基于ANSYS旋转机械模块的转子动力特性
基于ANSYS的高加速度旋转实验转子部件形状优化研究
![基于ANSYS的高加速度旋转实验转子部件形状优化研究](https://img.taocdn.com/s3/m/9aac9a7431b765ce050814cf.png)
l I 8 化
根据1 0 组 实 验 结 果 获 得 的 应 力极 值 变 化 趋 势
如 图1 6 所示。
1 . 2 转子部件变厚度设计影响因素研究 在 确 定 转 子 部 件 的 质 量 向 回 转 中心 处 集 中是 个 可 行 的 优 化 方 向 的 基 础 上 ,进 一 步 讨 论 转 子
造 、 清 洁 能 源 、 生 物 工程 、 绿 色 物 流 等 诸 多 技 术
领 域 , 以高 加 速 度 承载 实验 为例 ,其 基 本 实 验 原
理如图l 所 示 。转 子 部件 作 为 核心 部 件 在运 行 中起 着 举 足 轻 重 的作 用 , 因此 对 其 在 高 加 速 度 加 载 条
的优 势 ,在 超 高 稳 态加 速 度 条 件 下 ,进 行 转 子 部 件 的形 状 优化 研究 。
为 优 化 的对 比基 础 。在ANS YS 环 境 对 常 规 等厚 度
■
图1 高加速度旋 转实验系统原理简图及仿真模型 图 收稿日期:2 0 1 3 — 0 4 —1 7
圆盘 转 子 部 件 进 行 计 算 分 析 ,其 等 效 应 力 及 应 变
分 析 ,计 算 极 限 受 力 条 件 下 转 子 部件 的应 力 和应
变 。 为 减 少 实体 建 模 的 工作 量 ,减 少单 元 数 量 , 降 低模 型 求 解 工作 量 ,相 关模 型 都 取其 1 / . 1标准 等厚转子部件计算结果分析 标 准 等 厚 度 圆 盘 是 常 规 的 转 子 部 件 形 式 ,并
件 下 使 用 特 性 分 析 和 测试 就 尤 为 重 要 …。 而 转 子
(必看)ANSYS转子动力学计算讨论
![(必看)ANSYS转子动力学计算讨论](https://img.taocdn.com/s3/m/b4f763cfda38376baf1fae9e.png)
关于ansys做转子动力学问题若干思考(百思论坛)最近想学习一下ansys做转子动力学分析,看了点资料,有点自己感想还有一些别的网友的建议,个人认为比较不错的贴了出来一转子动力学插件:转子动力学插件演示版我已经用了基本上图形可以出来,由于版本原因例程和实际的对应有点问题,如果要有时间我可以把我做的过程,贴出来.难点:坎贝尔图我有些不太了解1 2 5 10频率还有一些刚度考虑的随转速在变化,有函数关系例子上提到了用matrix27模拟刚度,而它只用了刚度阻尼单元,好像没有考虑刚度x y 的交叉项,另外因为是演示版,节点有所限制总的来说不错!将来的要做的工作:滑动轴承模拟滚动轴承模拟挤压油膜阻尼器密封转定件接触(碰摩)电磁场耦合自润滑轴承(石墨)有感:各位学习ansys的高手,有没有兴趣自己开发上面单元,这是很有用的工作,我很感兴趣,但有碍于自己知识水平有限,尤其理论水平,有心无力,如果有对此感兴趣的希望一起研究研究;另外对于ansys做转子的动力学的书籍市场上几乎没有,呵呵希望能组织一些人力把这本书完成功在当代利在千秋提示:1 根据本人自己瞎琢磨,以及看论坛的各位高手的留言觉得做模态分析临界转速计算一般用实体单元的少由于不能考虑陀螺力矩shaft:可以采用beam系列模拟pipe系列也行这些能考虑陀螺力矩叶轮叶片:采用mass21模拟,计算转动惯量,质量通过实常数设置刚度阻尼陀螺质量矩阵:都可以采用matrix27模拟,当然也有用弹簧阻尼单元做的, 问题有过考虑油膜的非线性怎么模拟?2. 网友1:目前轴承计算,采用将刚度和阻尼的8个系数,以施加力和力矩的方式解决> 这个我没搞懂,如果那位给个例子3Q网友2: Pip16能考虑陀螺力矩的影响,实体单元没有角自由度因此不能考虑陀螺力矩的影响,如果你的转子没有类似大圆盘的部分或者大的转动部分在轴的接近轴向中心,或者转速不高,就不用考虑陀螺力矩的影响,可以先采用pipe16做一下看随着转速提高,陀螺力矩对固有频率的影响.网友3:可用于陀螺矩阵下列单元可用: Mass21\beam4\pipe16\beam188\beam189上面三个网友的解释,转自:simwe3 实体单元solid45我用过计算临界转速,其他的甚么都对称,计算出来的水平和竖直方向的固有频率差很多,不知道甚么原因,和用pipe16模拟的差很多,我觉得约束形式对临界转速影响很大,对于实体单元来说模拟轴承本身就不容易,所以个人倾向于用pipe16模拟轴,计算精度也不差,我做过实验一阶临界转速和实际转子系统几乎不差多少,二阶由于实验很难观察到所以这个没有对比,但是可以采用捶击法测出转子的各阶固有频率进行对比,这个我也大概试过,二阶还是差点!在simwe上的一篇文章计算转子的临界转速!!!! 计算临界转速/PREP7MP,EX,1,2.1e11MP,NUXY,1,0.3Mp,DENS,1,7850ET,1,COMBIN14ET,2,SOLID45R,1,0.1, , ,*afun,deg ! 设置角度为(度默认为弧度)r1=0.025/2r2=0.240/2l=0.025CYL4,0,0,0,0,r1,20VEXT,all, , ,0,0,l,,,,CSYS,1VGEN,18,all, , , ,20, , ,0CSYS,0VGEN,25,all, , , , ,l, ,0ASEL,NONECYL4,0,0,r1,0,r2,20VEXT,all, , ,0,0,l,,,,CSYS,1VGEN,18,all, , , ,20, , ,0VSEL,S,LOC,X,r1,r2VGEN, ,all, , , , ,10*l, , ,1ALLSEL,ALLNUMMRG,ALL, , , ,LOWNUMCMP,ALLLSEL,S,LOC,X,0,r1LSEL,A,LOC,X,r2LESIZE,all, , ,1, , , , ,0LSEL,INVELESIZE,all,l, , , , , , ,0MSHAPE,0,3DMSHKEY,1VSEL, , , ,allVSWEEP,allCM,rotor,VOLUCM,Erotor,ELEMsaveVSEL,S,LOC,Z,10*l,11*l!