►在真空以光速传播 ►满足:f·λ =C;E=h ·f(E为能量,h为普
朗克常熟) ►具有波粒二象性(波长越长波性越强,波
长越短粒子性越强) ►传播到气体、液体、固体介质,会发生反
射、折射、吸收、投射等现象。若碰到粒 子还会发生散射现象。
辐射量测
地物的光谱特性名词解释
地物的光谱特性名词解释一、引言地物的光谱特性是遥感技术中重要的概念,它涉及到遥感图像的解释与分析。
本文旨在阐述与解释地物的光谱特性相关的一些重要名词,为读者提供相关知识和背景。
二、光谱光谱是指将可见光按照波长的长短排列成一列连续的颜色带。
它包含了波长范围从紫外线到红外线的所有可见光线。
而地物的光谱特性指的是地物在不同波段下的反射与吸收特性。
三、反射率反射率是指光线照射到地物上后被地物表面反射回来的光线所占的比例。
不同地物的反射率不同,反射率与物体的光谱特性有关。
四、吸收率吸收率是指地物对光线吸收的能力。
不同地物对不同波长的光线有不同的吸收率。
通过对吸收率的研究,可以了解地物在不同波段下的吸收特性,进而进行地物分类与识别。
五、透射率透射率是指光线穿过地物并透射到地物下方的能力。
地物的透射率与物体的光谱特性密切相关,它可以帮助我们了解地物内部结构和组成物质的特性。
六、高光谱高光谱是指对地物反射光谱进行连续而详细的测量和获取。
相比于传统的遥感技术只能获取少数波段的信息,高光谱技术可以获得相对较多的波段信息,提供更丰富的光谱特性数据。
七、光谱曲线光谱曲线是指表示地物在不同波段下反射率或吸收率的曲线图。
通过光谱曲线的分析和对比,我们可以判断地物的特征和成分,实现地物分类和定量分析。
八、光谱特征提取光谱特征提取是指从遥感图像中提取地物的光谱信息并进行分析。
通过光谱特征提取,可以实现地物的识别、分类和定量分析,为地理信息系统和环境监测提供支持。
九、光谱库光谱库是指存储各种地物光谱信息的数据库。
它包含了不同地物在不同波段下的光谱曲线和光谱特征数据。
光谱库可用于地物识别、图像解译和环境监测等应用。
十、遥感图像的光谱解译遥感图像的光谱解译是指通过对遥感图像中的光谱信息进行解读和分析,来推断地物的类型和特征。
光谱解译是遥感技术中重要的应用之一,有助于了解地物的分布和变化,提供环境管理和资源监测的信息。
十一、结论地物的光谱特性是遥感技术中重要的概念,涉及到地物的反射、吸收和透射特性。
第二章 电磁辐射与地物光谱特征
贺巧宁
主要内容:
• § 2.1电磁波谱与电磁辐射 • § 2.2太阳辐射及大气对辐射的影响 • § 2.3地球的辐射与地物波谱
本章小结
§2.1 电磁波谱与电磁辐射
• 一. 电磁波谱 • 二. 电磁辐射的度量 • 三. 黑体辐射
一. 电磁波谱
• 1.电磁波的产生 • 2.电磁波的特性 • 3.电磁波谱
入射电磁波 镜面反射
物
体
吸收
表
面
漫反射 透射/折射
反射率(p)=反射能量/入射能量*100% 吸收率(a)=吸收能量/入射能量*100% 透射率(T)=透射能量/入射能量*100%
3.电磁波谱
• 电磁波谱:按照电磁波在真空中传播的 波长或频率,递增或者递减排列构成的 谱带则称电磁波谱。
• 以频率从高到低或者波长从短到长排列 可以划分为r射线、X射线、紫外线、可 见光、红外线、微波、无线电波
大气透射分析
• 反射30%,散射22%,吸收17%,透过31%。
• 臭氧吸收3%,云层反射散射25%,尘埃气 体吸收散射19%,地面反射8%,地表吸收 45%。
2.3 地球的辐射与地物波谱
• 1、地球的辐射:太阳辐射与地表相互
作用,地表自身的热辐射
• 2、地物反射波谱:地物的反射率,地物
反射波谱特征
土壤、岩石
作业
• 教材P44-45思考题 • 第2、6、8、9题
几种典型地物反射光谱曲线
• (1) 植被 • (2) 土壤 • (3) 水体 • (4) 岩石 • (5) 其他
• 植被:0.55μm,绿色,叶绿素的影响
•
0.70-0.80μm有反射陡坡
•
遥感地学分析地物光谱特征分析
遥感地学分析地物光谱特征分析遥感地学分析地物光谱特征是通过遥感技术获取地物的光谱信息并进行分析。
光谱是电磁波在不同波长处的分布情况,地物在遥感图像中的光谱特征可以提供关于其组成、结构和性质的信息。
地物光谱特征分析是遥感地学的重要研究内容,对于地物分类、环境监测和资源调查等应用具有重要意义。
地物光谱特征分析基于遥感图像中的光谱曲线,通过对比不同地物的光谱特征,可以帮助我们区分地物类型,并了解地物的空间分布、数量和变化情况。
光谱特征分析主要包括以下几个方面的内容。
首先是光谱曲线的形态分析。
不同地物的光谱曲线形态有所不同,通过对光谱曲线的起伏、波峰、波谷等形态特征进行分析,可以帮助我们鉴别地物类型。
比如,水体的光谱曲线具有明显的吸收特征,而植被的光谱曲线则显示出明显的吸收波段和反射波段,利用这些形态特征可以将水体和植被进行区分。
其次是光谱曲线的能量分析。
地物的光谱曲线能量分布情况与地物的组成和结构有关。
通过分析不同波段上的光谱能量分布情况,可以获得地物的组成信息。
例如,植被含有大量的叶绿素,对红辐射吸收较强,因此在红光波段上反射较少的能量。
反之,水体和土地等地物则在红光波段上反射较多的能量。
通过这种能量分布的差异,可以将植被、水体和土地等地物进行区分。
此外,也可以通过计算光谱特征参数来分析地物光谱特征。
常用的光谱特征参数包括植被指数、水体指数等。
植被指数可以反映植被的绿度和生长状况,常用的有归一化植被指数(NDVI)和增强型植被指数(EVI)。
水体指数则用于提取水体的光谱特征,常用的有归一化水体指数(NDWI)和水体影像差异指数(MNDWI)。
通过计算这些指数,可以量化地物的光谱特征,进一步分析地物类型和性质。
最后,地物光谱特征分析还可以通过光谱数据库和遥感图像分类技术进行辅助分析。
光谱数据库是一种记录不同地物的光谱特征的库,可以通过与遥感图像的光谱曲线进行对比,帮助我们确定地物类型。
遥感图像分类技术通过对图像中的像元进行分类,将不同的光谱特征的像元归类到不同的地物类型中。
第二章 电磁辐射与地物光谱特征
2、黑体辐射规律 普朗克公式:
M ( , T ) 2hc
2
5
1 e ch / KT 1
此式有两个自变量: λ、 T ,其它都是常数,因而 可写为: W = ƒ (λ, T ) 其函数曲线可表示为:
c为真空中的光速; k为波尔兹曼常数, k=1.38×10-23 J/K; h为普朗克常数, h=6.63×10-34Js; M为辐射出射度。
于遥感研究不需要对太阳分层考虑,因而通常 认为光球发射的几乎是全部的太阳辐射。
图2.11 太阳辐照度分布曲线
二、大气分层
大气厚度约1000km,并且在垂直方向有层次的区别,自下而上大致 分层为:(各层之间逐渐过渡,没有截然的界线)。
对流层:高度在7~12 km,温度随高度而降低,包含大气 总量的3/4和几乎全部水汽,天气变化频繁,航空遥感主要 在该层内,对遥感数据产生很大影响。 平流层:高度在12~80 km,几乎没有天气现象,底部为 同温层(航空遥感活动层),同温层以上,温度由于臭氧 层对紫外线的强吸收而逐渐升高(在地面观测不到0.29µ m 波长的太阳辐射)。 电离层:高度在80~1 000 km,大气中的O2、N2受紫外线 照射而电离,主要反射地面发射的无线电波,对遥感波段 是透明的,是陆地卫星活动空间。 大气外层:800~35 000 km ,空气极稀薄,对遥感基本 上没有影响。
