土力学-第2章
土力学与基础工程-第二章
![土力学与基础工程-第二章](https://img.taocdn.com/s3/m/25f9f097f80f76c66137ee06eff9aef8941e48c1.png)
1
2
无粘性土的密实度
无粘性土的密实度指的是碎石土和砂土的疏密程度。 密实的无粘性土由于压缩性小,抗剪强度高,承载力大,可作为建筑物的良好地基。但如处于疏松状态,尤其是细砂和粉砂,其承载力就有可能很低,因为疏松的单粒结构是不稳定的,在外力作用下很容易产生变形,且强度也低,很难作天然地基。 密实度的评价方法有三种: 室内测试孔隙比确定相对密实度的方法 利用标准贯入试验等原位测试方法 野外观测方法 (用于碎石土)
1.2 土的物理性质指标-天然密度
土的含水量:土中水的质量与土粒质量之比,一般用w表示,以百分数计,即:
01
含水量反映土中水的含量多少,其变化范围很大。土的含水量对粘性土、粉土的影响较大,对砂土稍有影响,对碎石土没有影响。一般说来,同一类土,当其含水量增大时,强度就降低。试验室内一般用“烘干法”确定。
土中水
自由水
结合水
强结合水
弱结合水
重力水
毛细水
结合水:受电分子吸引力作用吸附于土粒表面的土中水。
自由水:存在于土粒表面电场影响范围以外的土中水。
结晶水
结晶水:土粒矿物内部的水。
土中水和气
弱结合水
2.2.2 土中水和气
强结合水-具有极大的粘滞度、弹性和抗剪强度、不能传递静水压力。性质跟固体相似。 自由水-可以传递静水压力 、能溶解盐类。
颗粒堆积物
土: 狭义:土是指岩石风化后的产物,即指覆盖在地表上碎散的、没有胶结或胶结很弱的颗粒堆积物。 广义:土则是将整体岩石也视为土
岩石
地球
地球
搬运、沉积
1 土的形成
1.1 土的形成与组成
构成土骨架,起决定作用1.1 土的形成与组成 Nhomakorabea气相
土力学 第2章 土的渗透性
![土力学 第2章 土的渗透性](https://img.taocdn.com/s3/m/39c3be16ccbff121dd368392.png)
n Vv Av 1 Av V A1 A
A > Av
v
vs
v n
Vs=q/Av V=q/A
(3)适用条件
v
层流(线性流):大部分砂土,粉土;
疏松的粘土及砂性较重的粘性土。
o
v=k i
v
v ki (a) 层流 i
(4)两种特例
密实粘性土:近似适用: v=k(i - i0 ) ( i >i0 ) i0:起始水力梯度
选取几组不同的h1和h2及对应的时间t=t2-t1,利用式(2-11)计算出相 应的渗透系数k,然后取其平均值作为该土样的渗透系数。
2. 现场井孔抽水试验
(1)室内试验的优缺点 优点:设备简单、操作方便、费用低廉。 缺点:取样和制样对土扰动、试样不一定是现场的代表性土,导致室内
测定的渗透系数难以反映现场土的实际渗透性。
☆水工建筑物防渗
一般采用“上堵下疏”原则。即上游截渗,延长渗径;下 游通畅渗透水流,减小渗透压力,防止渗透变形。
☆基坑开挖防渗
工程实例:
2003年7月1日,上海市轨道交通4号线发生一起管涌坍 塌事故,防汛墙塌陷、隧道结构损坏、周边地面沉降、造成 三幢建筑物严重倾斜。直接经济损失高达1.5亿人民币。
(2-34)
式中Fs为流土安全系数,通常取1.5~2.0。
பைடு நூலகம்
流土
(2)管涌(潜蚀) 定义:在渗流作用下土体的细土粒在粗土粒形成的孔隙通道中
发生移动并被带出的现象。 长期管涌破坏土的结构,最终导致土体内形成贯通的渗流 管道,造成土体坍陷。
管涌(土体内部细颗粒被带走)
管涌破坏(土体坍塌)
◆判别
①土类条件
土力学-第2章 土的物理性质及分类
![土力学-第2章 土的物理性质及分类](https://img.taocdn.com/s3/m/a6651b4177232f60ddcca118.png)
三相草图法
第二章 土的物理性质及分类
ma=0
m mw ms
质量 空气 air 水 Water
Va
Vv Vw V
固体 Solid
Vs
体积
三 相 草 图(three-phase soil models)
第二章 土的物理性质及分类
九个物理量:
V Vv Vs Va Vw ms m w ma m
物理量关系:
ma=0
空气
Va
Vv Vw V
m mw
水
ms
质量
固体
Vs
体积
位: 无量纲 • 一般范围:粘性土 2.70~2.75, 砂土 2.65
• 单
=1.0 g/cm3
土粒比重在数值上 等于土粒的密度
基本试验指标-土粒比重
第二章 土的物理性质及分类
土的含水量W
• 定义:土中水的质量与土粒质 量之比,用百分数表示 • 表达式:
黏聚力
原始黏聚力(由粒间电分子引力产生) 固化黏聚力(由粒间胶结物产生)
土受扰动时,这两类黏聚力被(部分)破坏,使土的强度降低。但 扰动停止后,原始黏聚力可随时间部分恢复,故强度有所恢复。但固化 黏聚力是无法在短时间内恢复的。所以易于触变的土,被扰动而降低的 强度仅能部分恢复
土中水的离子成分和浓度→水中低价阳离子浓度增加,IP越大
黏土的物理状态指标
第二章 土的物理性质及分类
不同的粘土,wp、wL 大小不同。对于不同的粘土,含水 量相同,稠度可能不同
w wP w w P 液性指数: IL wL wP IP
wp w wL IL 0 坚硬(半固态) 0<IL0.25 硬塑 0.25 <IL 0.75 可塑 0.75 <IL 1 软塑 IL>1 流塑
土力学_第2章(土的物理性质和工程分类)
![土力学_第2章(土的物理性质和工程分类)](https://img.taocdn.com/s3/m/11b4b20aa8114431b90dd8cd.png)
V
阿特堡界限 (Atterberg limit)
固态
半固态
可塑态
液态
水
Vs+Vw Vs
颗 粒 ws
缩限
O
wP
塑限
wL
液限
w
• 液限和塑限的测定方法
液限(wL)的测定: 锥式液限仪(中国); 碟式液限仪(欧美,详见 ASTM 试验 规程)。
粉土
含水量w(%)
w<20
20 ≤w≤30
w>30
(2) 砂土的松-密状态 指标和状态(《地基与基础》-p27)
相对密实度 (Relative Density )
0.67<Dr≤1.0 0.33<Dr≤0.67 0<Dr≤0.33
emax e Dr emax emin
密实 中密 松散
工程上原位测试判断物理状态:
粒径分布曲线(级配曲线)
100
小于某粒径的土粒质量/%
80
60
40
20
0
10
1
0.1
0.01
1E-3
粒径/mm
• 不均匀系数
Cu
d 60
d10
Cu越大,曲线越平缓,粒径分布越不均匀。
• 曲率系数
Cc
2 d 30
(d 60 d10 )
Cc<1,中间颗粒偏少,小粒径颗粒偏多。 Cc>3,中间颗粒偏多,小粒径颗粒偏少。
水
mw
Vv=e
V =e+1
Vw Sr Vv
ms=s
Vs 土粒 ms
Vs=1
w s / w wGs e e
土力学 第2版 第二章 土的物理性质及分类
![土力学 第2版 第二章 土的物理性质及分类](https://img.taocdn.com/s3/m/6d2ba750df80d4d8d15abe23482fb4daa58d1d9c.png)
环刀的容积V=60cm3; 环刀的质量m1; 环刀和土的质量m2;
土的密度: m2 m1
V
2.2.2 指标的定义
土力学
2.特殊条件下土的密度
质量m
体积V
Vw Va Vv
气
mw
水
m
ms
土粒
Vs V
(1)干密度ρd :单位体积中固
体颗粒部分的质量 (紧密程度)
d
ms V
(2)饱和密度ρsat :土体中孔 (3)浮密度ρ :在地下水位
出合适的名称,可以概略评价土的工程性质。
第2章 土的物理性质及分类
2.1 概述 2.2 土的三相比例指标 2.3 粘性土的物理特征 2.4 无粘性土的密实度 2.5 粉土的密实度和湿度 2.6 土的胀缩性、湿陷性和冻胀性 2.7 土的分类
土力学
2.2 土的三相比例指标
2.2.1 土的三相比例关系图 2.2.2 指标的定义 2.2.3 指标的换算
土力学
2.2.1 土的三相比例关系图
土力学
质量m
气
mw —土中水质量
mw
水
m
ms —土粒质量
ms
土粒
Vs V
Vw Va Vv
体积V
Va —土中气体积 Vw —土中水体积
Vs —土粒体积