*/GODK,P51X, , , ,0,ALL, , , , , ,OMEGA,0,0,0,1CMOMEGA,EROTOR,100,0,0,,,, , , ,0另外希望大家推荐几个不错的论坛,我现在偶尔上上simwe,最近在刚结构注册了一个帐号好像7天以后才可以发言,现在还在等.大家要是看到有ansys做转子方面的文章论坛还有不错的帖子,希望大家跟贴我想学习一下呵呵谢谢大家!ansys10.0已将考虑了陀螺力矩,加上了这部分功能,可惜我为了装转子动力学插件,现在版本改回了8.1,希望用过10.0这个功能的可以讨论一下,那里不明白,那里懂了!如果有对这方面感兴趣的网友,看看这个帖子相当不错/vi ... 2407&highlight=simwe上的一个帖子【讨论】做转子动力学时:如何获得转子临界转速。
基于ANSYS小型食品机械用电机转子模态分析
![基于ANSYS小型食品机械用电机转子模态分析](https://img.taocdn.com/s3/m/6fbbc4c3da38376baf1faeef.png)
基于ANSYS 小型食品机械用电机转子模态分析冯春亮1,张高丽2,封旭升1,吴业强1(1.贵州大学机械工程学院,贵阳550003;2.贵州大学生命科学学院,贵阳550003)摘要:采用有限元方法对小型食品机械用电机转子进行了模态分析,得出该转子的固有频率,并相应求得该转子临界转速。
将临界转速与工作转速进行比较,验证了该转子不易与其他部件发生共振,有较好的动态特性。
关键词:电机转子;模态分析;振动特性;临界转速中图分类号:TS 203;TM303文献标识码:A 文章编号:1005-1295(2012)04-0066-03doi :10.3969/j.issn.1005-1295.2012.04.017Modal Analysis of Small Food Machine Motor Rotor System Based on ANSYSFENG Chun-liang 1,ZHANG Gao-li 2,FENG Xu-sheng 1,WU Ye-qiang 1(1.College of Mechanical Engineering ,Guizhou University ,Guiyang 550003,China ;2.College of Life Science ,Guizhou University ,Guiyang 550003,China )Abstract :Based on the finite element method ,do a modal analysis of small food machine motor rotor.Get the natural frequency and critical speed of the rotor.Validated that the rotor is not caused resonance easily by comparing the results with the actual working condition.That is the rotor have a good dynamic characteristics.Key words :motor rotor ;modal analysis ;vibration characteristics ;critical speed.收稿日期:2012-05-27;修稿日期:2012-06-14作者简介:冯春亮(1986-),男,硕士,研究方向为食品机械设计,通信地址:550003贵州贵阳市贵州大学蔡家关校区机械工程学院2010级,E -mail :584093175@qq.com 。
利用ANSYS进行转子动力特性计算
![利用ANSYS进行转子动力特性计算](https://img.taocdn.com/s3/m/2b454241be1e650e52ea994d.png)
利用ANSYS进行转子动力特性计算屈文忠江汶清华大学工程力学系,100084[ 摘要 ] 本文利用大型有限元计算软件ANSYS5.5实现转子动力特性的计算。
该计算过程用命令流方式可实现柔性转子系统的临界转速和不平衡响应的计算。
[ 关键词 ] 有限元法;ANSYS软件;转子系统;动力特性转子动力学的理论研究和实验分析在国内外已相当成熟。
发展到今天,现代的计算方法可以分为两大类:传递矩阵法和有限元法。
计算转子临界转速必须能够考虑旋转结构涡动时产生的陀螺效应对转子临界转速的影响,这是转子临界转速计算同其他非旋转结构固有频率计算的差异所在。
大部分通用有限元计算软件不具备计算转子临界转速的功能。
本文利用ANSYS5.5计算了文献1(顾家柳等编著的《转子动力学》)中第68页的例子,命令流文件详细给出了其计算过程。
ANSYS计算转子动力学问题可用单元为BEAM4和PIPE16,其中的实常数设置为Keyoption(7)=1,实常数Spin=转子自转角速度(ω)rad/s。
选取DAMP方法求解特征值。
采用有限元方法计算转子临界转速时,转子会出现正进动和反进动。
由于陀螺效应的作用,随着转子自转角速度的提高,反进动固有频率将降低,而正进动固有频率将提高。
根据临界转速的定义,应只对正进动固有频率(Ωc)进行分析。
在后处理中首先剔除负固有频率,确定同一阶振型的正进动和反进动固有频率。
改变转子自转角速度(ω),计算出新的Ωc,最后画出Ωc~ω曲线。
Ωc~ω曲线与正进动等转速线的交点即为转子的临界转速值。
转子固有频率随转速变化的计算结果如表1所示。
表1 转子固有频率随转速的变化计算结果转速(rad/s) 第一阶正进动(Hz) 第一阶反进动(Hz)1 268.07677 268.0609710 268.14745 267.98942100 268.81721 267.23317200 269.48903 266.29788300 270.09388 265.24944400 270.64005 264.07318500 271.13476 262.75363600 271.58422 261.27522700 271.99383 259.62319800 272.36823 257.78468900 272.71144 255.750131000 273.02694 253.514401100 273.31775 251.077761200 273.58650 248.446281300 273.83547 245.631501400 274.06667 242.649721500 274.28184 239.520661600 274.48253 236.266171700 274.67009 232.908831722 274.70972 232.158651800 274.84573 229.470941900 275.01051 225.973672000 275.16537 222.43656由表1中数据可绘制出转子系统的compell图,如图1所示。
基于ANSYS的磁悬浮轴承转子系统的动力学特性研究
![基于ANSYS的磁悬浮轴承转子系统的动力学特性研究](https://img.taocdn.com/s3/m/24add9a8d1f34693daef3e40.png)
产品设计与应用基于ANS YS的磁悬浮轴承转子系统的动力学特性研究万金贵1,汪希平2,高琪1,张飞1(1.上海第二工业大学实验实训中心,上海201209;2.上海大学机电工程与自动化学院,上海200072)摘要:针对一个实际应用的磁悬浮支承柔性转子系统,进行多组参数条件下的有限元模态分析,分别得到系统的前8阶临界转速与模态振型。
将有限元计算结果与试验结果进行对比分析,验证了有限元分析的正确性。
通过对该磁悬浮转子系统的有限元分析表明:/轴承主导型0的低阶临界转速及振动模态是由轴承控制器各控制通道决定的;而/转子主导型0的高阶临界转速及振动模态符合传统的轴承转子系统动力学特性普遍规律。
关键词:转子系统;磁悬浮轴承;ANSYS;动力学特性;临界转速;模态振型中图分类号:T H133.3;O241.82文献标志码:A文章编号:1000-3762(2010)06-0001-05 R esearch on Dyna m ic Character istics of R otor Syste m Suppor tedby AM B B ased on ANS YS M oda l Ana lysisWAN Ji n-gui1,WANG X i-p i n g2,G AO Q i1,Z HANG Fe i1(1.P racti ca l Center,Shangha i Second P olytechn i c University,Shanghai201209,China;2.School ofM echatron i cs Engi neer i ng and Auto m atio n,Shangha iUn i versity,Shangha i200072,Ch i na)Abstr ac t:The fi n ite e l em ent m o da l analysis of the practical flex i ble rotor system supported by A MB is ca rried out ac2 cordi ng to diff e rent gro ups of para m eters.The first8-order cr iti ca l speeds and m ode shapes are sol ved respecti ve ly.The correctness of t he calculati on resu lts is tested and ver ifi ed by t he exper i m ents.The calculati on resu lts are d iscussed and t he dyna m ic characteristi cs of t he rotor syste m supported byA M B are su mmed up.That i s,the"bear i ng-do m i na2 ted"lo w-order critical speeds and vi brati on m odes are dec i ded by the A MB control channe,l and the"rot or-do m i na2 ted"hi gh-order cr iti ca l speeds and vibratio n m odes a re i n li ne with t he universa l la w of dy na m ics character i sti cs of t he conventi ona l beari ng rotor syste m.K ey word s:rotor syste m;ac ti ve m agne ti c beari ng;ANS YS;dy na m ic character i stics;critica l speed;m o de shape主动磁悬浮轴承(acti v e magnetic bearing, A MB)是利用电磁铁产生可控电磁力将转子悬浮支承的一种新型轴承,由于具有一系列独特的优点而引起人们的广泛关注[1]。
ANSYS转子动力学问题的处理
![ANSYS转子动力学问题的处理](https://img.taocdn.com/s3/m/3e8eb0fc700abb68a982fb88.png)
ANSYS转子动力学问题的处理除了在像Civic和Accord车型上获得了长久的商业成功之外,Honda还因其实现了很高的舒适性、安全性和性能标准的承诺而受到称赞。
在影响车辆的舒适性的因素里面,控制路面噪声是最重要的。
在Honda最近已开发的几种车辆里面,其发动机公司成功地通过利用一种新的混合模拟方法减少了路面噪声。
同LMS工程咨询部门一起,Honda实施了混合模拟过程,能够快速和精确地模拟一直到300Hz路面噪声。
这种方法由连接一个基于试验的内饰车身模型和一个悬架系统的有限元模型而组成。
获得的整车混合模型使Honda能够在开发阶段的更早期评价更多的悬架设计选择,并针对改善的路面噪声性能提出更有效的对策。
传统方法的局限性无论是在进行一个热烈的讨论,还是在安静的行使过程中享受一支轻音乐,一个安静内部的舒适性将会使氛围有很大的区别。
一个潜在的干扰因素就是路面噪声,它能通过车辆的机械结构和连接进行传播。
在众多的传播路径中,悬架装配零件起着重要的作用,因此很难控制和减少路面噪声。
先于物理样机修改阶段之前,进行路面噪声级别的预测一直是个有难度的挑战。
在早期的悬架设计中最常用的方法是依赖于根据已有经验的粗略判断,例如,悬架连接的共振频率应高于一个给定频率或是悬架刚度应在一个特定的范围。
这种方法的主要问题是,没有办法依据这些规则说明一个设计修改将会增加或减少路面噪声。
开发整个有内饰车身和所有悬架部件的有限元模型是评价路面噪声性能的另外一种方法。
使用纯粹的基于有限元的全内饰车辆模型的一个缺点就是,建模非常棘手。
当焦点仅仅局限在车辆悬架上时,在车身建模上投入太多是不必要的。
使用纯粹的有限元模型进行模拟的另外一个缺点就是高频预测的精度会降低。
混合的Test-CAE方法增加了速度和精度为了评价混合建模和模拟方法的精度和可用性,这种混合方法已经用于一个现有的Honda车型。
LMS工程服务部门从创建一个基于有限元的单个悬架系统部件模型开始,包括悬架连杆、减振器、副车架等等。
基于ANSYS的电机转子的动力学分析
![基于ANSYS的电机转子的动力学分析](https://img.taocdn.com/s3/m/5248b8fef90f76c661371aaf.png)
现代工业上旋转机械单机容量在不断增大,而转子直径不可能随其容量的增大而按比例增大。
高转速轻结构是近代高速旋转机械的发展和设计趋势。
本文使用ansys研究了电机转子动力学问题,得出ansys可以计算转子动力学问题。
1 引言转子动力学的研究,最早可追溯到十九世纪六十年代。
一个多世纪以来,随着大工业的发展,转子系统被广泛地应用于包括燃气轮机、航空发动机、工业压缩机等机械装置中,在电力、航空、机械、化工、纺织等领域中起着非常重要的作用。
因而,转子动力学有着极强的工程应用背景,其相关的研究工作也越来越受到人们的重视。
由于材质的不均匀,制造、加工及安装误差等,转子系统不可避免的存在着质量偏心,同时转子在工作过程中还可能产生热变形以及磨损和介质的姑附等现象,这些因素或多或少都会导致转子不平衡的增大从而使转子的不平衡振动增大。
由过大的不平衡量引起的转子系统的振动是十分有害的,它使机械的效率降低、载荷增加,使一些零部件易于磨损、疲劳而缩短寿命,较大的振动还会恶化操作人员的劳动环境,甚至会导致发生机毁人亡的严重事故。
消除或者减小转子系统的振动首先考虑是对转子进行平衡。
现代工业上旋转机械单机容量在不断增大,而转子直径不可能随其容量的增大而按比例增大。
高转速轻结构是近代高速旋转机械的发展和设计趋势。
转子设计和发展的这种趋势对转子的质量不平衡提出了严格的限制。
这种情况下,转子的动力学变得更加突出和重要。
本文使用ansys研究了某电机转子的动力学问题,为转子动力学设计找到了一个新的途径。
2 模型的建立及计算如图1所示,为电子转子的有限元模型,使用BEAM188单元模拟转子的轴,使用MASS21单元模拟转子,使用单元COMBI214模拟轴承。
图1 电机转子的有限元模型(不显示单元)图2 电机转子的有限元模型(显示单元)图3给出了Beam188 单元的几何简图。
Beam188单元适合于分析从细长到中等粗短的梁结构,该单元基于铁木辛哥梁结构理论,并考虑了剪切变形的影响。
基于ANSYS的转子动力学分析
![基于ANSYS的转子动力学分析](https://img.taocdn.com/s3/m/e1b865252f60ddccda38a0ea.png)
作者简介:
马威譬(1987一),男,在读博士研究生。
基于ANSYS的转子动力学分析
作者: 作者单位: 马威猛, 王建军 北京航空航天大学能源与动力工程学院,北京,100191
本文链接:/Conference_7345971.aspx
否
ANSYS粱单元与实体单元转子动力学分析能力
粱
否
实体 是 是 是 是 小 大 大 是 是
是
3应用实例
(1)验证性算例
对参考文献[5]中的简单转子模型进行计算分析,图l所示为建立的实体模型,转子
模型采用sofid45单元建立,端部约束所有自由度,中间支撑处约束径向和周向自由度。材
料属性由参考文献[5]给定。
基于ANSYS的转子动力学分析
535
基于ANSYS的转子动力学分析
马威猛王建军
(北京航空航天大学能源与动力工程学院,北京,100191)
摘要:本文对ANSYS的转子动力学计算功能及理论基础进行说明,在此基础上通过一 个简单算例将ANSYS实体单元建模获得的转子临界转速与集中参数模型所得的结果进行对 比,验证了实体单元分析的有效性。最后通过一个复杂实例说明转子动力学实体单元建模的 应用。 关键词:转子动力学;ANSYS;实体建模
响系数法相比,更加接近试验结果。在分析简单模型时.采用寅体单元建模分析计算的有效
惟得到验证。 (2)扩展性算例 图2所示为转子结构复杂,难以将其简化为有效的集中参数模型.同时,其支撑跨距 短,在转子振动分析中盘的振动形式不容忽视。采用粱单元建模显然不能满足分析计算的需 要,而采用文体单元建模则可以很好地解决此类分析问题。
嘲2转于结构州意罔
现代振动与噪声技术(第8卷 图3是本文建立的转子实体有限元模型。对该转子振动特性的讨论可参见参考文献 6]。
ANSYS转子动力学分析
![ANSYS转子动力学分析](https://img.taocdn.com/s3/m/399a67e033687e21ae45a978.png)
附着在旋转结构上y 的 (O'X'Y'Z')
Y’
P r’ P’
r
X’
Stationary Frame o
R
Z’ Rotating Frame
x
z
转子动力学分析的基本方程
Dynamic equation in rotating reference frame
M{&u&r}+ ⎡ ⎤
⎢⎥ ⎢⎥ ⎢⎣ ⎥⎦
( C⎡ ⎤ ⎢⎥ ⎢⎥ ⎢⎣ ⎥⎦
+[Ccor
]){u& r}+
( K⎡ ⎢ ⎢ ⎢⎣
⎤ ⎥ ⎥ ⎥⎦
−[Kspin
]){ur}=
F⎧ ⎫
⎪⎪ ⎨⎬ ⎪⎩ ⎪⎭
Coriolis force {fc}=[Ccorio]{u& r}
Coriolis matrix [Ccor]= 2 ∫ ρΦT ωΦ dv,
Campbell Diagram
• 对应不同的角速度,在模态分析中采用多载荷步对应 不同的角速度 ω, Campbell 图表现出固有频率随转动 频率的变化。
• 命令: PLCAMP, PRCAMP, CAMPB
– PLCAMP: 绘制 Campbell diagram – PRCAMP: 输出频率和临界转速 – CAMPB: 支持预应力结构的Campbell图计算
⎤⎧u& ⎥⎦⎨⎩u&
x y
⎫ ⎬ ⎭
+
⎡K ⎢⎣K
fxx fyx
K fxy K fyy
⎤ ⎥ ⎦
⎧u ⎨⎩u
基于ANSYS的轴承-转子系统动力特性研究
![基于ANSYS的轴承-转子系统动力特性研究](https://img.taocdn.com/s3/m/c59f19194431b90d6c85c78b.png)
式 中 : 、[ 】 和 【 分 别 表 示 系 统 整 体 的 质 量 【 C
矩 阵、 尼 矩 阵 和 刚度 矩 阵 ; £ )、{ t )、 阻 {( ) ( ) { ( )分别表示加速度 向量、 f ) 速度 向量 、 位移响应 向量 ; F £ )为动激励载荷向量。 {( ) 在进行模态分析时 , 通常可以通过研究无阻尼的 自由振动来 进行求解。在这种情况下 , ( ) 式 1 中的 【 】{ ( )和 { () c xt ) F )就不存 在 了。于是对 转子
() 4
自由振动时, 结构 的各个节点 的振幅 不全为
作者简介 : 何新荣(98 )男 , 18一 , 江西赣州人 , 在读硕士 , 研究方 向: 旋转机械故障诊断。
・
3 ・ 9
研 究 与 分析
・
机械研究与应用 ・
进行进一步的修正 , 即可得到需要 的有限元模型 ; 也 可 以在 A S S系统 中采用 直接 实体 建模 的方法 来完 NY 成。本文采用直接在 A S S N Y 建立模型。本模型 的难 点是如何建立弹簧 一 阻尼单元来模拟滑动 轴承与转 子之间的油膜 , 建立时主要通过 分块划分 网格 的形 式, 使转子和轴承上具体位置生成节点 , 然后连接转 子和轴承上 的节点来生成 弹簧 一 阻尼单元 。最后通 过改变弹簧一 阻尼单元的刚度和阻尼系数看转子系 统 的动力特性变化 , 验证了该模型的合理性。
D t [ I一∞ [ e( K MI)=0 () 5
2 模 态分析基本理论
对于一个实际连续的转子系统 , 经离散化后就变 成一个多 自由度系统 。根据弹性力学有限元理论 , 对 于一个 N 自由度线性弹性系统 , 其基本运动微分方
基于ANSYS经典界面的偏心圆盘启动的转子动力学分析-2
![基于ANSYS经典界面的偏心圆盘启动的转子动力学分析-2](https://img.taocdn.com/s3/m/ef5af4310912a21614792948.png)
基于ANSYS经典界面的偏心圆盘启动的转子动力学分析-2这是<基于ANSYS经典界面的偏心圆盘启动的转子动力学分析-1>的续篇,为方便阅读,重抄题目如下.【问题描述】一个转子如下图所示。
该转子两端简支,在距离下端三分之一处有一个轴承支撑;而在距离上端三分之一处有一个刚性圆盘,该圆盘存在一个偏心质量。
现在该转轴从静止开始转动,经过4秒转速达到5000RPM。
要求对该转子的启动过程进行仿真,考察偏心圆盘所在处的轴位移和弯曲应力随时间变化的过程。
其它已知条件如下:(1)几何参数轴的长度: 0.4 m轴的半径: 0.01 m(2)圆盘的惯性参数:质量= 16.47 kg惯性矩(XX,YY) = 9.47e-2 kg.m2惯性矩(ZZ) = 0.1861 kg.m2偏心质量(0.1g)位于圆盘上,距离轴心的距离为0.15 m .(3)材料参数:弹性模量(E) = 2.0e+11 N/m2泊松比(υ) = 0.3密度= 7800 kg/m3《注》该算例来自于ANSYS APDL转子动力学部分的帮助实例。
【问题分析】1.这是一个瞬态动力学问题。
2.该瞬态动力学问题要考虑科里奥利效应,因此在分析中要打开coriolis开关。
3.使用BEAM188建模转子,使用MASS21建模圆盘,使用两个一维的弹簧单元COMBIN14建模轴承,对这两个弹簧设置不同的刚度,以模拟非轴对称的轴承。
4.轴上所有节点限制轴向位移以及围绕轴转动的位移。
轴的两个端点进一步限制住所有平移,而代表轴承与机架连接的COMBIN14的机架端节点位移全固定。
5.使用数组存储不平衡力的两个分量。
这里要使用一系列中间变量。
具体算法请参见<基于ANSYS经典界面的偏心圆盘启动的转子动力学分析-1>。
6.做瞬态动力学分析,在加载时,对节点施加集中力,并把不平衡力数组设置为其参数,从而施加变化的力。
7.使用时间历程后处理器,首先提取所需节点的位移和弯曲应力,然后绘制其图形。
基于ANSYS的电机转子轴的工作能力分析
![基于ANSYS的电机转子轴的工作能力分析](https://img.taocdn.com/s3/m/e2321070cf84b9d528ea7a60.png)
欢迎老师批评指正!
M5-19
• FITEM,5,7
• FITEM,5,9
• • FITEM,5,-14 • CM,_Y,VOLU • VSEL, , , ,P51X !选择体对象 • CM,_Y1,VOLU • CHKMSH,'VOLU' • CMSEL,S,_Y • !* • VMESH,_Y1 • !* • CMDELE,_Y • CMDELE,_Y1 • CMDELE,_Y2 • !*
• MAPTEMP,1,0 • MPDATA,EX,1,,2.09e11
!定义材料属性 • MPDATA,PRXY,1,0.28 • MPDATA,1,0 • MPDATA,DENS,1,,7800 • ESIZE,5,0 • K,1000,,,270, !定义关键点 • /REPLO • VPLOT • /REPLOT,RESIZE • SAVE
轴刚度在许
用范围内,
可用。
电机转子轴位移图
M5-17
第六章:结束语
• 本文通过利用ANSYS对电机转子轴的扭矩分析,从 而得出电机转子轴的花键处在受到额定扭矩后的最 大应力和最大位移量,判断电机转子轴是否有效。 由于本人水平有限,有许多不足之处,在以后的工 作和学习中,要不断提高,望老师谅解!
M5-18
M5-5
ANSYS 中的转子动力学计算
![ANSYS 中的转子动力学计算](https://img.taocdn.com/s3/m/9cd81dea19e8b8f67c1cb965.png)
ANSYS 中的转子动力学计算雷先华 安世亚太转子动力学是固体力学的一个重要分支,它主要研究旋转机械的“转子-支承”系统在旋转状态下的振动、平衡和稳定性问题,其主要研究内容有几个方面:临界转速、动力响应、稳定性、动平衡技术和支承设计。
在旋转机械研究设计中,转子动力学的性能分析是极其重要的一个方面。
传统的转子动力学分析采用传递矩阵方法进行,由于将大量的结构信息简化为极为简单的集中质量—梁模型,不能确保模型的完整性和分析的准确度;而有限元在处理转子动力学问题时,可以很好地兼顾模型的完整性和计算的效率,但多年来转子的“陀螺效应”一直是制约转子动力学有限元分析的“瓶颈”问题。
ANSYS 很好地解决了动力特性分析中“陀螺效应”影响的问题,而且陀螺效应的考虑不受计算模型上的限制,使得转子动力学有限元分析变得简单高效。
本文对ANSYS 的转子动力学计算功能进行简要介绍。
1 ANSYS 转子动力学的理论基础ANSYS 转子动力学分析中,两种参考坐标系可供选择:静止坐标系和旋转坐标系。
空间点P 在静止坐标系(其原点在O ′)下的位置矢量为r ′,在旋转坐标系(其原点在O )下的位置矢量为r 。
在静止坐标系下转子的动力方程为:[][][]{}{}([]){}{}M uC C u K u F gyr +++=&&& []C gyr 为陀螺效应矩阵。
在旋转坐标系下转子的动力方程为:[][][]{}{}([]){}([]){}M u C C u K K u F cor spin r r r+++−=&&& []C cor 为哥氏效应矩阵,[]K spin 为旋转软化效应刚度矩阵。
2 ANSYS 转子动力学的计算功能和新技术ANSYS 转子动力学计算包含如下功能:– 无阻尼临界转速分析– 不平衡响应分析– 阻尼特征值分析– 涡动和稳定性预测 为了分析时计入哥氏效应、陀螺效应和支承的影响,ANSYS 发展了下列新技术单元:SHELL 1814节点有限应变壳单元 PLANE 182二维4节点结构实体单元 PLANE 183二维8节点结构实体单元 SOLID 185三维8节点结构实体单元 SOLID 186三维20节点结构实体单元 SOLID 187三维10节点四面体结构实体单元BEAM 188三维一次有限应变梁单元 BEAM 189 三维二次有限应变梁单元COMBIN214 二维轴承单元(可变刚度和阻尼)ANSYS 考虑陀螺效应时没有计算模型上的限制,故可选择一维(梁、管)、二维(轴对称)和三维复杂计算模型进行分析。
基于ANSYS软件的转子系统临界转速及模态分析
![基于ANSYS软件的转子系统临界转速及模态分析](https://img.taocdn.com/s3/m/b1ab236a7e21af45b307a8eb.png)
第25卷第3期(总第115期)李啸夭,等:基于ANSYS软件的转子系统临界转速及模态分析2010年6月随后约束两轴承及的所有自由度及z(轴向)方向的自由度。
载荷根据分析需要进行施加。
中铝发电机转子的集中参数模型,根据经验这里共分有25个节点,其质量块和轴段的参数如下:m=[177.4301.8168.576.5167.5429.2866.0l143.7l143.7l143.7l143.7l143.7l143.7l143.7l143.7l143.7l143.71143.7866.0429.2167.579.2152.5149.874.130】;f=【0.36200.5180O.16000.11000.36000.66500.27100.27100.27100.27100.27100.27100.27l00.2710O.27100.66500.36000.1100O.17000.44000.16000.12500】kg;轴承刚度K=1.764×109N/m,材料密度p=7850kg/m3;弹性模量E=210GPa;泊松比/z=0.3;额定工作转速/'t=3000r/rain。
由于典型的无阻尼模态(振型)基本方程的求解是一个经典的广义特征值问题,有许多方法用于求解。
通用有限元软件ANSYS提供了7种模态分析求解的方法。
即:Subspace法、BlockLarlCZOS法PowerDynam.ics法、Reduced法、Unsymmertic法、Damp法和QR.Damp法。
在大多数的分折过程中,一般BlockLanczos法采用Lanczos算法,使用稀疏矩阵来求解广义特征值,即通过一组向量来实现Lanczos递归141。
此处分析采用BlockI.Jal'lCZOS进行模态提取。
图1转子轴承系统模型由ANSYS求得的campbell图可知转子临界转速为一。
l=l378r/rain,n棚=3998r/min。
基于ANSYS的电机转子轴的工作能力分析
![基于ANSYS的电机转子轴的工作能力分析](https://img.taocdn.com/s3/m/e2321070cf84b9d528ea7a60.png)
M5-4
本文主要通过ANSYS对电枢转轴直接建模,再生成 有限元分析模型;后通过ANSYS对电机数学模型进行模 拟分析计算,得到电机转轴的应力和应变分布,从而 确定电机转子轴的花键在工况下的应力应变分布状况 ,从而可以判断电枢转轴是否安全。从另一个方面思 考,利用先进的有限元分析软件为我们在产品设计中 提供了一种全新的设计方法,这样使设计周期大为缩 短,设计成本明显降低,取得的经济效益是显而易见 的。
M5-6
第三章:电机转子轴的有限元分析
• 第1步:建立工作文件名和工作标 题
• 第2步:创建几何模型
• 第3步:定义单元类型
• 第4步:定义材料属性
• 第5步:划分网格
• 第6步:加载和求解
电机转子轴有限元模型
M5-7
• 命令流: • /CLEAR ,START • /TITLE,MODELING AND MESHING
• MAPTEMP,1,0 • MPDATA,EX,1,,2.09e11
!定义材料属性 • MPDATA,PRXY,1,0.28 • MPDATA,1,0 • MPDATA,DENS,1,,7800 • ESIZE,5,0 • K,1000,,,270, !定义关键点 • /REPLO • VPLOT • /REPLOT,RESIZE • SAVE
基于ANSYS的电机转子的动力学分析
![基于ANSYS的电机转子的动力学分析](https://img.taocdn.com/s3/m/21cf5482d4bbfd0a79563c1ec5da50e2524dd11a.png)
基于ANSYS的电机转子的动力学分析电机转子的动力学分析是电机设计过程中非常重要的一步,它可以帮助工程师优化电机的性能和可靠性。
在进行动力学分析时,通常使用工程仿真软件ANSYS来模拟和分析电机的运动和力学行为。
在进行电机转子的动力学分析时,首先需要确定电机的结构和材料参数。
这包括电机的转子形状、材料特性、叶轮和叶片的结构等。
然后,利用ANSYS软件进行有限元建模,将电机的各个部分进行离散化,确定有限元的节点数和单元类型。
在建立有限元模型时,需要考虑电机的几何形状、质量和惯性分布。
在建立完有限元模型之后,可以利用ANSYS中的动力学分析功能对电机进行力学行为的仿真。
动力学分析可以包括转子的自由振动、受迫振动、失稳分析等。
通过动力学分析,可以了解电机的固有频率、模态形状以及受激励时的响应特性,并根据分析结果进行电机结构参数的优化。
动力学分析还可以帮助工程师评估电机的可靠性和耐久性。
通过对电机在不同工况下的振动、应力、变形等进行分析,可以判断电机在长时间运行过程中是否会出现疲劳破坏、松动等问题。
在动力学分析中还可以考虑电机与周围环境的相互作用,比如电机在高速运转时的气动力、流体力学效应等。
除了动力学分析,ANSYS还可以进行热分析、磁场分析等多种物理场的耦合分析。
通过将转子的动力学分析与热分析、磁场分析等相结合,可以全面评估电机的性能和可靠性。
总之,基于ANSYS的电机转子的动力学分析对于电机设计和性能优化非常重要。
通过动力学分析,可以优化电机的结构参数,提高电机的振动和噪音性能,保证电机的可靠性和耐久性。
同时,动力学分析还可以帮助工程师深入了解电机的机械行为和响应特性,提供有效的设计指导和优化建议。
基于ANSYS旋转机械模块的转子动力特性分析
![基于ANSYS旋转机械模块的转子动力特性分析](https://img.taocdn.com/s3/m/3c5f8ef1941ea76e58fa04aa.png)
应 图中 的临界转 速值 之间 的对 应关 系 。临界 转速 图谱
21 0 2年 第 4期
冀 成 , : 于 ANS S旋 转机 械 模 块 的 转 子 动 力 特 性 分 析 等 基 Y
・3 ・
法 交叉 点 是与 同步 响 应 的 峰值 点 一一 对 应 的 。 同理 , 其 他类 型 的转子 结构 也得 到 了 以上 结论 。
二 阶 反 进 动
43 4
.
一
阶 正进 动
一
阶 临 界转速
一
一
阶反进动
转 速 / r・ i 一 ( m n’ )
图 4 偏 置 转 子 C mp el a bl图
对 于偏 置 、 中 、 居 悬臂 3种 结 构 的转 子 , 以悬 臂 转
子 为例对 其 进行 稳 态 不 平 衡 响 应 分 析 , 图 7所 示 。 如
2 05 5
2 0 0 4
Z
。
3种结构 的单跨 转 子 有 限元 模 型 , 利用 梁单 元 、 簧单 弹
元、 质量 点单 元 分 别 对 转 轴 、 动轴 承 、 量 盘 进行 模 滑 质 拟 。通 过 施 加 不 同 转 速 载 荷 , 到 临 界 转 速 图 谱 得
( a b l图)利 用 *G T 函数 对 临界 转 速 值 进 行提 C mp e l , E 取 。分析 结果 表 明 : 结构 转子 的一 阶临界 转速 较 为 3种 接近 ; 种 结构 的二 阶转子临界转 速相差 较大 ; 3 当质 量盘 居中时 , 临界转 速最 高 , 随着质 量盘 离对称 中心越 远 , 临
临界 转速 的计 算 。在 某 种 程 度 上 。转 子 系 统 受 到 的 激 励 载荷 与 转 子 系 统 的 特 性 都 与 转 速 相 关 , 因此 确 定 转 子
Ansys转子动力学
![Ansys转子动力学](https://img.taocdn.com/s3/m/4e49d19b80eb6294dd886ca6.png)
基于ANSYS的转子动力学分析1、题目描述如图1-1所示,利用有限原原理计算转子临界转速以及不平衡响应。
图1-1 转子示意图及尺寸2、题目分析采用商业软件ANSYS进行分析,转子建模时用beam188三维梁单元,该单元基于Timoshenko梁理论,考虑转动惯量与剪切变形的影响。
每个节点有6个(三个平动,三个转动)或7各自由度(第七个自由度为翘曲,可选)。
轴承用combine214单元模拟。
该单元可以模拟交叉刚度和阻尼。
只能模拟拉压刚度,不能模拟弯曲或扭转刚度。
该单元如图2-1所示,其有两个节点组成,一个节点在转子上,另一个节点在基础上。
图 2-1 combine214单元对于质量圆盘,可以用mass21单元模拟,该单元有6个自由度,可以模拟X,Y,Z 三个方向的平动质量以及转动惯性。
3、计算与结果分析 3.1 转子有限元模型建模时,采用钢的参数,密度取37800/kg m ,弹性模量取112.1110pa ,泊松比取0.3。
轴承刚度与阻尼如表1所示,不考虑交叉刚度与阻尼,且为各项同性。
表 3-1 轴承刚度与阻尼参数Kxx Kyy Cxx Cyy 4e7N/m4e7N/m4e5N.s/m4e5N.s/m将转子划分为93个节点共92个单元。
有限元模型如图3-1所示。
图3-1 转子有限元模型施加约束时,由于不考虑纵向振动与扭转振动,故约束每一节点的纵向与扭转自由度,同时约束轴承的基础节点。
施加约束后的模型如3-2所示。
图3-2 施加约束后的有限元模型3.1 转子临界转速计算在ANSYS中可以很方便的考虑陀螺力矩的影响。
考虑陀螺力矩时,由于陀螺矩阵是反对称矩阵,所以求取特征值时要用特殊的方法。
本文考虑陀螺力矩的影响,分析了在陀螺力矩的影响下,转子涡动频率随工作转速的变化趋势,其Campell图如图3-3所示。
同时给出了转子的前四阶正进动涡动频率与反进动涡动频率以及固有频率。
如表3-2所示。
表3-2 转子涡动频率随转速的变化Ω(rpm)010000200003000040000ω(Hz)54.73854.83355.02755.24855.478 F1ω(Hz)54.73854.13153.93853.71853.489 B1ω(Hz)174.12174.85175.61176.38177.14 2Fω(Hz)174.12173.31172.55171.78171.02 2Bω(Hz)301.97303.56305.18306.82308.46 3Fω(Hz)301.97300.35298.76297.19295.63 3Bω(Hz)484.00488.60493.24497.93502.65 F4ω(Hz)484.00479.44474.92470.45466.02 4B图3-3 转子Campell图从表3-2与图3-3可以看出,陀螺力矩提高了转子的正向涡动频率,降低了转子的反向涡动频率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。