第五章 平面连杆机构的运动分析和设计1

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面连杆机构有无急回作用
取决于有无极位夹角θ 。
若θ≠0,该机构必定有急回特征 若θ=0,该机构必定无急回特征
思考一下
将两个不具有急回特征的机构组合在一起, 组合起来的机构会具有急回特征么?
F2
F
C

b
D
B
C2
wenku.baidu.com
a
F1 A

转动导杆
C1
5.3 连杆机构的演化
铰链四杆机构是单自由度连杆机构的最
b (d a) c
ad bc abd c
acd b
c (d a) b
ac ab ad
a最短
动画演示 最短杆与最长杆之和小于 等于其它两杆长度之和
补充:Grashof曲柄存在条件
则最短杆两端的转动副均为周 转副;其余转动副为摆转副。
其中 Lmin :最短杆长度 Lmax :最长杆长度 P,Q: 其余两杆的长度
求角运动参数
混合法是将矢量法和直角坐标法结合在一起的方法
直角坐标法的基本原理
确定构件位置的一般表示方法:
用点、角表示 Y Y 用点表示
K ( xk , yk ) J ( xJ , yJ )
φ X 1. 用构件上一个点 J(xJ,yJ) 2. 通过点J的一条标线与坐 标轴的夹角φ
J ( xJ , yJ )
轨迹生成:就是用连杆机构产生一个设计
要求的连杆曲线。
函数发生:就是实现机构的输入运动变量
和输出运动变量之间的某种函数关系。
刚体导引实例1
动画链接
刚体导引实例2
铲斗作平面一般运动,有三个自由度。三个输入
运动分别是三个液压油缸提供
动画链接
刚体导引实例3
补充:连杆曲线
动画链接
轨迹生成实例1
可以简写为
(5---7)
F ( x) 0 其中 x [ x1 , x2 ,......, xn ]T
(5---7’)
延伸:非线性方程组的求解
* 牛顿迭代法的基本思路:设方程组(5---7)的解为 x , 则构造一个序列 [x 0 , x1 ,.....,x k , x k 1 ,..... ] 来逼近 x*。
铰链五杆机构曲柄存在条件: ① L1 L2 L5 L3 L4 ② 最短杆或次短杆为机架或连架杆。
5.2.2 摇杆的极限位置和机构的 急回运动特征
1.摇杆的极限位置及其摆角
动画链接
讨论:机构的初始装配状态与可行域
在机构的运动过程中是不会发生变化的原因
急回运动
当曲柄等速回转的情况下,通常把 从动件往复运动速度快慢不同的运 动称为急回运动。 从动件c 主动件a
1 180 t1 1 1
2 180 - t2 1 1
3 t1 t 2 3
行程速比系数K
通常把从动件往复运动平均速度的比值(大于1) 称为行程速比系数,用K表示。
K 从动件快速行程平均速度 3 从动件慢速行程平均速度 3
任意杆为机架
双曲柄 四杆机构
曲柄摇杆 四杆机构
双摇杆 四杆机构
不定点 机构
双摇杆 四杆机构

2.铰链五杆机构曲柄存在的条件
将机构各构件的杆长
l AB , l BC , l CD , l DE , l AE
从小到大进行排列为
L1 L2 L3 L4 L5
L1 L2 L5
为最短杆长; 为次短杆长; 为最长杆长。
vCx v Dx lCD 1 sin 1 vCy v Dy lCD 1 cos1
(a) (b)
(a)
(5---10)
(b)
(a)
(b)
2 aCx a Dx l CD 1 cos 1 l CD 1 sin 1 2 aCy a Dy lCD 1 sin 1 lCD 1 cos 1
180 K 180
3 t1 3 t2
1 180 t1 1 1
2 180 - t2 1 1
K 1 180 K 1

