核磁共振氢谱第

合集下载

核磁共振氢谱(NMR)

核磁共振氢谱(NMR)
氢谱可以用于鉴定生物体内代谢产物的化学结构,有助于了解生物体的代谢过程 和生理状态。
代谢物变化分析
通过比较不同生理状态下的氢谱数据,可以分析代谢产物的变化,从而研究疾病 、营养状况等对生物体的影响。
药物代谢动力学研究
药物代谢过程研究
氢谱可以用于研究药物在体内的代谢过 程,了解药物在体内的转化和排泄机制 。
反应机理研究
总结词
核磁共振氢谱在反应机理研究中具有重要应用,通过监测反 应过程中谱峰的变化,可以揭示反应的中间产物和反应路径 。
详细描述
核磁共振氢谱可以实时监测反应过程中氢原子所处的化学环 境变化,从而揭示反应的中间产物和反应路径。通过分析谱 峰的变化,可以推断出反应过程中各组分的生成和消耗情况 ,有助于深入理解反应机理。
催化剂活性位点研究
总结词
核磁共振氢谱在催化剂活性位点研究中具有独特的应用价值,通过分析催化剂表面吸附物种的谱峰特 征,可以揭示催化剂的活性位点和反应机制。
详细描述
核磁共振氢谱可以用来研究催化剂表面吸附物种的结构和性质。通过分析谱峰的位置和裂分情况,可 以推断出吸附物种所处的化学环境和与催化剂表面的相互作用关系。这些信息有助于揭示催化剂的活 性位点和反应机制,对于优化催化剂性能和提高催化反应效率具有重要意义。
重要信息。
生物医学
用于研究生物大分子的 结构和功能,为疾病诊
断和治疗提供依据。
02
核磁共振氢谱的基本原理
原子核的自旋与磁矩
原子核自旋
原子核具有自旋角动量,使得原子核 具有一定的磁矩。
磁矩与磁场相互作用
能级跃迁
当外加射频场能量与能级分裂相匹配 时,原子核发生能级跃迁,释放出共 振信号。
原子核磁矩在外部磁场中受到洛伦兹 力,产生能级分裂。

核磁共振氢谱(1H-NMR)

核磁共振氢谱(1H-NMR)

第二章核磁共振氢谱(1H-NMR)§ 1概述 基本情况1H天然丰度:99.9844%, 1=1/2 ,Y =26.752 (107radT-1S-1) 共振频率:42.577 MHz/T 3 : 0〜20ppmY (relntive) tie-qiiciKV M I L7 Tn JI Lira] fiHiindancc relaii^c wrni 竹 viTy*'IIKH) 5(KJ MHz ms 1%25 L25 Mllz I 1 %⑴七“N-105( ►MHzI 曰19 F455 MHzHH)叫,-20购 Mllz4.7 %nr-釦P40 203 MH7 1 <M) %0.07also trskinp iiitci accniniT Kpicall llliRc^'b idth' and rdl.ix-Viojii mtc%§ 2化学位移1. 影响3值的因素 A.电子效应 (1) 诱导效应a 电负性电负性强的取代基使氢核外电子云密度降低,其共振吸收向低场位移,b.多取代有加和性C.诱导效应通过成键电子传递,随着与电负性取代基 减弱,通常相隔3个以上碳的影响可以忽略不计(2) .共轭效应氮、氧等杂原子可与双键、苯环共轭。

苯环上的氢被推电子基取代,由于 p-n 共轭,使苯环电子云密度增大,3值向高场移动苯环上的氢被吸电子基取代, 由于p-n 共轭或n -n 共轭,使苯环电子云密度降低,3值向低场移动(3) .场效应在某些刚性结构中,一些带杂原子的官能团可通过其电场对邻近氢核施加影响距离的增大,诱导效应的影响逐渐,使其化学位移发生变化 .这些通过电场发挥的作用称为场效应(4).范德华(Van der Waals )效应在某些刚性结构中 ,当两个氢核在空间上非常接近,其 外层电子云互相排斥使核外电子云不能很好地包围氢核,相当于核外电子云密度降低,5值向低场移动B.邻近基团的磁各向异性某些化学键和基团可对空间不同空间位置上的质子施加不同的影响,即它们的屏蔽作用 是有方向性的。

