傅里叶变换 傅里叶级数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
傅里叶级数针对的是周期函数,傅里叶变换针对的是非周期函数,本质上都是一种把信号表示成复正选信号的叠加,都有相似的特性,因为四种傅里叶表示都利用了复正选信号,这些特性提供了一种透彻了解时域和频域信号表示的特征的方法
1、傅里叶级数
在高等数学中就已经知道,在满足一定的条件下,任何一个周期信号都可以分解为正弦信号的叠加。在高等数学中,这种分解就叫傅里叶级数。在信号处理学习的最初阶段,也是从这个概念出发,开始输入到信号处理的傅里叶世界。在信号处理中,周期连续信号的傅里叶分析称为傅里叶级数。此时,在傅里叶分析之前,信号是周期,连续的,在之后,结果是离散的。
2、傅里叶变换
对于连续信号,如果信号不是周期的,其傅里叶分析结果又是如何呢?非周期信号可以等效为周期为无穷大的周期信号。于是,由傅里叶级数出发,利用极限的有关概念,可以推导出非周期信号的傅里叶分析结果,这就是傅里叶变换。再啰嗦一句,非周期连续信号的傅里叶分析称为傅里叶变换。在傅里叶分析之前,信号是非周期的,连续的,在之后,结果也是连续的。
3、离散时间傅里叶变换
傅里叶级数和傅里叶变换都是针对连续信号而言的,那么对于数字信号而言,是否有对应的傅里叶分析呢?答案是肯定的,这就是离散时间傅里叶变换(DTFT)和离散傅里叶变换(DFT)。
对非周期离散信号的傅里叶分析称为离散时间傅里叶变换。在傅里叶分析之前,信号是非周期的,离散的,在之后,结果是连续的。
4、离散傅里叶变换
对周期离散信号的傅里叶分析称为离散傅里叶变换。在傅里叶分析之前,信号是周期的,离散的,在之后,结果是离散的。如果按照前面三种分析的命名,离散傅里叶变换叫离散傅里叶级数似乎更为妥当。但由于历史的原因,大家习惯把这种傅里叶分析称为离散傅里叶变换。当然,关于DFT是否隐含着信号周期性的问题,也有一些争论。有的认为进行DFT分析就意味着默认离散信号是周期的,有的则认为离散信号不一定要看成是周期的。此处采取默认离散信号周期性的说法,主要是基于如下理由:如果把DFT看做是对DTFT结果在频域的采样的话,那么根据信号系统的有关理论可知,频域的采样等效于时域的周期延拓,这样,离散信号自然变成周期的了。在实际分析中,将DFT看做是对DTFT结果在频域的采样是合乎情理的。
这上面的四个与傅里叶分析有关的概念,最重要的是DFT。因为前面三种分析都需要假定信号的时域及频域都是无限长的。从概念上讲,虽然DFT也需要时域频域无限长,但由于时域频域都是周期的,因此只需要一个周期的信息即可。另外,由于计算机等数字设备只能处理数字信号,也即是要求无论是时域还是频域,都要是离散的。因此,DFT在实践中占有最重要的地位。傅里叶级数,傅里叶变换,离散时间傅里叶变换这三个概念则更多的用于理论分析中。