3.实际物体的辐射 (1)地物的发射率 • 发射率是指地物的辐射出射度(即地物 单位面积发出的辐射通量)M与同温度的黑 体的辐射出射度(即黑体单位面积发出的辐 射总通量M黑的比值。
M M黑
• 地物的发射率与地物的性质、表面状况(如 粗糙度、颜色等)有关,且是温度和波长的 函数。
地球辐射与地物光谱特性
航天遥感中,地球表面相对于遥感器的高度,可近似视为朗伯面。
中国大学MOOC
中国大学MOOC
中国大学MOOC
中国大学MOOC
中国大学M
中国大学MOOC
中国大学MOOC
中国大学MOOC
中国大学MOOC
中国大学M
中国大学MOOC
中国大学MOOC
中国大学MOOC
中国大学MOOC
中国大学M
中国大学MOOC
中国大学MOOC
中国大学MOOC
中国大学MOOC
中国大学MOOC
中国大学M
中国大学MOOC
中国大学MOOC
中国大学MOOC
中国大学MOOC
中国大学M
2.4.2 地物的反射光谱
※ 地物的光谱特性 任何地物都有自身的电磁辐射规律,如反射、发射、
吸收电磁波的特性,少数还有透射电磁波的特性。地物 的这种特性称为地物光谱特性。
中国大学MOOC
中国大学MOOC
中国大学M
中国大学MOOC
中国大学MOOC
中国大学MOOC
中国大学MOOC
中国大学M
中国大学MOOC
中国大学MOOC
中国大学MOOC
中国大学MOOC
中国大学M
中国大学MOOC
中国大学MOOC
中国大学MOOC
中国大学MOOC
中国大学M
中国大学MOOC
中国大学MOOC
中国大学MOOC
中国大学M
中国大学MOOC
中国大学MOOC
中国大学MOOC
中国大学MOOC
中国大学M
中国大学MOOC
中国大学MOOC
中国大学MOOC
中国大学MOOC
地物光谱特征
地物光谱特征
地物光谱特征是指不同地物(如植被、土壤、水体等)在不同波段的光谱反射特性。
1. 植被光谱特征:植被在可见光谱区域(400-700nm)表现出明显的吸收特征,主要是由于叶绿素的吸收作用。
在红光(约650-700nm)处,植被的反射率较低,而在近红外光(约700-1300nm)处,植被的反射率较高。
这种反射特征可用于估算植被的叶绿素含量和植被覆盖度。
2. 水体光谱特征:水体对可见光和近红外光呈现不同的反射和吸收特性。
水体对蓝光(约400-500nm)吸收较高,对绿光(约500-600nm)吸收较低,而对近红外光(约700-800nm)反射率较高。
这种反射特征可用于水质参数(如浊度、叶绿素浓度等)的监测。
3. 土壤光谱特征:土壤的光谱反射特性受土壤类型、含水量、有机质含量等因素的影响较大。
一般来说,裸露土壤在可见光谱区域呈现较高的反射率,而在近红外光谱区域呈现较低的反射率。
土壤的反射特征可用于土壤类型分类、土壤有机质含量和水分含量估算等。
不同地物的光谱特征可以通过遥感技术获取和分析,从而实现对地物类型、分布、变化等的监测和研究。
各典型地物的光谱曲线ppt实用资料
岩石的光谱曲线
岩石反射曲线无统一特 征,矿物成分、矿物含 量、风化程度、含水状 况、颗粒大小、表面光 滑度、色泽都有影响。 例如:浅色矿物与暗色 矿物对其影响较大,浅 色矿物反射率高,暗色 矿物反射率低。 自然界岩石多被植、被 土壤覆盖,所以与其覆 盖物也有关
思考题
电磁波谱
BACK
地物发出的波谱主要以反射太阳辐射为主。
5 μm受植物含水量影7 μm
岩石反射曲线无统一特征,矿物成分、矿物含量、风化程度、含水状况、颗粒大小、表面光滑度、色泽都有影响。
76 μm有一个反射峰值,大约0.
(红)则有两个吸收带;
地物发出的波谱主要以反射太阳辐射为主。
❖ 一般而言,绝大多数物体对可见光都不具备透射能力,而有些物 体如水,对一定波长的电磁波透射能力较强,特别是对0. 45 ~ 0. 56μm的蓝绿光波段,一般水体的透射深度可达10~20 m,清澈水 体可达100 m的深度。
❖ 对于一般不能透过可见光的地面物体,波长5 cm的电磁波却有透 射能力,如超长波的透射能力就很强,可以透过地面岩石和土壤。
各典型地物的光谱曲线
常见地物比较光谱曲线 植被光谱曲线 土壤光谱曲线 水体光谱曲线 岩石光谱曲线
地物波谱特征
❖ 在可见光与近红外波段,地表物体自身的辐射几乎等于零。地物 发出的波谱主要以反射太阳辐射为主。太阳辐射到达地面之后, 物体除了反射作用外,还有对电磁辐射的吸收作用。电磁辐射未 被吸收和反射的其余部分则是透过的部分,即: 到达地面的太阳辐射能量=反射能量+吸收能量+透射能量
常见地物的光谱曲线比较
不同地物的反射光谱曲线 不同,从图中我们可以看 出: μm波段的相片可以把雪和 其他地物区分开; μm波段的相片可以把沙漠 和小麦、湿地区分开; μm波段的相片,可以把小 麦和湿地区分开。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
③ 岩石的发射光谱分析(图2-12)
烟台师范学院地理与资源管理学院
亮度温度:衡量地物辐射特征的重要指标。指等 物体的辐射功率等于某一黑体的辐射功率时, 该黑体的绝对温度即为亮度温度。 The temperature of the black body which radiates the same radiant energy as an observed object is called the brightness temperature of the object. 亮度温度与实地温度的关系:总小于实地温度。
• 影响地物发射率的因素:
地物的性质、表面状况、温度 (比热、热惯量):比热大、 热惯量大,以及具有保温作用 的地物,一般发射率大,反之 发射率就小。
W
W黑
遥感原理
按照发射率与波长的关系,把地物分为: ➢ 黑体或绝对黑体:发射率为1,常数。 ➢ 灰体(grey body):发射率小于1,常数 ➢ 选择性辐射体:反射率小于1,且随波长而
620 K 380 K
Emission from warm bodies peak at short wavelengths
wavelength
烟台师范学院地理与资源管理学院
3、黑体辐射定律
(1)朗克热辐射定律
表示出了黑体辐射通量 密度与温度的关系以及 按波长分布的规律。
W
(、T
)
2hc2 5
1 ech/ kT 1
烟台师范学院地理与资源管理学院
遥感原理
1. 地物的反射率(反射系数或亮度系数): 地物对某一波段的反射能量与入射能量 之比。反射率随入射波长而变化。 ➢ 影响地物反射率大小的因素:
入射电磁波的波长 入射角的大小 地表颜色与粗糙度
烟台师范学院地理与资源管理学院
遥感原理
2. 地物的反射光谱:地物的反射率随入 射波长变化的规律。
遥感原理
黑体辐射的三个特性( p20 )
A. 辐射通量密度随波长连续变化,每条曲 线只有一个最大值。
B. 温度越高,辐射通量密度越大,不同温 度的曲线不同。
C. 随着温度的升高,辐射最大值所对应的 波长向短波方向移动。
烟台师范学院地理与资源管理学院
(2)玻耳兹曼定律
Stefan-Boltzmann's law
变化。
烟台师范学院地理与资源管理学院
2) 基尔霍夫定律:在一定温度下,地物单 位面积上的辐射通量W和吸收率之比,对 于任何物体都是一个常数,并等于该温 度下同面积黑体辐射通量W 黑。
W
W黑
W
W黑
在给定的温度下,物体的发射率=吸收率(同一波 段);吸收率越大,发射率也越大。
W T 4