核磁共振氢谱

核磁共振氢谱

+ C
+ + +
C +
- C
+
C -
- C
+
C -
ห้องสมุดไป่ตู้
- C
+
O -
-
电子云密度小, 屏蔽 电子云密度小,负屏蔽(-)
电子云密度高, 屏蔽 电子云密度高,正屏蔽(+)
1.乙酸乙酯中得的三种类型氢核电子屏蔽效 1.乙酸乙酯中得的三种类型氢核电子屏蔽效 应是否相同?若发生核磁共振, 应是否相同?若发生核磁共振,共振峰应 当怎么排列? 值大小如何? 当怎么排列?δ值大小如何?
3.3 氢键缔合对化学位移的影响
氢核电子云密度减小,其化学位移增大, 氢核电子云密度减小,其化学位移增大,向低场 位移
浓度越大,氢核化学位移向低场移动, 浓度越大,氢核化学位移向低场移动,数值增大
分子间氢键与分子内氢键
3.4 其他因素对化学位移的影响
溶剂、分子内范德华力、 溶剂、分子内范德华力、不对称因素
CH3-COO-CH2-CH3
2. 下列各组化合
1
CH3CH2CH2C
CH

CH3CH2CH2CH CH2 O CH3

物用箭头标记 的氢核中, 的氢核中,何 者共振峰位于 地场? 地场?为什么 ?

CH3
2



O
3
CH3

O


CH3
4

H3C


3.3 氢核交换对化学位移的影响
RCOOHa + R`OHb = RCOOHb + R`OHa 平均峰化学位移δobs = Naδa+ Nbδb 平均峰化学位移 例如:乙酸的浓度是 水也是0.1mol/L,而纯 例如:乙酸的浓度是0.5mol/L, 水也是 , 乙酸和水的化学位移分别为11.6 和5.2 ppm, 计算平均 乙酸和水的化学位移分别为 化学位移

第四章 核磁共振波谱法-氢谱 第四节

第四章 核磁共振波谱法-氢谱 第四节

↓ ↓ 1/4
氢核相邻三个H原子,H核裂分为四重峰。强度比为1 ︰3 ︰3 ︰1
(4)裂分峰之间的峰面积或峰强度之比符合二项展开式 各项系数比的规律。(a+b)n n为相邻氢核数
n=1 (a+b)1
1︰1
n=2 (a+b)2
1︰2 ︰1
n=3 (a+b)3
1︰3︰3 ︰1
(5)氢核邻近有两组偶合程度不等的H 核时,其 中一组有n个,另一组有n’个,则这组H 核受两 组 H 核自旋偶合作用,谱线裂分成(n+1)(n’+1) 重峰。偶合程度相同时,谱线裂分成(n+n’+1)。
(4)两组氢核相互偶合的J值必然相等,即:Jab=Jba (5)氢核相互偶合的值变化很大,为1-50 。 通过双
数键偶合的为负值,用2J, 4J…表示,使用时用绝对 值;通过单键偶合的J为正值,用1J, 3J…表示。
(6)H 与H 的偶合常数可分为同碳偶合常数 、 邻碳 偶合常数 、 运程偶合常数 、 芳香族及杂原子化合 物偶合常数等(参考书上内容,P.120-P.128)。
若 X 核的自旋量子数 I =1/2,在外磁场 B0中 X 核有 两种不同取向 m = +1/2 和 m = -1/2,它们分别产生两个
强度相同( B ),方向相反的小磁场,其中一个与外磁场 方向 B0相同,另一个与 B0相反。这时 A 核实际受到的磁 场强度不再是 B0(1-),而是[B0(1-)+ B ]和[B0 (1-)-B],因此 A 核的共振频率应为:
(1)J 值的大小与B0无关。影响J值大小的主要因素是原子 核的磁性和分子结构及构象。因此,偶合常数是化合物分子
结构的属性。
(2)简单自旋偶合体系J值等于多重峰的间距,复杂自旋偶