牛头刨床
曲柄滑块机构分析
对心曲柄滑块机构
偏置曲柄滑块机构

关于K和θ的讨论
180 K 1 K 180 180 K 1
缺点
由于运动积累误差较大,因而影响传动精度; 由于惯性力不好平衡而不适于高速传动; 设计方法比较复杂。
3、平面连杆机构的三大功能
在运动学方面,可以实现以下三大功能: 刚体导引 轨迹生成 函数发生
刚体导引:用连杆机构引导刚体实现一系
列设计要求的平面位置。(既要绕参考点转动、又 要随参考点平动的平面运动)。通常用连杆来实 现设计要求的刚体位置。
5.4 平面连杆机构运动分析的解析法
两种方法:
解析法:利用计算机进行机构分析 图解法:利用作图对机构进行运动分析 分析目的:
求位置、速度和加速度
解析法的关键之处:
方程建立 方程求解 编计算机程序
5.4.1 方程组的求解方法(知识回顾)
在机构运动分析和设计中,所求解 的方程通常是代数方程组,方程组 类型: 线性方程组
连杆 C
B
连架杆 连架杆
A
D
曲 柄 摇 杆 周转副 摆转副
5.2.1 曲柄存在的条件
1.铰链四杆机构曲柄存在的条件
构件AB要为曲柄,则转动 副A应为周转副; 为此AB杆应能占据整周中 的任何位置;
因此AB杆应能占据与AD共 线的位置AB'及AB''。
由△ DB'C' 由△DB'' C'' 两两相加
基本形式; 各种单自由度多杆机构通常是在四杆机 构的基础上加若干个基本杆组而得到的; 而四杆机构的其他形式,如带有一个移 动副的四杆机构和带有两个移动副的四杆 机构,是由铰链四杆机构通过一些演化方 法得到的。
1.改变构件的形状和运动尺寸
曲柄摇杆机构 变摇杆 为滑块
曲线导轨曲柄滑块机构
摇杆尺寸 为无穷大 对心曲柄滑块机构 e=0 偏置曲柄滑块机构
连杆
轨迹生成就是用
连杆机构产生一个设 计要求的连杆曲线。
动画链接
轨迹生成实例2
动画链接
轨迹生成实例3
动画链接
函数发生实例1
函数发
生就是实现
机构的输入 运动变量和 输出运动变 量之间的某 种函数关系
S l AB cos
动画链接
函数发生实例2
B
A
C
... .
5.2 平面连杆机构的基本特征
其中
(5---5)
x1 , x2 ,.....xn
为待求变量。 (5---5´) (5---6)
方程组可以简写为 Ax b 则方程组的解为
x A 1b

2.非线性方程组及其求解
n 个变量 n 个方程的非线性方程组的一 般形式为:
f 1 ( x1 , x 2 ,......,x n ) 0 f ( x , x ,......,x ) 0 2 1 2 n . .......... f n ( x1 , x 2 ,......,x n ) 0
(e)定块机构

3.扩大转动副
当一个构件上两个转动副之间的距离比较小 的时候,人们通常会采用扩大转动副的方法,以 增大构件的强度和刚度 。
动画链接1、2

4.运动副元素的逆换
改变形成运动副元素的包容关系的演化方法, 称为运动副元素的逆换。
摆动导杆机构 曲柄摇块机构
构件2包 容构件3
构件3包 容构件2
x
k 1
x J F (x )
k k
1
(5---8)
其中 J 为方程组(5---7)在迭代点 x k 的Jacobian矩阵, 即 f1 f1 f1 ....... x x x 2 n 1 J .... .... .... f n f n f n x x ........ x 2 n x xk 1
动画链接

B 1
2.取不同的构件为机架
B
2 4
A
C 3
A
1
2
4
C 3
(a)曲柄滑块机构
B 1 A B 1
(b)曲柄转动导杆机构
B
2 4
C 3 A1
2 4 3
C
(c)曲柄摇块机构
2
C 3
(d)曲柄摆动导杆机构
A
4
说明:组成移动副的两活动构件, 画成杆状的构件称为导杆,画成 块状的构件称为导块。 动画链接1、2、3、4
AB1 AB 2 运动: DC1 DC2
C1
1
A
b

c
B2
C2
时间:t 1
a d
b

D
c
1 转角:

t1
a
B1
2
运动: AB 2 AB1 时间:t 2 转角: 2
DC2 DC1
t2
从动件c的 平均角速 度:
DC1 DC 2 : DC2 DC1 :
3 t1 3 t2
对于移动副,将运动副两元素的包容关系进行 逆换,并不影响两构件之间的相对运动。 动画


铰链四杆机构可以通过改变构件的形
状和长度,扩大转动副,选取不同的 构件作为机架等途径,演变成为其它 类型的四杆机构,以满足各种工作需 要。
移动副与转动副之间的关系 机构运动学上的等效 相对运动原理的应用
5.1 平面连杆机构及其应用
1、概述
连杆机构是由若干 构件通过低副联 接而构成的。若 个构件均在相互 平行的平面内运 动,就成为平面 连杆机构。
机构拆装
2、连杆机构的特点
优点
连杆机构为低副机构,运动副为面接触,压强小,承
载能力大,耐冲击; 运动副元素的几何形状多为平面或圆柱面,便于加工 制造; 在原动件运动规律不变情况下,通过改变各构件的相 对长度可以使从动件得到不同的运动规律; 连杆曲线可以满足不同运动轨迹的设计要求;
正运动学分析的直角坐标法
解析法: 封闭矢量多边形法 直角坐标解析法 混合法
角运动参数
矢量法是先求解运动构件的角位置、角速度和角加速度,
然后再求解该构件上点的运动; 求点运动参数
直角坐标法一般是先求解运动构件上一些点位置、速度
和加速度,然后求解构件的角位置、角速度和角加速度
点运动参数
非线性方程组

1.线性方程组及其求解方法
线性方程组可以写成 a11 x1 a12 x 2 ...... a1n x n b1 a x a x ...... a x b 21 1 22 2 2n n 2 . .......... a n1 x1 a n 2 x 2 ...... a nn x n bn
Lmin + Lmax ≤ P +Q
Grashof机构 :
满足条件 Lmin + Lmax ≤ P +Q的机构。
平面四杆机构存在曲柄的条件
Lmin + Lmax ≤ P +Q 最短杆为机架或连架杆
动画链接1 动画链接2
示例:曲柄摇杆机构
运动演示
运动演示
示例:双曲柄机构
惯性筛机构
示例:双摇杆机构
动画演示
特殊机构——不定点机构
动画链接1 动画链接2 克服运动不确定性的措施
四杆机构小节
四杆机构
Lmin + Lmax < P +Q Lmin + Lmax =P +Q Lmin + Lmax > P +Q
Grashof机构
Grashof机构 非Grashof机构
最短杆为机架 最短杆为连架杆 最短杆为连杆 任意杆为机架
5.4.2 平面连杆机构正运动学分析 的直角坐标法 P79 机构的正运动学分析:
已知机构的各个构件的杆长、原动件的位 置、速度和加速度的条件下,确定机构中 从动件的位置、速度和加速度。
机构的逆运动学分析:
已知机构的各个构件的杆长、机构运动输 出构件的位置的条件下,确定机构中在各 个运动副处构件之间的相对位置。
X 1.用构件上一个点 J(xJ,yJ) 2.另一个不重合点 K(xK,yK)
JK (x J x K ) 2 (y J y K ) 2

5-3,P79
已知如图所示机构的 结构尺寸、固定铰链 点的位置和原动件的 运动。试分别以构件 CD和构件AB为原动 件,确定机构中所有 从动构件的运动。

1.构件CD为原动件
解答:
首先建立直角坐标系。 固定铰链点:
D(0,0),E(xE,yE), A(xA,yA)
机构为Ⅱ级机构
点C的运动
xC xD lCD cos1 yC y D lCD sin 1
(6---9)
对该式求导,可求得C点的速度、加速度!
将式(5---9)对时间t分别作一次、二次 求导,得点C的速度和加速度方程如下:
相关文档
最新文档