m ms mw
Vv Vw Va
(土的总质量)
(土中孔隙体积)
V Vs Vw Va
(土的总体积)
2.2 土的三相比例指标
ds
ms
Vs 1
s 1
测定方法:比重瓶法
ρs—土粒密度,单位体积土粒质量 ρw1 —纯水在40C时的密度,1g/cm3
土粒相对密度变化范围不大:一般,砂类土2.65~2.69;粉性土
土力学第二章-土的物理性质指标
![土力学第二章-土的物理性质指标](https://img.taocdn.com/s3/m/55eefcd9b9f3f90f76c61bff.png)
直接测定指标-4
• 土体的含水率: 反映土体含水的多少。等于土体在105º -110º C的温 度下烘至恒量时所失去的水份的重量或质量与土颗粒 的重量或质量之比。 W m (%) (%) Ws ms • 砂土含水少,粘性土含水多。 • 测定方法: 烘干法、酒精燃烧法、电炉炒干法
间接测定指标-3
• 饱和容重:指土体处于饱和状态时的容重,或指饱和 土体的容重,这时土体的孔隙中全部充满水。 Ws Vv sat ( KN / m 3 ) V • 饱和密度:指土体处于饱和状态时的密度,或指饱和 土体的密度,这时土体的孔隙中全部充满水。 ms Vv sat ( g / cm3 ) V • 饱和容重与饱和密度的关系:
直接测定指标-1
• 土颗粒比重: 指土体在105º -110º C的温度下烘至恒量时的重量或 质量与土颗粒同体积的4º C时蒸馏水的重量或质量之比。 ms Ws Gs Gs Vs Vs
水的容重=9.81KN/m3,水的密度=1g/cm3 土颗粒的比重与土体中的水和气体无关 土颗粒比重一般介于2.65-2.75之间 • 测定方法: 比重瓶法、浮称法、虹吸筒法
间接测定指标-1
• 孔隙比: 反映土体孔隙的多少。等于土体中孔隙的体积与土 颗粒的体积之比。它是一个相对指标。
• 孔隙率: 反映土体孔隙的多少。等于土体中孔隙的体积与整 个土体的体积 之比。它是一个绝对指标。
Vv e Vs
Vv n (%) V
间接测定指标-2
• 土体的饱和度: 反映土体含水的多少,等于土体孔隙中水的体积与孔隙 的体积之比 V Sr (%) Vv • 干土的饱和度为0, 饱和土的饱和度为100%, 一般土的饱和度介于0-100%之间。 • 理论上,饱和土的饱和度为100%, 但因土体中存在封闭孔隙,实际饱和度达到80%的土就 称为饱和土。
土力学第2章
![土力学第2章](https://img.taocdn.com/s3/m/6286188002d276a200292eb3.png)
孔隙率
饱和度
2.2 物理性质指标间的换算
常用的土的物理指标共有九个。已知其中任意三个,通过 换算可以求出其余的六个。
(一)孔隙比与孔隙率的关系
设土体内土粒的体积为1,则e=Vv/Vs可知,孔隙的体积Vv 为e,土体的体积V为(1+e),于是有:
I w w
p L
p
塑性指数越高,吸着水含量可能高,土的粘粒含量 越高。
2.液性指数
粘性土的状态可用液性指数来判别。
定义为:
IL
w wp wL wp
w wp Ip
式中:IL—液性指数,以小数表示; w—土的天然含水率。
液性指数表征了土的天然含水率与界限含水率之间的相对关系 ,表达了天然土所处的状态。
【例题】某一块试样在天然状态下的体积为60cm3 ,称得其质量为108g,将其烘干后称得质量为 96.43g,根据试验得到的土粒相对密度ds为2.7, 试求试样的湿密度、干密度、饱和密度、含水率 、孔隙比、孔隙率和饱和度。
【解】(1)已知V=60cm3,m=108g,
得 ρ=m / v=180 / 60=1.8g/cm3
塑限测定方法
搓滚法:调制均匀的湿图样,在毛玻璃 上搓滚成3毫米直径的土条,若这个时刻 恰好出现裂缝,就把土条的含水率定为 塑限 液塑限联合测定法:取代表性试样,加 入不同数量的纯水,调制成三种不同稠 度的试样,用电磁落锥测定圆锥在自重 作用下经5秒后沉入试样的深度。以含水 率为横坐标,圆锥入土深度为纵坐标, 在双对数纸上绘制关系曲线。入土深度2 毫米所对应的含水率为塑限。
粘性土
含水量
土力学-第二章-粘性土的物理化学性质.