第三讲 核磁共振氢谱

第三讲 核磁共振氢谱
53
关于自旋-自旋偶合及偶合常数
(1)偶合体系中化学位移值的读取;
d B标准-B样品 x 106
B标准
d
样品-标准 标准
x 106
(2)偶合常数的读取;
(3)数根图的熟练运用。
54
§3.5 简化1H NMR的谱的实验方法
重水交换法:与氧、氮、硫等相连的氢是 活泼氢,在溶液中它们可以进行不断的交换。如 果样品分子中含有这些基团,在作完谱图后滴加 几滴重水,振荡,然后重新作图,此时活泼氢已 被氘取代,相应的谱峰消失,由此可以完全确定 它们的存在。
N 1.03
O H 2.55 H H
H 2.93
1.80
H
H
39
9.87 2.96
OH
HH O
H H
N
H
H H 8.02
2.88
6.69 H
H 5.23 H
H
H
5.74
H 5.28 H
3.72
H
H
1.25
O
HH
O
2.05
4.12 H
O
HH
3.48
O H
2.35 N
HH H
1.26
2.53 H N
HH
19
3、相邻键的磁各向异性 (1)叁键:
20
(2)双键:
21
(3)环状共轭体系的环电流效应 苯环:环电流产生的磁力线方向在苯环上、
下方与外磁场磁力线方向相反,但在苯环侧面 (苯环的氢正处于苯环侧面),二者的方向是相同 的。即环电流增强了外磁场,氢核被去屏蔽, 共振谱峰位置移向低场。
22
不仅是苯,所有具有4n+2个离域p电子的

第四章 氢谱

第四章 氢谱

各向异性效应
化合物中非球形对称的电子云,如 π电子系统,对邻近质 子会附加一个各向异性的磁场,即这个附加磁场在某些区 域与外磁场 B0的方向相反,使外磁场强度减弱,起抗磁性 屏蔽作用,而在另外一些区域与外磁场 B0方向相同,对外 磁场起增强作用,产生顺磁性屏蔽的作用。 通常抗磁性屏蔽作用简称为屏蔽作用,产生屏蔽作用的区 域用“ + ”表示,顺磁性屏蔽作用也称作去屏蔽作用,去 屏蔽作用的区域用“ -”表示。
磁等价
如果两个原子核不仅化学位移相同( 即化学等价),而且还以相同的耦合常数与 分子中的其他核耦合,则这两个原子核就是磁等价的。 乙醇分子中甲基的三个质子有相同的化学环境,是化学等价的,亚甲基的两个质 子也是化学等价的。同时,甲基的三个质子与亚甲基每个质子的耦合常数都相等 ,所以三个质子是磁等价的,同样的理由,亚甲基的两个质子也是磁等价的。 对位取代苯2,Ha和 Ha’ ,Hb和 Hb’ 是化学等价的,但 Ha与 Hb是间隔三个键的 2 邻位耦合(3J ),Ha’ 与 Hb是间隔五键的对位耦合(5J ),所以它们不是磁等 价的;同样,处于取代基 Y 邻位的 Hb和 Hb 也是化学等价,但不是磁等价的。 如果是对称的三取代苯3,则 Ha和 Ha’ 是磁等价的,因为它们与 Hb都是间位耦 3 合(4J),耦合常数相等。
1H
是有机化合物中最常见的同位素,1H NMR 谱是有机物结构解 析中最有用的核磁共振谱之一。
核磁共振氢谱
6
4 4 4
提供的结构信息: δ、J、峰的裂分情况和峰面积
氢化学位移 δ
1.
化学位移值能反映质子的类型以及所处的化学环境,与分子 结构密切相关
2. 3.
δ (TMS)=0
τ(TMS)=10

第2章核磁共振氢谱(1)

第2章核磁共振氢谱(1)

O
-
3 400 MHz 3, d(2.4) 3’, ddd 5.0, 1.5, 0.9
O
-
S
6’ 5’
N
N
+
6 5
4’ 3’ 6, d (9.2)
8.00 ppm and 7.80 ppm
80 MHz: 16 Hz 400 MHz: 80 Hz
O
5, dd 9.2, 2.4
6’, dt 5’, ddd 7.9, 1.0 7.9, 7.4, 1.6
• 对于苯环双取代,若两个取代基相同(X=X’), 则对位取代苯环上的四个氢Ha=Ha’=Hb=Hb’, 在核磁共振谱图上表现为单峰。若邻位取代,苯 环上四个氢分成Ha,Ha’和Hb,Hb’两类,在核 磁共振谱图上表现为双峰。若间位取代,苯环上 四个氢分成Ha;Hb,Hb’和Hc三类,而且这三类 氢还会发生偶合作用,因而在核磁共振谱图上表 现位三组分裂的多重峰(参见图9.5a)。当苯环 双取代的两个取代基不同(X≠ X’)时,情况更 为复杂。对于对位取代,苯环上四个氢将分成 Ha=Ha’和Hb=Hb’两组,而且两组氢会发生偶合 作用,在谱图上表现为两组双重峰。对于邻位和 间位取代,苯环上四个氢完全不同,依据两个取 代基的情况,会分成2-4组各自分裂的峰 。
Spin System in Pople notation---AMX System
Aromatic substitution pattern: ortho
AA’ XX’ Typical spectra for ortho (symmetrical)
O CH3 O
CH3
8.00
7.90
7.80
7.70
7.450
7.400

核磁共振谱图解析一维氢谱第二部分

核磁共振谱图解析一维氢谱第二部分

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
自旋-自旋耦合(spin-spin coupling)
化学位移不是唯一用来确定分子结构的参数。因为每一个原子核自身都有一个小的磁 场,这些彼此接近的原子核互相影响,改变彼此的能量和共振的频率。这个作用就叫 做自旋-自旋耦合。
26
自旋-自旋耦合(spin-spin coupling)
27
自旋-自旋耦合(spin-spin coupling)
28
自旋-自旋耦合(spin-spin coupling)
29
自旋-自旋耦合(spin-spin coupling)
30
自旋-自旋耦合(spin-spin coupling)
氢谱溶剂
简单的核磁谱图都是在溶剂里测的,溶剂的质子一定不能有干扰。 所以测核磁的溶剂一般用氘代(Deuterated)试剂。Deutrium = 2H, 经常写为D。 常用的有D2O(重水),(CD3)CO (氘代丙酮),CD3OD (氘代甲醇),(CD3)2SO (氘 代DMSO,DMSO-D6), CDCl3 (氘代氯仿)。 有的时候,一些不含质子的溶剂也用来测核磁,如CCl4 (四氯化碳),CS2 (二硫化 碳)等。 过去的氘代试剂经常加有少量的(通常为0.1%)的四甲基硅烷(TMS)作为确定化学 位移的内标(internal standard).四甲基硅烷(TMS)的四个甲基是等价的,只有 一个峰,这个峰的位置定义为化学位移为0 ppm.四甲基硅烷(TMS)沸点较低,有利 于样品的回收。 现代的谱图经常以氘代溶剂残留的极少量非氘代质子作为参考值,比如the CHCl3, 0.01% in 99.99% CDCl3。所以不加TMS的氘代试剂越来越多。

第3章核磁共振氢谱

第3章核磁共振氢谱

自旋角动量: P h I(I1)
2
核磁矩: •P
I:自旋量子数; h:普朗克常数; γ:磁旋比;
4
第一节 基本原理
➢ 自旋量子数(I)不为零的核都具有磁矩,
➢ 原子的自旋情况可以用(I)表征
自旋量子数与原子核的质量数及质子数关系
质量数(a)原子序数(Z)自旋量子(I) 例子
偶数
偶数
0
12C, 16O, 32S
H2,2个氢,1个直立氢Ha,1个平展氢He。 H3,1个直立氢Ha。-OH在平展位。 H4,Ha还是He?
41
第二节 核磁共振氢谱的主要参数
例题 据化合物C10H10O的氢谱,推测其结构 Ω=6,可能有苯环
3 1
6
J=18Hz
HO CC
H
C CH3
42
第二节 核磁共振氢谱的主要参数
3. 远程偶合(long range coupling) (4J或J远)
➢ 自旋系统:分子中相 互偶合的核构成一个 自旋系统。
OCH 3
➢ 系统内部的核互相偶 合,但不和系统外的 任何核相互作用。
➢ 系统与系统之间是隔
离的.
O
O
CH3
51
第二节 核磁共振氢谱的主要参数
自旋系统表示方法
互相偶合核的Δ较大时(Δυ≥J),用A,M,X表示, 字母右下标数字表示磁全同质子的数目。
44
第二节 核磁共振氢谱的主要参数
• 磁等价
• 分子中一组化学等价核(化学位移相同)对组外其它 任何一个核的偶合相等,则这组核称为磁等价核。
H CH H
化学等价 磁等价
H HCF
F
H H2 H HCC CH
HH

第四章 核磁共振氢谱

第四章 核磁共振氢谱

在外加磁场B0中,自旋核的 取向不是任意的,取向数 =
2 I + 1。对于1H核,I=1/2
对I=1/2的1H核,在外磁场B0中取向数 = 2 I + 1=2 γH 0 ν = ms=+1/2表示 磁距与B0方向相同时,处于低能级,用 磁距与B0方向相反时,处于高能级,用ms= -1/2表示