地物的热辐射强度与温度的四次方成正比,所以,地物 微小的温度差异就会引起红外辐射能量的明显变化。这 种特征构成了红外遥感的理论基础。
1) 地物反射光谱曲线:根据地物反射率 与波长之间的关系而绘成的曲线。地 物电磁波光谱特征的差异是遥感识别 地物性质的基本原理。
2) 不同地物在不同波段反射率存在差异: 雪、 沙漠、湿地、小麦的光谱曲线
烟台师范学院地理与资源管理学院
遥感原理
➢ 传感器探测波段的设计,是通过分析 比较地物光谱数据而确定的。
遥感原理
5、黑体的微波辐射
1) 任何物体在一定的温度下,不仅向外发 射红外辐射,也发射微波辐射。二者基 本相似。但微波是地物低温状态下的重 要辐射特性,温度越低,微波辐射越明 显。
2) 微波辐射比红外辐射弱得多,但技术上 可以经过处理来接收。
烟台师范学院地理与资源管理学院
3) 瑞里—金斯公式
黑体辐射的微波功率与温度成正比, 与波长的平方成反比。
W( )
2kT
2
微波波段与红外波段发射率的比较:不同地 物之间微波发射率的差异比红外发射率要明显得 多,因此,在可见光和红外波段中不易识别的地 物,在微波波段中则容易识别。(表2-6)
遥感原理 烟台师范学院地理与资源管理学院
遥感原理
6、地物的发射光谱
① 发射光谱:地物的发射率随波长变化的 规律。
遥感原理
地物光谱特性
任何地物都有自身的电磁辐射规律, 如反射、发射、吸收电磁波的特性。少 数还有透射电磁波的特性。地物的这种 特性称为:地物的光谱特性。
烟台师范学院地理与资源管理学院
遥感原理
• 地物的反射率、吸收率和透射率
– 对于某波段反射率高的地物,其吸收率就低, 即为弱辐射体;反之,吸收率高的地物,其反 射率就低。
即黑体总辐射通量随温度的增加而 迅速增加,它与温度的四次方成正比。 因此,温度的微小变化,就会引起辐 射通量密度很大的变化。是红外装置 测定温度的理论基础。
W0
0
2hc2 5
ech
/
1
kT
1
d
T
4
(3)维恩位移定律:Wien's displacement law
随着温度的升高,辐射最大值对应 的峰值波长向短波方向移动。
➢ 多光谱扫描仪(MSS)的波段设计:
➢ MSS1(0.5-0.6 μm) ➢ MSS2(0.6-0.7 μm) ➢ MSS3(0.7-0.8 μm) ➢ MSS4(0.8-1.1 μm)
烟台师范学院地理与资源管理学院
遥感原理
3) 同类地物的反射光谱具有相似性,但也 有差异性。不同植物;植物病虫害
max •T b
温度 300 500 1000 2000 3000 4000 5000 6000 7000 波长 9。66 5。80 2。90 1。45 0。97 0。72 0。58 0。48 0。41
4、地物的发射率和基尔霍夫定律
1) 发射率(Emissivity ):地物的辐 射出射度(单位面积上发出的 辐射总通量)W与同温下的黑 体辐射出射度W黑的比值。它也 是遥感探测的基础和出发点。
4) 地物的光谱特性具有时间特性和空间特
性。
时间特性
空间特性
烟台师范学院地理与资源管理学院
遥感原理
地物发射电磁波的能力以发射率作为衡量 标准;地物的发射率是以黑体辐射作为参 照标准。 1. 黑体:在任何温度下,对各种波长的电磁 辐射的吸收系数等于1(100%)的物体。 2. 黑体辐射(Black Body Radiation ):黑体的 热辐射称为黑体辐射。
烟台师范学院地理与资源管理学院
1. Power Source: Blackbody Radiation
Max Planck (1858 – 1947) Nobel Prize 1918
Planck’s Law: The amount and spectrum of radiation emitted by a blackbody is uniquely determined by its temperature