测量误差论文

测量误差理论与矿山数据质量

测量误差理论与矿山GIS数据质量的当代发展*

摘要为了建立矿山GIS辅助决策中位置数据和属性数据的误差理论,发展矿山GIS 产品的质量评价指标体系,本文系统地论述测量误差理论与矿山GIS数据质量的当代发展,以便为设计与建立一个可靠和健全的矿山GIS提供参考。

关键词矿山GIS 误差理论数据质量

1 引言

70年代以前,我国矿图的绘制和管理主要采用人工方法。80年代以来,众多测绘、地理、地质和计算机等学科的学者们联合开展了计算机矿图数据库管理系统和基于AutoCAD软件平台的机助矿图绘制系统研究,并进一步发展成一些实用化的“地质测绘信息系统”,还相继建立了某些专用的“事务性管理系统”。90年代初,随着地理信息系统(GIS)的发展和应用的广泛普及,在对上述系统进行改造和集成基础上,又兴起了建立矿山地理信息系统(MGIS)热潮。这些系统的研究和建立已在矿山抢险救灾、安全生产、现代化管理和智能决策等方面显示了强大的生命力。但在应用实践中也发现,由于缺少统一的空间数据质量标准,使得原先花费大量人力、财力所建立的矿山空间数据库因通用性差、精度混乱,以及无法进行数据转换等缺点,而不得不重新建库,造成极大浪费。更为重要的是,在矿山安全和生产管理中,对矿山空间几何数据分析和处理结果精度的技术要求极高。例如,在矿山发生井筒或巷道塌方事故后,需要根据MGIS迅速确定井下巷道在地面上的相应准确位置,以便打钻孔至井下该巷道处,及时进行通风并输送食物和水等,维持井下受困人员的生命,为抢险救灾赢得时间。又如,在井下发生突水事故时,需要利用MGIS 迅速判断突水点的精确位置,以便进一步确定标高低于突水点的受水威胁区域,及时撤离

工作人员,并组织抢险救灾。同样,在出现井下发火事故时,也需要迅速确定发火点的精确位置,进行隔离火源、灭火及抢救人员,并进一步采取措施防止瓦斯爆炸。这类例子不胜枚举。而塌方、突水、发火等又是煤矿日常生产中经常可能发生的。过去,在人工判断确定年代,常出现延误或判断失误现象,造成人员重大伤亡,并使国家财产蒙受巨大损失。现在,利用MGIS技术虽然判断迅速,但因理论研究的滞后,至今仍缺少对矿山空间数据库精度进行定量评价的合适方法,造成决策失误的后果也是灾难性的。可见,矿山空间数据的质量将直接影响到MGIS的社会效益和经济效益。由于传统的误差理论是建立矿山GIS几何和属性数据误差理论的基础,本文论述测量误差理论和矿山MGIS中数据质量的当代发展,为进一步建立矿山GIS中的数据质量评价体系提供参考。

2 测量误差理论的发展

测绘学中的观测误差分为随机误差、系统误差和粗差。误差的统计分布特征通常用精度表示,精度又细分为精密度、正确度和准确度。传统的误差理论曾在矿山巷道贯通点精度预计和控制等矿山测量工作中起过重要作用。

2.1 随机误差

经典误差理论的研究对象为随机误差。这方面的研究历史可追溯到法国数学家De Moivre,他首先研究过自然界中最常见最重要的一种分布,即正态分布;而法国另一数学家Laplace是最先将概率论应用于测量误差分析者。对误差理论发展作出杰出贡献的当代德国天文大地测量学家、数学家Gauss。1794,Gauss首先导出了一元正态分布的密度函数,并创立了“最小二乘法”。Gauss这方面的两大杰出贡献奠定了经典误差理论(随机误差的正态分布模式)和误差处理方法(最小二乘平差)的科学基础。后人在误差分布参数的估计技术和经典最小二乘平差的扩展上做了大量工作。

2.1.1 方差分量估计

方差或协方差阵是度量观测精度的常用指标。许多学者探讨过(单位权)方差的估计问题。早期的简单方法有重复观测的白塞尔(Bessel)公式,三角测量的菲列罗(Ferreros)公式和往返观测的双观测列估计公式。这方面近代的理论工作始于本世纪初德国大地测量学家Helmert(1924)提出的方差/协方差分量估计技术,现在为Helmert法。根据Helmert 的思想,后人做了许多发展,例如Welsch(1978)和Grafarend(1980)等;同时又提出了一些新的方法,例如Kubik(1967)的极大似然估计法,Rao(1970,1980)的最小范数二次无偏估计和最小方差二次无偏估计,以及Koch(1987,1990)的Bayes估计和Bayes区间估计等。

2.1.2 误差处理方法

随机误差的处理方法主要是最小二乘平差。在平差理论方面,德国Gauss(1794)提出了独立观测值经典平差,荷兰Tienstra(1947)提出了相关观测值平差,奥地利Meissl(1962)提出了秩亏自由网平差。类似地,在统计界,Markov(1912)提出了后人称之为Gauss-Markov的模型,Aitken(1934)建立了相关G—M模型,Bose(1943)提出了秩亏G—M模型,Goldmen和Zelen(1964)提出了权逆阵奇异G—M模型,Rao(1971)提出了广义G—M模型,即最小二乘统一理论。在平差技术方面,Schreiber(1876)提出了后来称为Schreiber约化法则,Krueger(1905)提出了分组条件平差法,Boltz(1923)提出了扩展法。此外,还有Krasovsky平差法,Eggert平差法,Helmert分区平差和阶段平差,以及静态逐次滤波和动态Kalman(1960)滤波等。

1969年,Krarup在研究重力异常的推估时,对最小二乘平差进行了扩展,提出了最小二乘配置法,并建立了滤波和推估模型。后来,Moritz又对此进行了深入研究,提出了