![土力学-第二章-粘性土的物理化学性质.](https://img.taocdn.com/s3/m/2512bb557fd5360cba1adbd2.png)
或次键、低能键。
所谓分子键就是指分子与分子之间的联
结力。
分子间键力的影响范围比离子键力大得
多,约为0.3~10μm,但其键能则比离子 键能小得多,约为2.1~21J/kmol。
分子键的形成与影响因素
由于分子的正电荷与负
电荷的分布不对称形成 极性分子,在极性分子 间相反电荷的偶极端相 互接近时相互吸引就产 生分子键。 分子键的产生是与分子 的定向作用、诱导作用 和分散作用有关。
氧联结,其键力很弱,易为具有氢键的强极化 水分子楔入所分开。
高 岭 石
(氢键联结)
高岭石
蒙脱石
由两个四面体晶片中间夹一个八面体晶片堆叠而成。 称为2:1型结构单位层,亦称为三层结构型。
蒙 脱 石
蒙脱石
伊利石
伊利石的晶格构造与蒙脱石相似,同属 2:1 型结构
单位层,但在四面体片之间六角形网格眼中央嵌 有一个钾离子。
伊 利 石
伊利石
三种粘土矿物物理性质的比较
氧八面体) 4个铝—氢氧八面体组成一个铝片,每个氢氧离子都被相邻两个 铝离子所共有。
粘土矿物的结晶结构
粘土矿物根据四面体片(硅片)与八面 体片(铝片)的不同组合堆叠形式,形 成了三种主要的粘土矿物片与一个八面体片重复堆叠而成。 称为1:1型结构单位层,也称为二层结构型。
以及它们之间的联结力。 键 力
粘性土的各种工程性质(可塑性、压缩性、强度
等)主要受组成粘性土的粘土矿物的结晶结构特 征以及矿物颗粒与周围介质的相互作用所制约。
第一节 键力的基本概念
所谓键力是指组成粘土矿物的原子与原子
之间或分子与分子之间的一种联结力。
键力的类型:
化学键 分子键 氢键
土力学与地基基础——第二章
![土力学与地基基础——第二章](https://img.taocdn.com/s3/m/9aab290752ea551810a687bb.png)
pi 1 z Ki 2 2 z z i 1
n
K P
i 1 i i
n
2.3 地基中的附加应力
讨论:集中力荷载产生的竖向附加应力在地基
2.3 地基中的附加应力
(d)o点在荷载面角点外侧 把荷载面看成由I(ohce)、Ⅳ(ogaf)两个面积中扣除 Ⅱ(ohbf)和Ⅲ(ogde)而成的,所以
z ( Kc1 Kc 2 Kc3 Kc 4 ) p0
2.3 地基中的附加应力
例题 以角点法计算矩形基础甲的基底中心点
垂线下不同深度处的地基附加应力的分布,基 础埋深1.5m,集中力为1940KN,并考虑两相邻 基础乙的影响(两相邻柱距为6m,荷载同基础 甲)。
(b)o点在荷载面内
z ( Kc1 Kc 2 Kc 3 Kc 4 ) p0
(c)o点在荷载面边缘外侧 此时荷载面abcd可看成是由I(ofbg)与Ⅱ(ofah)之差和 Ⅲ(oecg)与Ⅳ(oedh)之差合成的,所以
z ( Kc1 Kc 2 Kc 3 Kc 4 ) p0
如果基础砌置在天然地面上,那末全部基底压 力就是新增加于地基表面的基底附加压力。一 般天然土层在自重作用下的变形早巳结束,因 此只有基底附加压力才能引起地基的附加应力 和变形。
2.2 基底压力
基底压力为均匀分布时:
p0 p 0 p 0 d
基底压力为梯形分布时:
p0 max p0 min
2.1 地基中的自重应力
什么时候考虑土体在自重下的自重应力? 土层一般形成至今有很长的时间,自重应力下
土力学第二章:土的物理性质及工程分类全解
![土力学第二章:土的物理性质及工程分类全解](https://img.taocdn.com/s3/m/d90a1ba1aa00b52acec7ca29.png)
第2章 土的物理性质及工程分类 2.2 土的三相组成
2.2.1土的固体颗粒
3.土的粒径级配 巨粒(>200mm)
土颗粒
粗粒(0.075-200mm)
卵石或碎石颗粒 (20200mm)
圆砾或角砾颗粒 (2-20mm) 砂 (0.075-2mm)
细粒(<0.075mm)
粉粒(0.005-0.075mm)
第2章 土的物理性质及工程分类
2.1.1土的生成
(1)物理风化 ①温差风化:由于温差 变化,岩石在热胀冷缩 过程中逐渐破碎的过程, 常发生在温差较大的干 旱气候地区。
2.1 土的生成与特性
第2章 土的物理性质及工程分类
2.1.1土的生成
(1)物理风化 ② 冰劈作用:充填于岩 石裂隙中的水结冰体积 膨胀而使岩石裂解的过 程。 水结成冰时其体积可增 大9.2%。冰体将对裂缝 壁产生2000kg/cm2的 巨大压力。
1.0 ,0.5, 0.25,
0.075
第2章 土的物理性质及工程分类
2.2.1土的固体颗粒
3.土的粒径级配 (1) 筛分法:适用于0.075mm≤d≤60mm
2.2 土的三相组成
筛析机
第2章 土的物理性质及工程分类
2.2.1土的固体颗粒
3.土的粒径级配 (2) 比重计法:适用于d<0.075mm
粒径<0.25mm: 粒径<0.075mm:
1-155 0 0151 000 1% 0 500
1-15 5 0 015 100 3 0 04% 500
<2.0
<1.0
<0.5
<0.25
<0.075
90%
60%
土力学二章 有效应力课件
![土力学二章 有效应力课件](https://img.taocdn.com/s3/m/54b88396844769eae109ed03.png)
•
建筑物
•
基础
• 桩端持力层
地基
土力学二章 有效应力
• 基础:建筑物的下部结构,它将整个建筑物 (包括基础)的重量及荷重传递给地基。
• 地基:建筑物修建后,使土体中一定范围内应 力状态发生了变化,这部分由建筑物荷载引起 土体内应力变化的土层叫地基。
• 持力层:直接与基础接触,并承受压力的土层。
土力学二章 有效应力
地基中常见的应力状态
1.一般应力状态——三维问题
z
zx
xy
x
y yz
o x
z y
ij =
x xy xz
yx y yz zx zy z
ij =
土力学二章 有效应力
x xy xz yx y yz
zx zy z
地基中常见的应力状态
轴对称三维问题
ij =
土力学二章 有效应力
x 0xy xz 0yx y 0yz zx 0zy z
3.侧限应力状态
▪应变条件
y x 0;
xyyzzx0
▪应力条件
xyyzzx0; x y;
x E xE yz 0;
xy1zK0z;
▪独立变量 z,z F(z)
K0:侧压力系数
ij =
0 x 0xy 0xz
土力学二章 有效应力
第一节 概述
• 研究地基土中应力的目的 • 1.定量的预测土体变形(如地基沉降)、稳定
性(如地基、边坡、洞室)等。 • 2.选择合理的基础形式、结构形式 • 3.确定建筑物地基勘探的深度和范围
土力学二章 有效应力
几个基本概念
• 地基与基础 • 自重应力与附加应力 • 有效应力
土力学第二章土的渗透性和渗透问题
![土力学第二章土的渗透性和渗透问题](https://img.taocdn.com/s3/m/2f9c727858eef8c75fbfc77da26925c52dc59135.png)
§2.1 土的渗透性与渗透规律 Permeability and seepage law of soil
Ch2 土的渗透性和渗流问题 Permeability and seepage problem of soil
Ch2 土的渗透性和渗流问题 Permeability and seepage problem of soil
A
B
L
h1
h2
zA
zB
Δh
0
0
基准面
水力坡降线
总水头-单位质量水体所具有的能量
流速水头≈0
A点总水头:
B点总水头:
总水头:
水力坡降:
一.渗流中的水头与水力坡降
§2.1 土的渗透性与渗透规律 Permeability and seepage law of soil
概述
Ch2 土的渗透性和渗流问题 Permeability and seepage problem of soil
概述
Teton坝
渗流量
渗透变形
渗水压力
渗流滑坡
土的渗透性及渗透规律
二维渗流及流网
渗透力与渗透变形
扬压力
土坡稳定分析
挡水建筑物 集水建筑物 引水结构物 基坑等地下施工 边坡渗流
§2.3 渗透力与渗透变形 Seepage force and seepage deformaton
学习目标
学习基本要求
参考学习进度
学习指导
学习目标
掌握土的渗透定律与渗透力计算方法,具备对地基渗透变形进行正确分析的能力。
掌握土的渗透定律
01
掌握二维渗流及流网绘制
土力学第2章
![土力学第2章](https://img.taocdn.com/s3/m/3f863edc76eeaeaad1f3308e.png)
第2章土的渗透性与渗流2.1概述由于土体本身具有连续的孔隙,如果存在水位差的作用时,水就会透过土体孔隙而产生孔隙内的流动,这一现象称为渗透。
土具有被水透过的性能称为土的渗透性。
这里所论及的水是指重力水。
水是在土的孔隙中流动的,本章假定土颗粒骨架形成的孔隙是固定不变的,并且认为,在孔隙中流动的水是具有粘滞性的流体。
也就是说,把土中水的流动,简单地看成是粘滞性的流体在土烧制成的素陶磁管似的刚体的孔隙中流动。
这种思考方法,在被称为达西定律的试验中反映出来。
达西定律是土中水的运动规律的最重要的公式。
这个公式采用了“水是从水头(总水头)高的地方流向低处”这一水流的基本原理。
根据达西定律和连续方程,再考虑边界条件,一般的透水问题都可以得到解决,即可以求出土中水的流量(透水量)及土中水压力的分布。
如图2-1 所示为土木、水利工程中典型渗流问题。
此外,土的渗透性的强弱,对土体的固结、强度以及工程施工都有非常重要的影响。
为此,我们必须对土的渗透性质、水在土中的渗透规律及其与工程的关系进行很好的研究,从而给土工建筑物或地基的设计、施工提供必要的资料。
图2-1土木、水利工程中的渗流问题2.2土的渗透性土是由固体相的颗粒、孔隙中的液体和气体三相组成的,而土中的孔隙具有连续的性质,当土作为水土建筑物的地基或直接把它用作水土建筑物的材料时,水就会在水头差作用下从水位较高的一侧透过土体的孔隙流向水位较低的一侧。
渗透:在水头差作用下,水透过土体孔隙的现象。
渗透性:土允许水透过的性能称为土的渗透性。
水在土体中渗透,一方面会造成水量损失,影响工程效益;另一方面将引起土体内部应力状态的变化,从而改变水土建筑物或地基的稳定条件,甚者还会酿成破坏事故。
此外,土的渗透性的强弱,对土体的固结、强度以及工程施工都有非常重要的影响。
2.2.1土的渗透定律地下水在土体孔隙中渗透时,由于渗透阻力的作用,沿程必然伴随着能量的损失。
为了揭示水在土体中的渗透规律,法国工程师达西(H.darcy)经过大量的试验研究,1856年总结得出渗透能量损失与渗流速度之间的相互关系即为达西定律。
土力学第二章
![土力学第二章](https://img.taocdn.com/s3/m/f108ed92daef5ef7ba0d3cf9.png)
i x = i xi ( ∆h = ∆hi ), q x =
∑q
i =1nxi Nhomakorabea);(2 ;(2
)试根据图2.5(b)求垂直透水时总垂直渗透系数Kz (提 试根据图2.5 2.5( 求垂直透水时总垂直渗透系数K
∑ ∆h
i =1
n
i
);
解:(1)水平透水时各层土的水力坡降(或水头差)相等,单位面积 (1)水平透水时各层土的水力坡降 或水头差)相等, 水平透水时各层土的水力坡降( 上的总水平透水量等于各层透水量之和, 上的总水平透水量等于各层透水量之和,即:
置
H2
γ w La
L
z2
z 2 − z1 cos α = L
-∆h 压 力 总 水 头 H1 位 置 水 头 z1 A 水 L z2 头 h1 TLa 水 头 a α B 位 置 总 水 头
j = γw
压 力 水
h1=H1-z1;h2=H2h1=H1-z1;h2=H2-z2
T = γw
H1 − H 2 = γ wi L
h 45 −2 V = k At = 2.5 ×10 × ×120 ×10 = 54cm3 l 25
h k Adt = a (−dh) l
A dh k dt = −a l t1 h h1
t2
∫
h2
∫
A h2 h1 k (t 2 − t1 ) = − a ln = a ln l h1 h2
k= 2.3al h lg 1 A(t2 − t1 ) h2
v2 u +z+ = h = 常数 2g γw
z+ u
γw
=h
-△h =h1-h2=(z1+u1/γw)-(z2+u2/γw)
土力学第二章
![土力学第二章](https://img.taocdn.com/s3/m/2eab6e798e9951e79b8927e2.png)
2.1 概述 2.2 土的渗透性 2.3 二维渗流与流网
2.4 渗透力与渗透变形
2.1 概述
2.1 概述
碎散性
多孔介质 能量差
土颗粒 土中水 渗流
三相体系
孔隙流体流动
水、气等在土体孔隙中流动的现象 土具有被水、气等流体透过的性质
渗流 渗透性
2.1 概述
土石坝坝基坝身渗流 防渗斜墙及铺 盖
1 kx H
kz
1 k j H j (0.0011 0.2 1 101 ) 3.4m/d 3 j 1
3 1 1 1 0.001 0.2 10 0.003m/d
n
k
j 1
H n H j
j
水平渗流kx:渗透系数大的土层起主导作用 竖直渗流kz:渗透系数小的土层起主导作用 kx恒大于kz,实际工程中,一定要注意渗流水流的流向
Q lg(r2 / r1 ) k 2.3 h22 h12
优点:可获得现场较为可 靠的平均渗透系数 缺点:费用较高,耗时较长
2.2 土体的渗透性
4、影响渗透系数的因素
k f (土粒特性、流体特性)
粒径大小及级配 孔隙比 矿物成分 结构 饱和度(含气量) 水的动力粘滞系数
2.2 土体的渗透性
2.2 土体的渗透性
2.2.2
渗透系数的测定和影响因素
常水头试验法
室内试验测定方法
变水头试验法
野外试验测定方法
井孔抽水试验 井孔注水试验
2.2 土体的渗透性
1、常水头试验法
试验条件: Δh,A,L已知 量测变量: V,t 结果整理
V=Qt=vAt v=ki
i=Δh/L
土力学第二章-土的工程分类
![土力学第二章-土的工程分类](https://img.taocdn.com/s3/m/218a3a320912a216147929ff.png)
• 细粒土质砾:
细颗粒含量15-50%的土,分为粘土质砾和粉土质砾。
砂类土的分类
• 砂类土分类: 砂、含细粒土砂、细粒土质砂 • 砂: 细颗粒含量<5%的土,分为级配良好砂和级配不良砂。 • 含细粒土砂: 细颗粒含量5-15%的土。 • 细粒土质砂: 细颗粒含量15-50%的土,分为粘土 指粗粒组含量<25%的土。 • 含粗粒土的细粒土: 指粗粒组含量在25-50%之间的土。 • 塑性图: 塑性图以液限表示横坐标,以塑性指数表示作坐标。 • 细粒土按照塑性图分类: 高液限粘土、低液限粘土、高液限粉土、低液限粉土
粗粒土的分类
• 粗粒土分类: 砾类土、砂类土 • 砾类土: 指粗粒土中砾粒组(2-60mm)的含量>50%的土。 • 砂类土: 指粗粒土中砂粒组(0.075-2mm)的含量>50%的土。 • 砾类土和砂类土又可以进一步分类。
砾类土的分类
• 砾类土分类:
砾、含细粒土砾、细粒土质砾 • 砾:
细颗粒含量<5%的土,分为级配良好砾和级配不良砾。
土的大类
•
•
• • •
土的分类: 有机土:有机质含量大于5%的土 无机土:有机质含量小于5%的土 工程用土是无机土 无机土分类: 巨粒土、粗粒土、细粒土 巨粒土:指粒径大于60mm以上的颗粒含量>50%土 粗粒土:指粒径大于0.075mm以上的颗粒含量>50%土 细粒土:指粒径小于0.075mm以下的颗粒含量>50%土
巨粒土的分类
• 巨粒土分类: 巨粒类土、巨粒混合土 • 巨粒类土: 指巨粒土中巨粒组的含量>50%的土。 分为: 巨粒土:巨粒组含量在75-100%之间 混合巨粒土:巨粒组含量在50-75%之间 • 巨粒混合土: 指巨粒组含量在15-50%之间的土。 • 如巨粒组含量<15%,扣除巨粒,按粗粒土或细粒 土分类。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
v
虚直线简化
v k (i ib )
i
O
砾土 一、粗粒土中的渗流
起始水 0 ib 力坡降
i 密实粘土
二、密实粘土中的渗流
水力梯度较大时,水流成为 紊流,达西定律不适用,表 现为次线性。(用雷诺数或 者临界流速判断)
结合水膜的影响,密实粘 土中的渗流也不符合达西 定律,表现为超线性。
2.2.4 渗流系数的确定
渗透系数的大小是直接衡量土的透水性强弱的重要力
学性质指标。渗透系数的测定可以分为现场试验和室内试 验两大类。一般,现场试验比室内试验得到的结果要准确
可靠。因此,对于重要工程常需进行现场测定。
常水头试验法
室内试验测定方法 野外试验测定方法
变水头试验法 井孔抽水试验 井孔注水试验
二、变水头试验
设玻璃管的内截面积为 a ,
试验开始以后任一时刻 t 的 水位差为 h ,经时段 dt ,细 玻璃管中水位下落 dh ,则在 时段dt内流经试样的水量。
截面面积a
dQ adh h dQ k Adt l
试验中测取的量 为:t1, t2, h1, h2
二、变水头试验
dQ adh
的阻力相等。
2.2.2 渗流模型
由于土中孔隙一般非常微小,水在土体中流动时 的粘滞阻力很大,流速缓慢 层流
水在土中的渗透速度和试 样两端水面间的水位差成 正比,而与渗径长度成反
比:
h v k ki L
q vA kiA
2.2.2 渗流模型
v 渗透速度(cm/s或m/s); q 渗流量(cm3/s后m3/s); i
产生的问题
2.1 概述
土石坝坝基坝身渗流
浸润线
渗流量 渗透变形
透水层 不透水层
2.1 概述
板桩围护下的基坑渗流
板桩墙
基坑
渗流量
透水层
渗透变形
不透水层
2.1 概述
渠道渗流
渗流量
渗流时地下水位
2.1 概述
渗流滑坡
2.1 概述
Teton坝
损失: 直接8000万美元,起 诉5500起,2.5亿美元, 死14人,受灾2.5万人, 60万亩土地,32公里 铁路
第二章 土的渗透性与土中渗流
§2.1 概述
§2.2 渗流理论
§2.3 流网及其工程应用 §2.4 土中渗流的作用力及渗透变形
2.1 概述
三相系 多孔介质
孔隙流体 能量差
孔隙流体流动
一、渗漏,造成水量损失
二、引起土体内部应力状态的变化,从而改 变地基、边坡或土工建筑物的稳定条件。 三、影响土体变形快慢。 四、基坑排水。 五、边坡稳定计算。
k (1 ~ 1.5) d ——哈森
2 10
k 2d e ——太沙基
2 2 10
五、影响渗透系数的因素
1.土粒大小与级配
土粒越粗越均匀,渗透系数越大。粘粒含量越多,渗透系数 越小。 2.土的结构 水平渗透系数一般大于竖向渗透系数。
3.渗透水的性质 动力粘滞系数随水温发生明显的变化。水温愈高,水的动力 粘滞系数愈小,土的渗透系数则愈大。 T、20分别为T℃和20℃时水 k20 kT T 20 的动力粘滞系数,可查表 4.土中封闭气体含量 土中封闭气体阻塞渗流通道,使土的渗透系数降低。封闭气 体含量愈多,土的渗透性愈小。
水力梯度,沿渗流方向单位距离的水头损失,无因次;
h 试样两端的水位差,即水头损失; L 渗径长度; k 渗透系数(cm/s或m/s,m/d); A 试样截面积(cm2或者m2)。
2.2.3 达西渗流定律 一、达西定律 结论:
水在土中的渗透速度与试 样的水力梯度成正比 v=ki 达西定律
一、常水头试验
给水
常水头试验——整个试验过程中水头保 持不变
排水 时间 t 内流出的水量
h Q qt kiAt k At L QL k hAt
适用于透水性大(k>103cm/s)的土,例如砂土。
试验中测取的量为:h, t, Q
二、变水头试验
变水头法在整个试验过程中,
截面面积a
水头是随着时间而变化的, 试验装置如图,试样的一端 与细玻璃管相接,在试验过 程中测出某一时段内细玻璃 管中水位的变化,就可根据 达西定律求出水的渗透系数; 粘性土,渗透系数小,流经 水量少。 适用于粘性土,渗透系 数小,流经水量少。
模型的简化:
(1) 不考虑渗流路径的迂回曲折,只分析主要流向; (2) 不考虑土中颗粒的影响,认为孔隙和土粒所占的空间
之总和均为渗流所充满。
符合几点要求:
(1) 在同一过水断面,渗流模型的流量等于真实渗流的流量;
(2) 在任意截面上,渗流模型的压力与真实渗流的压力相等; (3) 在相同体积内,渗流模型所受到的阻力与真实渗流所受到
Teton坝
11:30 洞口继续向上扩大, 泥水冲蚀了坝基, 主洞的上方又出现 一渗水洞。流出的 泥水开始冲击坝趾 处的设施。
2.1 概述
Teton坝
11:50左右 洞口扩大加速, 泥水对坝基的冲 蚀更加剧烈。
2.1 概述
Teton坝
11:57 坝坡坍塌, 泥水狂泻而下
2.1 概述
Teton坝
渗透系数,水力梯 度为1时的渗透速度, 单位:cm/s
注意:
1.渗流速度并非真正流体速度
1856年法国学者 达西对砂土的渗 透性进行研究
2.水力梯度也并非真正的水力 梯度
2.2.3 达西渗流定律
v
v=ki
O 砂土 达西定律
i
v ki
砂土的渗透速度与水力梯度呈线性关系
பைடு நூலகம்
二、达西定律适用范围
v
vcr
12:00过后 坍塌口加宽
2.1 概述
Teton坝
洪水扫过下游 谷底,附近所 有设施被彻底 摧毁
2.1 概述
Teton坝
失事现场目 前的状况
2.2 渗流理论 2.2.1 定义
定义:土孔隙中的自由水在重力作用下发 生运动的现象称为水的渗透,而土被水流
透过的性质,称为土的渗透性。
2.2.2 渗流模型
h dQ k Adt l
h adh k Adt l
h1 al k ln A(t2 t1 ) h2
三、现场抽水试验
观察井
抽水量q
r1
r
r2 dr h2
井 透水层 地下水位≈测压管水面
dh
h1
h
不透水层
r2 ln r q 1 k 2 π h2 h12
四、经验公式
概况: 土坝,高90m,长1000m,建于 1972-75年,1976年6月失事
原因: 渗透破坏-水力劈裂
2.1 概述
Teton坝
1976年6月5 日上午10:30 左右,下游坝 面有水渗出并 带出泥土。
2.1 概述
Teton坝
11:00左右 洞口不断扩 大并向坝顶 靠近,泥水 流量增加
2.1 概述