γ — 磁旋比(物质的特
② 通过重键的作用要比单键的大。 ③ 一 般 活 泼 H 即 直 接 和 杂 原 子 连 接 的 H( 如 OH,NH,SH),不和其他质子偶合。 含活泼质子的化合物如 R-OH , R-NH2 。由 于快速交换作用,活泼质子只产生一个单峰。加 入重水后,活泼质子信号消失。常用重水交换确 定活泼质子及其值。
(1)裂分规律
① 裂分峰数目:n+1 规律; n为相邻碳原子上的 质子数。适用范围:相邻碳原子只有一种等价质子
CH3——CH2——CH3 2+1=3重峰 6+1=7重峰
②裂分峰强度比:二项式的展开式系数:(a+b)n
当△ν >>J时成立
自旋偶合的限度:
① 所谓邻近H原子通常指邻位碳上的H。自旋偶 合随着距离的增大而很快消失(通常隔四个 σ 键 作用就很小了)
a.快速旋转化学等价: 质子在单键快速旋转过程中,位置可对映互换 时,则为化学等价. 如:CH3I . CH3CH2OH
b.对称化学等价: 分子内存在对称因素,通过对称操作,处在对称 位置上的氢核.为化学等价.
某基团X取代任何一个氢,得到
的产物是相同的或者是对映异构体,
则这些氢是化学等价的。
某基团X取代任何一个氢,得到的 产物不相同或者是非对映异构体,则这 些氢是化学不等价的。

核磁共振氢谱

核磁共振氢谱
17
组成:磁铁、射频发生器、检测器、放大器、记录仪(放大器)、样品管
脉冲频率发射器
核磁管
脉冲频率放大器
检测器
扫描发生器
核磁共振光谱仪的简单构造示意图 原理:扫频--固定 H0,改变υ射,使υ射与H0匹配;
扫场--固定υ射,改变H0,使H0与υ射匹配;
记录仪
18
19
20
21
三、化学位移
1.化学位移的产生
的效应称为溶剂效应。
30
4.1 诱导效应
影响电子云密度的一个重要因素是与质子相连接的原子或 基团的电负性的强弱.
电负性强的取代基, 它们通过诱导效应使与其相邻接的核 外电子密度降低, 从而减少电子云对核的屏蔽 作用叫做电子的屏蔽效应). 使核的共振频率向低场移动.
24
例如: 图1给出了乙基苯在100MHz时的高分辨率核 磁共振图谱. 在乙基苯的分子中, -CH3 上的三个质子, -CH2- 上的两个质子, C6H5-上的五个质子.它们在 不同的磁场强度下产生共振吸收峰, 也就是说,它们 有着不同的化学位移.
3H C6H5-
2H
-CH3
5H
-CH2-
TMS
7.0 6.0 5.0 4.0 3.0 2.0 1.0 0
11
2.核磁共振
如果以射频照射处于外磁场H0 中的核,且照射频 率υ恰好满足下列关系时
hυ= △E 或 υ= ( /2)B0 处于低能级的核将吸收射频能量而跃迁至高能 级, 这种现象称为核磁共振现象。 由上式可知, 一个核的跃迁频率与磁场强度B0 成正比, 使1H 核发生共振,由自旋m = ½取向变成m = -1/2 的取向。应供给△E 的电磁波(射频)。照射频率 与外加磁场强度成正比。

核磁共振氢谱

核磁共振氢谱
= 10 -
3.3.3 核磁共振氢谱图示
NMR谱仪都配备有自动积分仪,对每组 峰的峰面积进行自动积分,在谱中以积 分高度显示。各组峰的积分高度之简比, 代表了相应的氢核数目之比。(P82:图3.7)
记录NMR谱的图纸已打印好刻度。
乙苯的1H NMR图谱
3.4 影响化学位移的因素
温度:温度可能引起化合物分子结构的变化。 溶剂:一般化合物在CCl4或CDCl3中测得的
NMR谱重复性较好,在其它溶剂中测试,值 会稍有所改变,有时改变较大。这是溶剂与溶 质间相互作用的结果。这种作用称溶剂效应。
3.4.6 各类质子的化学位移及经验计算
1.烷烃 利用表3.1的数据及Shoolery公式可计
原子或原子团的亲电能力有关,与化学 键的类型有关。如CH3-Si,氢核外围电 子云密度大,·B0大,共振吸收出现在 高场;CH3-O,氢核外围电子云密度小, ·B0亦小;共振吸收出现在低场。
3.3.2 化学位移
为了克服测试上的困难和避免因仪器不 同所造成的误差,在实际工作中,使用 一个与仪器无关的相对值表示。即以某 一标准物质的共振吸收峰为标准(B标或 标),测出样品中各共振吸收峰(B样或 样)与标样的差值B或(可精确到 1Hz),采用无因次的值表示,值与核 所处的化学环境有关,故称化学位移。
= 0.23 + Ci (3.19)
例如:BrCH2C1(括号内为实测值) = 0.23 + 2.33 + 2.53 = 5.09 ppm(5.16
ppm)
诱导效应是通过成键电子传递的,随着 与电负性取代基距离的增大,诱导效应 的影响逐渐减弱,通常相隔3个以上碳的 影响可以忽略不计。例如:
算X—CH<YZ中质子的值(见3.4.1)。 烷基化合物(RY)的化学位移见表3.2。 利用表3.2,可直接查出相对于取代基

核磁共振氢谱第

核磁共振氢谱第

7.94 ppm
当照射2.63ppm的甲基时,H10的信号强度 增加两11%,而H5的信号不变,说明是1 位甲基。而照射2.88ppm时,H5信号增强 33%,H10的信号不变,说明是4位甲基。
37
三、氢谱解析举例
例1,峰的归属。
38
例2,峰的归属。
S N HH
39
例3,未知物分子式为C5H12O,1H-NMR谱如下,推导结构。
△v = (5.77-3.90) x 300 = 561 Hz J = 8 Hz △v/ J = 561/8 = 70 >> 6
14
15
2,AB系统
AB系统为高级图谱,多见于双键的顺式或反式氢,芳环 的邻位氢等。
16
17
P87 AX系统 AB系统
A2系统
18
S HH
19
3,AMX系统
HX
5
2,双键上同碳质子具有不等价性。
3,构象固定的环上CH2两个氢是不等价的。
4,取代苯上相同环境的两个质子可能化学等价, 但磁不等价。
HH
H1
R1
H2
R2
O
HA
HA'
HB
HB'
+
N OO
HA
Cl
HB
Cl
HB'
HA'
6
5,分子中含有手性原子的CH2基团上两个氢是不 等价的。
红色的两个氢化学不等价,磁 也不等价,为非对映异位氢, 理论上有16个峰,放大谱上可 以观察到14个峰。
26
27
二、辅助图谱解析的一些方法
1,使用高磁场 仪器简化图谱
28
2,活泼氢反应

第二章核磁共振氢谱

第二章核磁共振氢谱
第二章 核磁共振氢谱
核磁共振氢谱主要是通过测定有机物分 子中氢原子的位置来推断有机物的结构 的。从一张有机物的核磁共振氢谱图上, 我们可得到有机物分子中氢原子的种类 (根据化学位移δ值)和氢原子的数量 (根据峰面积)。即核磁共振氢谱图上 有多少个峰,就表明有机分子中有多少 种类的氢,各个峰的面积积分比表示各 种氢原子的数目的比例。
H3C
例 如
O
CH3
H CH(CH3)2
第二章核磁共振氢谱
2.分子内存在着快速运动
R1
R5
R6
R3
R2
R4
常见的分子内存在有链的旋转,环的翻转.由于 分子内的快速运动,一些不能通过对称操作而 交换的基团有可能为化学等价,但也不是两个 相同的基团就一定成为化学等价基团.
第二章核磁共振氢谱
RCH2-CXYZ
第二章核磁共振氢谱
亚甲基与次甲基的δ计算
对于亚甲基可以用Shoolery公式加以计 算
δ=1.25 +Σσ (2-1) 式中σ为取代基的经验屏蔽常数.表中给
出其数值.
第二章核磁共振氢谱
表2.2 Shoolery 公式中的经验屏蔽常数(σ)
取代基
R
C=C-
Ph Cl Br I OH -OR -OPh -OCOR -OCOPh NH2 NR2 NO2 SR -CHO -COR -COOH -COOR CN
第二章核磁共振氢谱
2.谱图分类的原则
1).分子中化学位移相同而且对外偶合常数也相同 (磁等价),用一个大写英文字母表示,如A1,A2,A3…., 下标为核的数目. 2).分子中化学位移不同的核用不同的大写英文字 母表示.如果核之间的化学位移之差Δν与J数值相 当,用AB,ABC,ABCD….表示,如果Δν比J大许多 (Δν/J>6),用AX,AMX,AMPX…表示. 3).化学等价但磁不等价的核用AA’,BB’表示

第四章 核磁共振-氢谱

第四章 核磁共振-氢谱

4.1.3 核的回旋和核的共振
当一个原子核的核磁矩处于磁场HO中,由于核自身的旋 转,而外磁场又力求它取向于磁场方向,在这两种力的作用 下,核会在自旋的同时绕外磁场的方向进行回旋,这种运动称 为Larmor进动。
自旋量子数( I ) 1/2 没有外磁场时,其自旋磁距取向是混乱的 在外磁场H0中,它的取向分为两种(2I+1=2) 一种和磁场方向相反,能量较高 (E=μH0) 一种和磁场方向平行,能量较低 ( E= 0)
前言 过去50年,波谱学已全然改变了化学家、生物学家和生 物医学家的日常工作,波谱技术成为探究大自然中分子内部 秘密的最可靠、最有效的手段。NMR是其中应用最广泛研 究分子性质的最通用的技术:从分子的三维结构到分子动力 学、化学平衡、化学反应性和超分子集体、有机化学的各个 领域。 1945年 Purcell(哈佛大学) 和 Bloch(斯坦福大学) 发现核磁共振现象,他们获得1952年Nobel物理奖。 1951年 Arnold 发现乙醇的NMR信号,及与结构的关 系。 1953年 美国Varian公司试制了第一台NMR仪器。
4.2.4 核磁共振图谱
CHCl3
低场
向左
(δ 增大)
磁场强度
向右
(δ 减小)
高场
图3-5 乙醚的氢核磁共振谱
4.3. 氢的化学位移
4.3.1 化学位移
在一固定外加磁场(H0)中,有机物的1H核磁共 振谱应该只有一个峰,即在:
= E / h = · ( 1/2)· H0
分子中各种质子(原子核)由于所处的化学环 境不同,而在不同的共振磁场下显示吸收峰的 现象,称为化学位移,表示:δ/ppm。
核磁共振的条件:
ΔE = h v迴= h v射= hH0/2π 或 v射= v迴= H0/2π

第三章核磁共振氢谱

第三章核磁共振氢谱

通过计算处于低能级核数目仅比高能级多百 万分之16
• 处于低能级的核数目仅比高能级的核数目 多出百万分之十六!当低能级的核吸收了 射频辐射后,被激发至高能态,同时给出 共振吸收信号。但随实验进行,只占微弱 多数的低能级核越来越少,最后高、低能 级上的核数目相等--------饱和-----从低到高 与从高到低能级的跃迁的数目相同---体系 净吸收为0-----共振信号消失! • 幸运的是,上述“饱和”情况并未发生!
• 自旋角动量
– 一些原子核有自旋现象,因而具有自旋角动 量。由于核是带电粒子,故在自旋同时将产 生磁矩。核磁矩与角动量都是矢量,磁矩的 方向可用右手定则确定。 – 核的自旋角动量P是量子化的,不能任意取 数,并可用核的自旋量子数I表示。
h hI p I I 1 2 π 2
• 自旋量子数不为零的原子核都有磁矩, 核磁矩的方向服从右手法则(如图7-2所 示),其大小与自旋角动量成正比。
2μ B h
hν 2 B0 1 σ ) B μ ( 0 2 (1 σ ) μ h 2ν B0 1 σ ) ( B0 2 (1 σ )
B 把B B0 (1 )代入得 2
由于氢核具有不同的屏蔽常数σ,引起外磁场或 共振频率的移动,这种现象称为化学位移。固定 照射频率, σ大的原子出现在高磁场处, σ小的原子 出现在低磁场处
• 原子实际上受到的磁场强度B等于外加磁 场强度B0 减去外围电子产生的次级磁场强 度(σB0) • B= B0-σB0=B0(1-σ) • σ为屏蔽常数, σB0为感应产生的次级磁场 强度,B为氢核真正受到的有效外磁场强 度 • 外电子云产生感应磁场,抵消一部分磁场,产 生共振向高场方向移动


• 思考下面问题: • 我们知道,大多数有机物都含有氢原子(1H 核),从前述公式 可以看出,在B0一定的 磁场中,若分子中的所有1H都是一样的性 质,即H都相等,则共振频率0一致,这 时只将出现一个吸收峰 • 也就是说,无论这样的氢核处于分子的何 种位置或处于何种基团中,在核磁共振图 谱中,只产生一个共振吸收峰。 • 这样的图谱有意义吗?

第四章 核磁共振氢谱

第四章 核磁共振氢谱

在有机化合物中,各种氢核周围的电子云密度不同 (结构中不同位臵),屏蔽效应不同,导致共振频率有差 异,即引起共振吸收峰的位移,这种现象称为化学位移。
4-2-3 相对化学位移
为了表示不同核化学位移的量度,必须选择 一个参照物为标准求出其它核相对于它的位臵。
相同化学环境的核在不同磁场强度的仪器上 共振频率也不同,必须消除仪器的影响。
H H 7.0~8.0 O C H H 9.5~10.0
轮烯质子的各向异性
Ha Hb Ha
Ha = 9.28 Hb = -2.99
Hb
Ha = 5.28 Hb = 10.3
18个电子,符合 4n+2规则,有芳香性
16个电子,不符合 4n+2规则,无芳香性
[18]-轮烯环内的六个质子受到环电流效应的屏蔽作用, 其效果已超过了TMS中质子的屏蔽作用,故H为负值。 而环外十二个质子受到的是环电流效应的去屏蔽效应作 用,所以H处于低场(高位移)。
E 0 无磁场
1 m=- 2
E =
hH0 2
1 m=+2
E辐= hn = E hH0 hn = 2 H0 n= 2
4-1-6 讨论
共振条件: n= H0 / (2 ) (1)对于同一种核 ,磁旋比 为定值, H0变,射频频率n变。 (2)不同原子核,磁旋比 不同,产生共振的条件不同,需 要的磁场强度H0和射频频率n不同。 (3) 固定H0 ,改变n(扫频法) ,不同原子核在不同频率 处发生共振。也可固定n ,改变H0 (扫场法)。扫场方式应 用较多。 (4)固定射频线圈的频率,由于不同磁性原子核的磁旋比 不同,发生核磁共振时所需的磁场强度不同。
4-2-5-3 芳香环质子的各向异性

第四章 核磁共振波谱法-氢谱 第四节

第四章 核磁共振波谱法-氢谱 第四节
2 1 c 9.8 2.4 b 3
a
1
0
(1)先计算不饱和度 =1+3+(0-6)/2=1 可能有双键,C=C或C=O (2)根据峰积分线高度求出各种类型H的数目 三组峰 a组:6H×3/6=3H b组:6H×2/6=2H c组:6H×1/6=1H (3)质子有三种类型,化学位移分别为a=1, b=2.4, c=9.8 (4)跟据峰裂分情况分析 据裂分情况和化学位 Ha 为三重峰,它与2个H原子相邻 移,判断为-CH2CH3 Hb 为四重峰,它与三个H原子相邻
第六节 核磁共振氢谱的解析
一、 解析化合物结构的一般步骤
1. 获取试样的各种信息和基本数据 尽量多地了解待鉴定样品的来源,物理、化学性 质.化学分析结果.最好确定其化学式(一般可用质谱 法) 2. 根据分子式计算不饱和度.
U
3. 根据积分曲线计算各峰所代表的氢核数和最大可
2n 2 a b 2

(3)峰面积
在核磁共振波谱中,各峰的面积与质子的 数目成正比。 通过核磁共振谱不仅能区分不同类型的质 子,还能确定不同类型质子的数目

(2)、核的化学等价与磁等价
1. 化学等价:具有相同位移值的核称为化学等价核,具 有相同的化学环境。 2. 磁等价:具有相同位移值、并且对组外的其他核的偶 合常数也相同。磁等价的核不产生裂分。 19 F9= 1/2 JH1F1= JH2F1 F2 JH1F1≠ JH1F2 H1 F1 JH1F2= JH2F2 J ≠J
(5)分子式为C3H6O 可能的结构CH3CH2 CHO (6)验证 a .丙醛不饱和度为 Ω=1合理,符合计算结果 b. 用验证各基团a=1, b=2.4, c=9.8。 查得:-CH3=1~2, -CH2CO=2.3~2.4,-CHO=9~10 c. 用反证法验证,分子式为C3H6O的可能结构
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

相关文档
最新文档