带系统参数最小二乘配置法,从而为综合处理几何、物理等各类观测数据奠定了理论基础。

在这一时期,由于人们认为系统误差和粗差可以通过简单方法控制、校正或消除。例如,人工经验、简单的数据检验和测量规程控制等。因此,长期以来,测绘界一直将注意力集中在随机误差的分析和处理上。后来,一方面,人们逐渐发现,通过简单方法并不能有效地消除粗差和系统误差;另一方面,随着科学技术的发展,观测仪器的精密度得以大幅度提高,再加上处理随机误差的最小二乘平差理论相对来说已发展的较为成熟。因此,随机误差不再是主要矛盾,人们开始将注意力转向系统误差和粗差。

2.2 系统误差

对系统误差注意较早、研究最多的是摄影测量学科。补偿系统误差的方法可以分为两类:直接补偿法和间接补偿法。前者又可进一步分为实验场检校法(由Kupfer提出)和自抵偿法;而后者又分为验后补偿法(由Masson D'Autume提出)和附加参数自检校法。在这方面,国内李德仁教授(1988)从事过大量研究。在大地测量学科中,对系统误差研究的重视只是近年来的事,研究方法多采用统计检验法和附加系统参数自检校法(陶本藻,1987)。

2.3 粗差

对粗差的理论研究始于荷兰大地测量学者Baarda(1967)提出的可靠性理论。Baarda 从单个一维备选假设出发,对已知单位权方差的情况导出了粗差检验的著名“数据探测法”。10余年后,对未知方差因子情况,Pope(1976)和Koch(1980)等分别导出了t检验量。与此同时,德国Forstner(1983)和Koch(1980)等人还进一步将Baarda的单个一维备选假设下的可靠性理论推广至单个多维备选假设情况,从理论上解决了平差系统发现多个模型误差的问题。

1983年,我国陈永奇教授在其博士学位论文中利用向量空间理论导出了一个广义统计检验量,为观测值筛选和变形模型检验奠定了理论基础。陈永奇教授的广义统计检验量被国际上誉为概括和统一了许多名测量学者的工作。10余年后,陈永奇教授(1993)又从单个备选假设出发,提出了变形模型的可区分性理论,为研究模型误差区分问题找到了一条独特的新途径。

模型误差区分可能性的概念最先是由德国测量学者Forstner于1983年提出的。Forstner(1983)从两个一维备选假设出发,得出了区分可能性本质上取决于检验量间相关系数的结论。随后,我国李德仁教授(1985)在其博士学位论文中将Forstner的研究推广至两个多维备选假设情况,并提出了平差系统的可区分性理论和可靠性理论,从而为研究多个模型误差的区分和定位奠定了理论基础。李德仁教授的可区分性理论被国际上誉为解决了自Gauss提出“最小二乘法”以来的百年难题。

可区分性和可靠性理论研究为网的设计提供了新的准则。例如,多余观测分量,可靠性矩阵,可靠性梯形和广义可靠性指标。可靠性和可区分性理论的研究还为粗差定位、消除提供了两种途径;粗差归入函数模型(也称“数学期望平移”模型)的统计检验法和粗差归入随机模型(也称“方差扩大”模型)的稳健估计(Robust Estimation)法。前者的统计量如上所述,后者源于统计界的研究。1953年,统计学家Box首先引入了稳健性(Robustness)概念。随后,由于Tukey(1960),特别是Huber(1964)和Hampel(1968)等人的开拓性贡献,为稳健估计理论化奠定了基础。70年代末,丹麦测量学者Krarup和Kubik等人最先引用Robust估计进行粗差定位,主要方法是选权迭代法。许多学者提出了有效的权函数,国内著名的有李德仁(1984)的验后估计法、王任享(1986)的增强法和周江文(1989)的IGG方案等。

自80年代中期以来,我国周江文、陶本藻、黄幼才、杨元喜和欧吉坤等教授们在将稳健估计思想应用于测量粗差处理方面进行了大量研究,引入了“抗差最小二乘法”这一术语,从而为建立同时处理粗差和随机误差的“抗差最小二乘平差”理论奠定了基础。

当前测量误差理论的主要发展方向是,对观测值中可能同时存在的三类误差,如何寻找符合实际的统计分布和有效的估计准则,以便发展可以同时处理三类误差的整体平差方法,即统一分布理论和统一平差方法。例如,於宗俦、孙海燕和周世健等的Lp—范数分布和估计;陶华学等的动态和非线性最小二乘法;王新洲等的方差分量估计等等。

3 GIS数据质量

当前GIS数据质量研究方面的主要课题是位置数据和属性数据的不确定性。公认的GIS数据质量指标是数据来源说明、位置精度、属性精度、逻辑一致性、完整性和现势性。

3.1 位置不确定性

位置不确定性是指GIS中的位置数据与其真值的差值。位置数据可以概括为三类拓扑概念:点、线和面,其中点又是构成线和面的基本单元,而栅格象元可视为特殊的面元。因此,点不确定性的度量一直是人们研究的重点,近年来逐渐扩展到线和面。

3.2 属性不确定性

属性不确定性是指属性值与其真值的差值,其度量指标随属性数据类型的不同而不同。专题属性数据的类型有两种:分类数据(定性数据)和连续数据(定量数据)。

分类数据的不确定性通常用误差矩阵或混淆矩阵度量。利用误差矩阵中的元素可以计算分类精度的纯量指标,例如正确分类比(PCC)。另一种常用指标是Cohen(1960)提出的Kappa系数和由Foody对其改进后的Tau系数。

连续专题数据的不确定性度量指标与位置数据不确定性的度量指标类似,例如土壤元素含量值的方差、中误差等。Goodchild等人(1992)利用概念包含关系和自相关关系两个指标讨论过位置和专题不确定性间的关系。

3.3 时态不确定性

时态误差可以根据不同的时间参考标准度量,例如,记时误差和同时误差。

3.4 知识、证据和假设的不确定性

这种不确定性的度量指标来自人工智能领域。知识和证据不确定性的度量有三种:概率指标、模糊指标和主观指标。假设不确定性的度量有四种:支持度、拒绝度、信任度和可能性。

当前GIS数据质量方面的主要研究课题是:利用经典的概率统计理论和模糊数学理论建立GIS中的不确定性度量和传播模型;利用图像动画和声频技术研究不确定性信息的可视化表达问题;建立有效的数据质量控制模型;制定统一的数字数据转换标准和数据质量标准。

4 结论和建议

随着RS、GIS和GPS技术的发展和集成,对误差理论研究和数据质量等提出了新的问题,例如数据表现出动态、多时相、多尺度、多分辨率和多源信息融合的特点,不再是传统测量中的单一定位数据或物理数据,而是矢量栅格混合的、位置和属性数据及拓扑关系相互影响的非线性动态信息。因此,应在信息论框架下建立现代测绘信息不确定性理论。

参考文献

1 刘文宝.GIS空间数据的不确定性理论.[博士学位论文]:武汉测绘科技大学,1995

测量误差及数据处理.

第一章测量误差及数据处理 物理实验的任务不仅是定性地观察各种自然现象,更重要的是定量地测量相关物理量。而对事物定量地描述又离不开数学方法和进行实验数据的处理。因此,误差分析和数据处理是物理实验课的基础。本章将从测量及误差的定义开始,逐步介绍有关误差和实验数据处理的方法和基本知识。误差理论及数据处理是一切实验结果中不可缺少的内容,是不可分割的两部分。误差理论是一门独立的学科。随着科学技术事业的发展,近年来误差理论基本的概念和处理方法也有很大发展。误差理论以数理统计和概率论为其数学基础,研究误差性质、规律及如何消除误差。实验中的误差分析,其目的是对实验结果做出评定,最大限度的减小实验误差,或指出减小实验误差的方向,提高测量质量,提高测量结果的可信赖程度。对低年级大学生,这部分内容难度较大,本课程尽限于介绍误差分析的初步知识,着重点放在几个重要概念及最简单情况下的误差处理方法,不进行严密的数学论证,减小学生学习的难度,有利于学好物理实验这门基础课程。 第一节测量与误差 物理实验不仅要定性的观察物理现象,更重要的是找出有关物理量之间的定量关系。因此就需要进行定量的测量,以取得物理量数据的表征。对物理量进行测量,是物理实验中极其重要的一个组成部分。对某些物理量的大小进行测定,实验上就是将此物理量与规定的作为标准单位的同类量或可借以导出的异类物理量进行比较,得出结论,这个比较的过程就叫做测量。例如,物体的质量可通过与规定用千克作为标准单位的标准砝码进行比较而得出测量结果;物体运动速度的测定则必须通过与二个不同的物理量,即长度和时间的标准单位进行比较而获得。比较的结果记录下来就叫做实验数据。测量得到的实验数据应包含测量值的大小和单位,二者是缺一不可的。 国际上规定了七个物理量的单位为基本单位。其它物理量的单位则是由以上基本单位按一定的计算关系式导出的。因此,除基本单位之外的其余单位均称它们为导出单位。如以上提到的速度以及经常遇到的力、电压、电阻等物理量的单位都是导出单位。 一个被测物理量,除了用数值和单位来表征它外,还有一个很重要的表征它的参数,这便是对测量结果可靠性的定量估计。这个重要参数却往往容易为人们所忽视。设想如果得到一个测量结果的可靠性几乎为零,那么这种测量结果还有什么价值呢?因此,从表征被测量这个意义上来说,对测量结果可靠性的定量估计与其数值和单位至少具有同等的重要意义,三者是缺一不可的。 测量可以分为两类。按照测量结果获得的方法来分,可将测量分为直接测量和间接测量两类,而从测量条件是否相同来分,又有所谓等精度测量和不等精度测量。 根据测量方法可分为直接测量和间接测量。直接测量就是把待测量与标准量直接比较得出结果。如用米尺测量物体的长度,用天平称量物体的质量,用电流表测量电流等,

水准测量误差来源及控制方法

水准测量的误差来源及控制方法 水准测量是确定公路工程地面点高程的方法之一,是高程测量中精度较高且常用的方法。实施过程中,需要几个人合作才能完成,误差允许范围内的精度由于仪器和人为的影响而不容易控制,而且易出现隐蔽性错误,如果不能及早发现,基础资料是错误的,从而水准点高程不正确,直接影响路线纵断面设计和施工。关键词:水准测量水准仪高程误差 1. 0勘察设计过程中水准测量的问题 水准测量是采用几何原理,利用水平视线测定两点间高差。仪器使用水准仪,工具是水准尺和尺垫。公路工程测量一般使用DS3型微倾式自动安平水准仪,每公里能达到的精度是3mm,水准仪在一个测站使用的基本程序是安置仪器、粗略整平、瞄准水准尺、精确整平和读数。我们在实际勘测过程中按这个顺序施行,在每一水准点段测完后复核结果。 同一条公路采用同一个高程系统,测量方法是基平与中平同时测量,两台水准仪同时观测一个水准尺,间视和转点由两个人立水准尺,但两台水准仪总是同时观测一个水准尺进行读数,一个水准点段测完后检核,在每一测站,没有检查、复核,为误差的积累创造了条件,容易返工,耽误时间、浪费人力。通过工程实践证明,这一方法经常出现错误,节选五个水准点连续错误中的一个测段结果如表1.1和1.2所示:

表1.1经过成果整理,读数差Δh=Σ后视-Σ前视,Δh小于2mm满足规范要求。但是施工过程中,施工单位提出问题,经过表1.2复核补充测量成果证实,外业测量的结果不正确,因此,有必要分析水准测量的误差,找出控制纠正的方法,避免错误的出现,保证项目的顺利施工。 2. 0水准测量的现状 现在应用水准点与中桩分开观测的方法,水准点观测采取往返测量,成果整理要求高差闭合差fh容(fh容=Σh往+Σh返)达到平原微丘区三等水准测量的精度不大于±20·L(1/2)。平原微丘地区影响水准测量精度的主要因素是水准路线的长度,长度越长,精度越低。山区,则是测站,测站越多,精度越低。 3. 0水准测量的误差分析及控制方法 水准测量误差有仪器误差、观测误差和外界条件的影响。 3.1仪器误差之一是水准仪的望远镜视准轴不平行于水准管轴所产生的误差 仪器虽在测量前经过校正,仍会存在残余误差。因此造成水准管气泡居中,水准

水准测量误差分析及注意事项分析

水准测量误差分析及注意事项分析 在測量工作中,高程测量是一项不可缺少基本工作,一般使用的测量方法有三角高程测量与水准测量等,在高程测量中,水准测量具有较高的测量精准度。分析了水准测量误差分析及注意事项,以减弱水准测量误差影响。 标签:水准测量;误差;影响 因为多重因素的影响,如,外界环境及仪器等,不利把控水准测量。产生的错误不容易发现,使得基础资料不准确,进而导致水准点间高差出现错误,对工程施工造成直接影响,带来时间及经济损失。所以,分析水准测量误差的影响影响很重要。 1、水准测量误差分析 测量中难免存有误差,按照水准测量误差产生原因不同,可将误差划分为三个方面:外界条件引起的误差、仪器误差、观测误差。 1.1外界条件引起的误差 1.1.1地球曲率与大气折光误差 地球曲率影响高程测量,这点不能忽略,如果视距为100m,高程方面误差接近1mm,影响较大。该误差类1以于水准管轴不平行视准轴,以前后视距离相等的方法可消除该误差对高差带来的影响。地面上空气密度以梯度呈现,光线进入各密度媒介时,产生折射,通常从疏媒介向密媒介折射,因为水准仪视线不理想。通常大气层上层空气密度疏,下层空气密,视线经过大气层,变成了向下弯曲的曲线,导致尺上读数变小,与水平线出现差值,也就是遮光差。 山地连续下坡或上坡时,前后视线和地面的高度增大,遮光差产生的影响越来越大,体现相应的系统性,需要减少视线长度,提升视线高度,以此,将大气遮光影响减至较低。 如果天气晴朗,接近地面的温度比较高,使得下层空气密度相对较稀,这时视线变成了向上弯曲的曲线,导致尺上读数变大。视线线越接近地面,产生的折射越大,所以,通常视线要高出地面一定高度,比地面高出0.5m,就是为了减弱这种影响。如果地面平坦,地面覆盖的物体大致相同,前视距与后视距是相等的,前视距与后视距具有相同的遮光差方向,大小大致相同,能够很大程度上消除遮光差影响。 1.1.2尺子与仪器下沉误差 在转站过程中,尺垫会下沉,导致下一站后视读数变大,导致测量出现高差

浅析水准测量的误差来源及控制方法

浅析水准测量的误差来源及控制方法 【摘要】水准测量是确定公路工程地面点高程的方法之一,是高程测量中精度较高且常用的方法。实施过程中,需要几个人合作才能完成,误差允许范围内的精度由于仪器和人为的影响而不容易控制,而且易出现隐蔽性错误,如果不能及早发现,基础资料是错误的,从而水准点高程不正确,直接影响路线纵断面设计和施工。 【关键词】水准测量;水准仪;高程;误差 1 勘察设计过程中水准测量的问题 水准测量是采用几何原理,利用水平视线测定两点间高差。仪器使用水准仪,工具是水准尺和尺垫。公路工程测量一般使用DS3型微倾式自动安平水准仪,每公里能达到的精度是3mm,水准仪在一个测站使用的基本程序是安置仪器、粗略整平、瞄准水准尺、精确整平和读数。我们在实际勘测过程中按这个顺序施行,在每一水准点段测完后复核结果。 同一条公路采用同一个高程系统,测量方法是基平与中平同时测量,两台水准仪同时观测一个水准尺,间视和转点由两个人立水准尺,但两台水准仪总是同时观测一个水准尺进行读数,一个水准点段测完后检核,在每一测站,没有检查、复核,为误差的积累创造了条件,容易返工,耽误时间、浪费人力。因此,有必要分析水准测量的误差,找出控制纠正的方法,避免错误的出现,保证项目的顺利施工。 2 水准测量的现状 现在应用水准点与中桩分开观测的方法,水准点观测采取往返测量,成果整理要求高差闭合差fh容(fh容=Σh往+Σh返)达到平原微丘区三等水准测量的精度不大于±20·L(1/2)。平原微丘地区影响水准测量精度的主要因素是水准路线的长度,长度越长,精度越低。山区,则是测站,测站越多,精度越低。 3 水准测量的误差分析及控制方法 水准测量误差有仪器误差、观测误差和外界条件的影响。 3.1 仪器误差之一是水准仪的望远镜视准轴不平行于水准管轴所产生的误差 仪器虽在测量前经过校正,仍会存在残余误差。因此造成水准管气泡居中,水准管轴居于水平位置而望远镜视准轴却发生倾斜,致使读数误差。这种误差与视距长度成正比。观测时可通过中间法(前后视距相等)和距离补偿法(前视距离和等于后视距离总和)消除。针对中间法在实际过程中的控制,立尺人是关键,

测量误差的分类以及解决方法

测量误差的分类以及解决方法 1、系统误差 能够保持恒定不变或按照一定规律变化的测量误差,称为系统误差。系统误差主要是由于测量设备、测量方法的不完善和测量条件的不稳定而引起的。由于系统误差表示了测量结果偏离其真实值的程度,即反映了测量结果的准确度,所以在误差理论中,经常用准确度来表示系统误差的大小。系统误差越小,测量结果的准确度就越高。 2、偶然误差 偶然误差又称随机误差,是一种大小和符号都不确定的误差,即在同一条件下对同一被测量重复测量时,各次测量结果服从某种统计分布;这种误差的处理依据概率统计方法。产生偶然误差的原因很多,如温度、磁场、电源频率等的偶然变化等都可能引起这种误差;另一方面观测者本身感官分辨能力的限制,也是偶然误差的一个来源。偶然误差反映了测量的精密度,偶然误差越小,精密度就越高,反之则精密度越低。 系统误差和偶然误差是两类性质完全不同的误差。系统误差反映在一定条件下误差出现的必然性;而偶然则反映在一定条件下误差出现的可能性。 3、疏失误差 疏失误差是测量过程中操作、读数、记录和计算等方面的错误所引起的误差。显然,凡是含有疏失误差的测量结果都是应该摈弃的。 解决方法: 仪表测量误差是不可能绝对消除的,但要尽可能减小误差对测量结果的影响,使其减小到允许的范围内。 消除测量误差,应根据误差的来源和性质,采取相应的措施和方法。必须指出,一个测量结果中既存在系统误差,又存在偶然误差,要截然区分两者是不容易的。所以应根据测量的要

求和两者对测量结果的影响程度,选择消除方法。一般情况下,在对精密度要求不高的工程测量中,主要考虑对系统误差的消除;而在科研、计量等对测量准确度和精密度要求较高的测量中,必须同时考虑消除上述两种误差。 1、系统误差的消除方法 (1)对测量仪表进行校正在准确度要求较高的测量结果中,引入校正值进行修正。 (2)消除产生误差的根源即正确选择测量方法和测量仪器,尽量使测量仪表在规定的使用条件下工作,消除各种外界因素造成的影响。 采用特殊的测量方法如正负误差补偿法、替代法等。例如,用电流表测量电流时,考虑到外磁场对读数的影响,可以把电流表转动180度,进行两次测量。在两次测量中,必然出现一次读数偏大,而另一次读数偏小,取两次读数的平均值作为测量结果,其正负误差抵消,可以有效地消除外磁场对测量的影响。 2、偶然误差的消除方法 消除偶然误差可采用在同一条件下,对被测量进行足够多次的重复测量,取其平均值作为测量结果的方法。根据统计学原理可知,在足够多次的重复测量中,正误差和负误差出现的可能性几乎相同,因此偶然误差的平均值几乎为零。所以,在测量仪器仪表选定以后,测量次数是保证测量精密度的前提。 . 容:

水准测量误差分析(精)

水准测量误差分析 3.5.1水准测量的误差分析 水准测量误差包括仪器误差,观测误差和外界条件的影响三个方面。 (一) 仪器误差 ① 仪器校正后的残余误差 例如水准管轴与视准轴不平行,虽经校正仍然残存少量误差等。这种误差的影响与距离成正比,只要观测时注意使前、后视距离相等,便可消除或减弱此项误差的影响。 ② 水准尺误差 由于水准尺刻划不正确,尺长变化、弯曲等影响,会影响水准测量的精度,因此,水准尺须经过检验才能使用。至于尺的零点差,可在一水准测段中使测站为偶数的方法予以消除。 (二) 观测误差 ①水准管气泡居中误差 设水准管分划道为τ″,居中误差一般为±0.15τ″,采用符合式水准器时,气泡居中精度可提高一倍,故居中误差为 m =ρτ' '?'''±215.0·D 3-35 式中 D —水准仪到水准尺的距离。 ② 读数误差 在水准尺上估读数毫米数的误差,与人眼的分辨力、望远镜的放大倍率以及视线长度有关,通常按下式计算 m v =ρ' '?''D V 06 3-36 式中 V —望远镜的放大倍率; 60″—人眼的极限分辨能力。 ③ 视差影响 当存在视差时,十字丝平面与水准尺影像不重合,若眼睛观察的位置不同,便读出不同的读数,因而也会产生读数误差。 ④ 水准尺倾斜影响 水准尺倾斜将尺上读数增大,如水准尺倾斜033'?,在水准尺上1m 处读数时,将会产生2mm 的误差;若读数大于1m ,误差将超过2mm 。 (三)外界条件的影响 ① 仪器下沉 由于仪器下沉,使视线降低,从而引起高差误差。若采用“后、前、前、后”观测程序,可减弱其影响。 ② 尺垫下沉 如果在转点发生尺垫下沉,使下一站后视读数增大,这将引起高差误差。采用往返观测的方法,取成果的中数,可以减弱其影响。 ③ 地球曲率及大气折光影响 如式3-25所示 地球曲率与大气折光影响之和为 R D f 2 43.0?= 3-37

测量误差基本知识

四、测量误差基本知识 1、测量误差分哪两类?它们各有什么特点?测量中对它们的主要处理原则是什么? 2、产生测量误差的原因有哪些?偶然误差有哪些特性? 3、何谓标准差、中误差和极限误差? 4、对某个水平角以等精度观测4个测回,观测值列于下表(表4-1)。计算其算术平均值x、一测回的中误差m及算术平均值的中误差m x。 表4-1 5、对某一三角形(图4-1)的三个内角重复观测了九次,定义其闭合差?=α+β+γ-180?,其结果如下:?1=+3",?2=-5",?3=+6",?4=+1",?5=-3",?6=-4",?7=+3",?8=+7",?9=-8";求此三角形闭合差的中误差m?以及三角形内角的测角中误差mβ。

图 4-1 6、在一个平面三角形中,观测其中两个水平角(内角)α和β,其测角中误差均为m=±20",根据角α和角β可以计算第三个水平角γ,试计算γ角的中误差m γ。 7、量得某一圆形地物直径为64.780m ,求其圆周的长S 。设量测直径的中误差为±5㎜,求其周长的中误差m S 及其相对中误差m S /S 。 8、对某正方形测量了一条边长a =100m ,a m =±25mm ;按S=4a 计算周长和P=a 计算面积,计算周长的中误差m 和面积的中误差p m 。 9、某正方形测量了四条边长a 1=a 2=a 2=a 4=100m ,m =m =m =m =±25mm ;按 S=1a +2a +3a +4a 计算周长和P=(1a ?2a +3a ?4a )/2计算面积,求周长的中误差m 和面积的中误差p m 。 10.误差传播定律应用 (1)(1)已知m a =m c =m ,h=a-b ,求m 。 (2)已知a m =m =±6",β=a-c ,求βm 。 (3)已知a m =m =m ,S=100(a-b) ,求m 。 (4)已知D=() h S -,m =±5mm ,m =±5mm ,求m 。

测量误差及数据处理的基本知识(精)

第一章测量误差及数据处理的基本知识 物理实验离不开对物理量的测量。由于测量仪器、测量方法、测量条件、测量人员等因素的限制,测量结果不可能绝对准确。所以需要对测量结果的可靠性做出评价,对其误差范围作出估计,并能正确地表达实验结果。 本章主要介绍误差和不确定度的基本概念,测量结果不确定度的计算,实验数据处理和实验结果表达等方面的基本知识。这些知识不仅在每个实验中都要用到,而且是今后从事科学实验工作所必须了解和掌握的。 1.1 测量与误差 1.1.1测量 物理实验不仅要定性的观察物理现象,更重要的是找出有关物理量之间的定量关系。因此就需要进行定量的测量。测量就是借助仪器用某一计量单位把待测量的大小表示出来。根据获得测量结果方法的不同,测量可分为直接测量和间接测量:由仪器或量具可以直接读出测量值的测量称为直接测量。如用米尺测量长度,用天平称质量;另一类需依据待测量和某几个直接测量值的函数关系通过数学运算获得测量结果,这种测量称为间接测量。如用伏安法测电阻,已知电阻两端的电压和流过电阻的电流,依据欧姆定律求出待测电阻的大小。 一个物理量能否直接测量不是绝对的。随着科学技术的发展,测量仪器的改进,很多原来只能间接测量的量,现在可以直接测量了。比如车速的测量,可以直接用测速仪进行直接测量。物理量的测量,大多数是间接测量,但直接测量是一切测量的基础。 一个被测物理量,除了用数值和单位来表征它外,还有一个很重要的表征它的参数,这便是对测量结果可靠性的定量估计。这个重要参数却往往容易为人们所忽视。设想如果得到一个测量结果的可靠性几乎为零,那么这种测量结果还有什么价值呢?因此,从表征被测量这个意义上来说,对测量结果可靠性的定量估计与其数值和单位至少具有同等的重要意义,三者是缺一不可的。 1.1.2 误差 绝对误差在一定条件下,某一物理量所具有的客观大小称为真值。测量的目的就 是力图得到真值。但由于受测量方法、测量仪器、测量条件以及观测者水平等多种因素的限制,测量结果与真值之间总有一定的差异,即总存在测量误差。设测量值为N,相应的真值为N0,测量值与真值之差ΔN ΔN=N-N0 称为测量误差,又称为绝对误差,简称误差。 误差存在于一切测量之中,测量与误差形影不离,分析测量过程中产生的误差,将

水准测量的误差来源及控制资料

浅析公路工程普通水准测量的误差来源及控制方法 水准测量是确定公路工程地面点高程的方法之一,是高程测量中精度较高且常用 的方法。水准测量是采用几何原理,利用水平视线测定两点间高差,所使用的仪器为水准仪,工具是水准尺和尺垫。公路工程施工测量中通常使用DS3型微倾式水准仪,每公里能达到的精度是3mm,水准仪在一个测站使用的基本程序是安置仪器、粗略整平、 瞄准水准尺、精确整平和读数。实施过程中,需要几个人合作才能完成,误差允许范 围内的精度由于仪器和人为的影响而不容易控制,而且易出现隐蔽性错误,如果不能 及早发现,基础资料是错误的,从而水准点高程不正确,直接影响路线纵断面设计和 施工。 在公路工程施工测量中同一条公路采用同一个高程系统,工程施工中测量方法通 常是基平与中平同时测量,两台水准仪同时观测一个水准尺,间视和转点由两个人立 水准尺,但两台水准仪总是同时观测一个水准尺进行读数,一个水准点段测完后检核, 在每一测站,没有检查、复核,为误差的积累创造了条件,容易返工,耽误时间、浪 费人力。通过工程实践证明,这一方法经常出现错误,现节选一个实例加以说明:表1.1 靖安高速公路M-2标D001至D002水准点及原地面标高外业测量结果 点号后视视线高间视前视高程点号后视视线高间视前视高程D001 3.300 15.750 12.450 D001 3.083 15.533 12.450 +254.6 1.442 14.308 +254.6 1.227 14.306 +284.6 1.424 14.326 +284.6 1.211 14.322 +314.6 1.425 15.715 1.460 14.290 +314.6 1.266 15.554 1.245 14.288 +344.6 1.420 14.295 +344.6 1.259 14.295 +374.6 1.387 14.328 +374.6 1.225 14.329 +406.2 1.493 15.716 1.492 14.223 +406.2 1.368 15.592 1.330 14.224 ZD1 1.175 15.732 1.159 14.557 ZD1 1.104 15.661 1.035 14.557 C6 1.415 14.317 C6 1.344 14.316 +437.8 1.425 14.307 +437.8 1.351 14.310

测量误差及数据处理的基本知识

第一章 测量误差及数据处理的基本知识 物理实验离不开对物理量的测量。由于测量仪器、测量方法、测量条件、测量人员等因素的限制,测量结果不可能绝对准确。所以需要对测量结果的可靠性做出评价,对其误差范围作出估计,并能正确地表达实验结果。 本章主要介绍误差和不确定度的基本概念,测量结果不确定度的计算,实验数据处理和实验结果表达等方面的基本知识。这些知识不仅在每个实验中都要用到,而且是今后从事科学实验工作所必须了解和掌握的。 1.1 测量与误差 1.1.1测量 物理实验不仅要定性的观察物理现象,更重要的是找出有关物理量之间的定量关系。因此就需要进行定量的测量。测量就是借助仪器用某一计量单位把待测量的大小表示出来。根据获得测量结果方法的不同,测量可分为直接测量和间接测量:由仪器或量具可以直接读出测量值的测量称为直接测量。如用米尺测量长度,用天平称质量;另一类需依据待测量和某几个直接测量值的函数关系通过数学运算获得测量结果,这种测量称为间接测量。如用伏安法测电阻,已知电阻两端的电压和流过电阻的电流,依据欧姆定律求出待测电阻的大小。 一个物理量能否直接测量不是绝对的。随着科学技术的发展,测量仪器的改进,很多原来只能间接测量的量,现在可以直接测量了。比如车速的测量,可以直接用测速仪进行直接测量。物理量的测量,大多数是间接测量,但直接测量是一切测量的基础。 一个被测物理量,除了用数值和单位来表征它外,还有一个很重要的表征它的参数,这便是对测量结果可靠性的定量估计。这个重要参数却往往容易为人们所忽视。设想如果得到一个测量结果的可靠性几乎为零,那么这种测量结果还有什么价值呢?因此,从表征被测量这个意义上来说,对测量结果可靠性的定量估计与其数值和单位至少具有同等的重要意义,三者是缺一不可的。 1.1.2 误差 绝对误差 在一定条件下,某一物理量所具有的客观大小称为真值。测量的目的就是力图得到真值。但由于受测量方法、测量仪器、测量条件以及观测者水平等多种因素的限制,测量结果与真值之间总有一定的差异,即总存在测量误差。设测量值为N ,相应的真值为N 0,测量值与真值之差ΔN ΔN =N -N 0 称为测量误差,又称为绝对误差,简称误差。 误差存在于一切测量之中,测量与误差形影不离,分析测量过程中产生的误差,将影响降低到最低程度,并对测量结果中未能消除的误差做出估计,是实验测量中不可缺少的一项重要工作。 相对误差 绝对误差与真值之比的百分数叫做相对误差。用E表示: %1000 ??=N N E 由于真值无法知道,所以计算相对误差时常用N代替0N 。在这种情况下,N可能是公认 值,或高一级精密仪器的测量值,或测量值的平均值。相对误差用来表示测量的相对精确度,相对误差用百分数表示,保留两位有效数字。 1.1.3 误差的分类

水准测量的误差来源及控制

水准测量的误差来源及控制

浅析水准测量的误差来源及控制方法 0勘察设计过程中水准测量的问题 水准测量是采用几何原理,利用水平视线测定两点间高差。仪器使用水准仪,工具是水准尺和尺垫。公路工程测量一般使用DS 3型微倾式自动安平水准仪,每公里能达到的精度是3mm,水准仪在一个测站使用的基本程序是安置仪器、粗略整平、瞄准水准尺、精确整平和读数。我们在实际勘测过程中按这个顺序施行,在每一水准点段测完后复核结果。 同一条公路采用同一个高程系统,测量方法是基平与中平同时测量,两台水准仪同时观测一个水准尺,间视和转点由两个人立水准尺,但两台水准仪总是同时观测一个水准尺进行读数,一个水准点段测完后检核,在每一测站,没有检查、复核,为误差的积累创造了条件,容易返工,耽误时间、浪费人力。通过工程实践证明,这一方法经常出现错误,节选五个水准点连续错误中的一个测段结果如表1.1和1.2所示: 表1.1 廊泊一级公路BM4至BM5水准点外业测量结果 点号 后视 视线高 间视 前视 高程 点号 后视 视线高 间视 前视 高程 BM4 3.300

3.286 15.529 557.8 1.483 15.765 1.450 14.282 254.6 1.442 14.308 600 1.386 14.379

1.424 14.326 650 1.357 14.408 314.6 1.425 15.715 1.460 14.290 700 1.672 16.005

14.333 344.6 1.420 14.295 750 1.482 14.523 374.6 1.387 14.328 800

实验数据误差分析和数据处理

第一章实验数据误差分析与数据处理 第一节实验数据误差分析 一、概述 由于实验方法和实验设备的不完善,周围环境的影响,以及人的观察力,测量程序等限制,实验测量值和真值之间,总是存在一定的差异,在数值上即表现为误差。为了提高实验的精度,缩小实验观测值和真值之间的差值,需要对实验数据误差进行分析和讨论。 实验数据误差分析并不是即成事实的消极措施,而是给研究人员提供参与科学实验的积极武器,通过误差分析,可以认清误差的来源及影响,使我们有可能预先确定导致实验总误差的最大组成因素,并设法排除数据中所包含的无效成分,进一步改进实验方案。实验误差分析也提醒我们注意主要误差来源,精心操作,使研究的准确度得以提高。 二、实验误差的来源 实验误差从总体上讲有实验装置(包括标准器具、仪器仪表等)、实验方法、实验环境、实验人员和被测量五个来源。 1.实验装置误差 测量装置是标准器具、仪器仪表和辅助设备的总体。实验装置误差是指由测量装置产生的测量误差。它来源于: (1)标准器具误差 标准器具是指用以复现量值的计量器具。由于加工的限制,标准器复现的量值单位是有误差的。例如,标准刻线米尺的0刻线和1 000 mm刻线之间的实际长度与1 000 mm单位是有差异的。又如,标称值为 1kg的砝码的实际质量(真值)并不等于1kg等等。 (2)仪器仪表误差 凡是用于被测量和复现计量单位的标准量进行比较的设备,称为仪器或仪表.它们将被测量转换成可直接观察的指示值。例如,温度计、电流表、压力表、干涉仪、天平,等等。 由于仪器仪表在加工、装配和调试中,不可避免地存在误差,以致仪器仪表的指示值不等于被测量的真值,造成测量误差。例如,天平的两臂不可能加工、调整到绝对相等,称量时,按天平工作原理,天平平衡被认为两边的质量相等。但是,由于天平的不等臂,虽然天平达到平衡,但两边的质量并不等,即造成测量误差。 (3)附件误差 为测量创造必要条件或使测量方便地进行而采用的各种辅助设备或附件,均属测量附件。如电测量中的转换开关及移动测点、电源、热源和连接导线等均为测量附件,且均产生测量误差。又如,热工计量用的水槽,作为温度测量附件,提供测量水银温度计所需要的温场,由于水槽内各处温度的不均匀,便引起测量误差,等等。 按装置误差具体形成原因,可分为结构性的装置误差、调整性的装置误差和变化性的装置误差。结构性的装置误差如:天平的不等臂,线纹尺刻线不均匀,量块工作面的不平行性,光学零件的光学性能缺陷,等等。这些误差大部分是由于制造工艺不完善和长期使用磨损引起的。调整性的装置误差如投影仪物镜放大倍数调整不准确,水平仪的零位调整不准确,千分尺的零位调整不准确,等等。这些误差是由于仪器仪表在使用时,未调整到理想状态引起的。变化性的装置误差如:激光波长的长期不稳定性,电阻等元器件的老化,晶体振荡器频率的长期漂移,等等。这些误差是由于仪器仪表随时间的不稳定性和随空间位置变化的不均匀性造成的。 2.环境误差 环境误差系指测量中由于各种环境因素造成的测量误差。 被测量在不同的环境中测量,其结果是不同的。这一客观事实说明,环境对测量是有影响的,是测量的误差来源之一。环境造成测量误差的主要原因是测量装置包括标准器具、仪器仪表、测量附件同被测对象随着环境的变化而变化着。 测量环境除了偏离标准环境产生测量误差以外,从而引起测量环境微观变化的测量误差。 3.方法误差

四等水准测量试题

四等水准测量习题 1.何谓视差产生视差的原因是什么视差应如何消除 2.水准测量中为什么要求前后视距相等 3.水准测量中设置转点有何作用在转点立尺时为什么要放置尺垫何点不能放置尺垫 4. 偶然误差和系统误差有什么不同?偶然误差有哪些特性? 答案: 1.由于物镜调焦不完善,导致目标实像与十字丝平面不完全重合出现相对移动现象,称为视差。 其原因由于物镜调焦不完善,使目标实像不完全成像在十字丝平面上;在目镜端观测者眼睛略 作上下少量移动,如发现目标也随之相对移动,即表示有视差存在;再仔细进行物镜调焦,直 至成像稳定清晰。 2.为了消除视准轴不平行与水准管轴的误差,消除或减少地球曲率和大气折光对高差的影响 3.便于传递高程,为了正确地传递高程,使立尺点稳固准确,水准点(已知高程点)不能放置尺 垫。 4.这两种误差主要在含义上不同,另外系统误差具有累积性,对测量结果的影响很大,但这种影 响具有一定的规律性,可以通过适当的途径确定其大小和符号,利用计算公式改正系统误差对 观测值的影响,或采用适当的观测方法、提高测量仪器的精度加以消除或削弱。偶然误差是不 可避免的,且无法消除,但多次观测取其平均,可以抵消一些偶然误差,因此偶然误差具有抵 偿性,多次观测值的平均值比一次测得的数值更接近于真值,此外,提高测量仪器的精度、选 择良好的外界观测条件、改进观测程序、采用合理的数据处理方法如最小二乘法等措施来减少 偶然误差对测量成果的影响。 偶然误差特点归纳起来为: 1.在一定观测条件下,绝对值超过一定限值的误差出现的频率为零; 2.绝对值较小的误差出现的频率大,绝对值较大的误差出现的频率小; 3.绝对值相等的正负误差出现的频率大致相等; 4.当观测次数无限增大时,偶然误差的算术平均值趋近于零。 5.整理表5-19中的四等水准测量观测数据。

测量误差及其处理的基本知识

第五章 测量误差及其处理的基本知识 1、测量误差的来源有哪些?什么是等精度测量? 答:测量误差的来源有三个方面:测量仪器的精度,观测者技术水平,外界条件的影响。该三个方面条件相同的观测称为等精度观测。 2、什么是系统误差?什么是偶然误差?它们的影响是否可以消除? 答:系统误差是指在相同的观测条件下对某量作一系列的观测,其数值和符号均相同,或按一定规律变化的误差。偶然误差是指在相同的观测条件下对某量作一系列的观测,其数值和符号均不固定,或看上去没有一定规律的误差。系统误差的影响采取恰当的方法可以消除;偶然误差是必然发生的,不能消除,只能削弱偶然误差的影响。 3、举出水准测量、角度测量及距离测量中哪些属于系统误差? 答:水准仪的i 角误差,距离测量时钢尺的尺长误差,经纬仪的视准轴误差、横轴误差和竖盘指标差等都属于系统误差。 4、评定测量精度的指标是什么?何种情况下用相对误差评定测量精度? 答:测量中最常用的评定精度的指标是中误差,其绝对值越大精度越低。当误差大小与被量测量的大小之间存在比例关系时,采用相对误差作为衡量观测值精度的标准。例如距离丈量,采用往返丈量的相对误差作为评定精度的指标。 所谓相对中误差(简称相对误差)就是中误差之绝对值(设为|m|)与观测值(设为D )之比,并将分子化为1表示K =| |/1||m D D m = 。 5、观测值中误差如何计算? 答:设在相同条件下对某量进行了n 次观测,得一组观测值L 1、L 2、……Ln ,x 为观测值的算术平均值, i v 表示观测值改正数,即 11L x v -= 22L x v -= ...... n n L x v -= 则中误差 [] 1-±=n vv m 6、算术平均值及其中误差如何计算?

实验数据误差分析和数据处理

第二章实验数据误差分析和数据处理 第一节实验数据的误差分析 由于实验方法和实验设备的不完善,周围环境的影响,以及人的观察力,测量程序等限制,实验观测值和真值之间,总是存在一定的差异。人们常用绝对误差、相对误差或有效数字来说明一个近似值的准确程度。为了评定实验数据的精确性或误差,认清误差的来源及其影响,需要对实验的误差进行分析和讨论。由此可以判定哪些因素是影响实验精确度的主要方面,从而在以后实验中,进一步改进实验方案,缩小实验观测值和真值之间的差值,提高实验的精确性。 一、误差的基本概念 测量是人类认识事物本质所不可缺少的手段。通过测量和实验能使人们对事物获得定量的概念和发现事物的规律性。科学上很多新的发现和突破都是以实验测量为基础的。测量就是用实验的方法,将被测物理量与所选用作为标准的同类量进行比较,从而确定它的大小。 1.真值与平均值 真值是待测物理量客观存在的确定值,也称理论值或定义值。通常真值是无法测得的。若在实验中,测量的次数无限多时,根据误差的分布定律,正负误差的出现几率相等。再经过细致地消除系统误差,将测量值加以平均,可以获得非常接近于真值的数值。但是实际上实

验测量的次数总是有限的。用有限测量值求得的平均值只能是近似真值,常用的平均值有下列几种: (1) 算术平均值 算术平均值是最常见的一种平均值。 设1x 、2x 、……、n x 为各次测量值,n 代表测量次数,则算术平均值为 n x n x x x x n i i n ∑==+???++=1 21 (2-1) (2) 几何平均值 几何平均值是将一组n 个测量值连乘并开n 次方求得的平均值。即 n n x x x x ????=21几 (2-2) (3)均方根平均值 n x n x x x x n i i n ