荧光探针
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
荧光探针的种类、研究热点与研究进展
19920102203495 宋菊平
【摘要】:荧光探针在化学传感、光学材料及生物检测和识别等领域得到了广泛的应用,并成为实现上述功能的一种主要的技术手段。最近,无机发光量子点、荧光聚合物纳米微球、复合荧光二氧化硅纳米粒子等荧光纳米探针的相继出现,为生物分析提供了新的发展领域,成为了近年来研究的热点。而一些传统的探针,也得到了一下新的改进与发展。荧光探针在生物医学光子学领域正呈现一片欣欣向荣的场面。
【关键词】:荧光探针;量子点荧光探针;纳米荧光探针;小分子荧光探针;双光子金属离子荧光探针;硫醇类探针;
(一)荧光探针的种类
按照荧光探针制作方式,可分为化学荧光探针和基因荧光探针。其中化学荧光探针是由化学方法合成的,而基因荧光探针是由可遗传、由DNA编码、蛋白质组成的。按荧光波长可分为发射在紫外可见区的荧光探针和近红外区的荧光探针。按荧光探针用途不同可分为荧光标记试剂(fluorescent) 和荧光生成试剂(nuorlgenic)。按荧光探针物质本身的性质又可分为有机(包括稀土金属有机配合物) 荧光探针、量子点荧光探针、高分子荧光探针等按照荧光探针功能来分,可分为细胞活性探针;细胞器探针;膜荧光探针;核酸探针;Ph值探针;免疫荧光探针;钙离子探针;活性氧探针。细胞活性探针是标记活细胞;酯酶底物探针、过氧化物酶底物探针和离子泵活性指示探针识别死细胞,死细胞探针有膜不透性DNA探针和丹磺酰赖氨酸。而其优点是灵敏,安全。细胞器探针是与细胞器选择性结合的荧光染料。主要用途:研究胞内的氧化作用、有丝分裂、底物降解作用、解毒反应、细胞间的转运和细胞分拣等。膜探针是非极性探针、两性探针、膜流动性探针、荧光标记的磷脂、脂肪酸和固醇探针。用途:测量膜的扩散、监测病毒-细胞的融合、观察膜流动性和研究膜表面的分子组成。核酸是细胞生长、分化、遗传的重要物质。用途:测定DNA和RNA的形态和含量;研究细胞周期和肿瘤的诊断、治疗和预防。
(二)一些荧光探针热点的实例
1:小分子荧光探针
小分子荧光探针一般由两部分组成:荧光团以及与受体专一性高亲和力结合的配体。受体与目标蛋白质融合,通过受体与配体的相互作用来标记蛋白质。总体说来,小分子荧光探针应该可以穿过细胞膜并且无毒;能够与受体专一性稳定结合,使得其在进行监测的较长时间(几个小时)内保持稳定性;背景噪音水平尽可能的低;探针尽可能地设计成一定的模式,使得多种荧光团能够方便地结合。选择合适的受体可以实现对蛋白质位点专一性结合。对于受体的选择有以下两个要求:(1)受体与目标蛋白质融合后必须能够被基因表达;(2)受体应该尽可能小,以致不干扰目标蛋白质的正常生理功能,因此较理想的受体是一段短序列的肽链并且能够插入目标蛋白质的许多位点。而选择适合的受体-配体对可以实现对蛋白质高灵敏度高亲和力结合。一般说来,受体与配体的结合应当尽可能地快,有利于监测时间敏感
性的生理过程。受体-配体的作用一般包括半抗原-抗体、生物素-抗生物素蛋白、酶-底物、联砷荧光物质与富含半胱氨酸的肽链之间的作用等。
小分子荧光探针又有一下几种。
1.1 FLAsH型探针。
Tsien 等提出了一种将荧光素的衍生物在活体细胞内与蛋白质位点专一性共价结合的新方法。Cys-Cys-Xaa-Xaa-Cys-Cys 序列(Xaa 是非 Cys 的任意氨基酸)融合或插入到目标蛋白质中,具有细胞膜通透性的联砷-荧光素衍生物与序列专一性地识别,在每个砷原子与两个半胱氨酸的巯基共价结合后发出荧光。FLAsH 能够很方便地在钯催化的条件下,通过三氯化砷与荧光素的醋酸汞盐的转金属化作用一步得到,而且通过加入 1,2-乙二硫醇(EDT)很好地加以分离,得到没有荧光的产物FLAsH-EDT2。但是当与砷原子共价结合的 EDT 被Cys-Cys-Xaa-Xaa-Cys-Cys 序列中的巯基替代后,荧光强度增强约 50000 倍。FLAsH-EDT2的荧光淬灭可以用震动失活或光诱导的电子转移机理来解释,而结构较为固定且刚性较大的多肽链能阻止荧光的淬灭。此外,除了绿色的 FLAsH,红色的 ReAsH 和蓝色的 HoXAsH、CHoAsH 等多种衍生物已被成功合成。Vogel 等提出了一种新型的小分子探针,由两部分组成,一部分为荧光基团,另一部分为螯合物,由金属离子与含有三醋酸根的叔胺类化合物组成(NTA)(图式 2)。这种探针能够可逆、专一性地与目标蛋白质的寡聚组氨酸序列结合。Vogel 等用 Ni-NTA 标记在 N 端含有六聚组氨酸序列的 GFP(GFP-His6)。两者的结合在几秒钟之内即完成。Ni-NTA 作为理想的 FRET 受体几乎完全淬灭了 GFP的荧光。而且此反应的速度与 Ni-NTA 探针的浓度成正比关系,表明 Ni-NTA 与 GFP-His6结合的比例系数为 1:1。特别要指出的是,Ni-NTA 探针都是通过淬灭与目标蛋白质连接的受体的荧光间接使用的。这是由于对与 Ni-NTA 直接相连的荧光基团的荧光成像相当困难,因为 Ni2+会淬灭荧光并且 Ni-NTA 与寡聚组氨酸序列之间的亲和力并不是特别高。同样是以氨基酸序列作为受体,这种探针优于 FlAsH 的地方是它可以用于氧化环境中。
1.2 AGT型探针
Johnsson 等利用人类 DNA 修复蛋白的 6-О-烷基鸟嘌呤-DNA-烷基转移酶(hAGT)的特性,提出了一种新的蛋白质荧光标记方法。AGT 的氨基酸残基能识别 6-О-烷基鸟嘌呤,并且将烷基转移连接到自身的一个半胱氨酸的巯基上。AGT 的底物识别性很广,能够识别很多种类的烷基,包括苯甲基。Johnsson 等先将目标蛋白质与 hAGT 融合,鸟嘌呤衍生物与作为标签的荧光团结合作为探针,hAGT 半胱氨酸上的活性硫原子亲核进攻以苯甲基修饰的鸟嘌呤衍生物来完成两者间的结合(图式 3)。由于苯甲基鸟嘌呤与 hAGT 之间存在共价作用,结合比较稳定,可以在数小时内对 hAGT 融合蛋白进行观察。只有探针诱导的细胞内融合蛋白质降解对此过程有影响。由于 hAGT 与 GFP 相比,体积小 31 个氨基酸,因此对目标蛋白质的影响也大大减少。苯甲基鸟嘌呤的衍生物较多,到现在为止,已有 20 多种能够与AGT 进行专一性标记,这是使用 AGT 标记方法的一个优势。然而值得注意的是,在哺乳动物的细胞中,内源的野生型 AGT(wtAGT)也会被苯甲基鸟嘌呤的衍生物识别,从而出现较高的背景标记。为了解决这一缺陷,Johnsson 合成了一种 wtAGT 的抑制剂和一系列能抵抗此抑制剂的 AGT 变体。这样就能使得在这种抑制剂的存在下,wtAGT 失活,而 AGT 变体能够对目标蛋白质进行专一性标记。这种利用 AGT 变体和 wtAGT 抑制剂的方法有许多优势,例如组成 AGT 变体的氨基酸数为 182,与 hAGT(207)相比有所减少;另外 AGT 变体对于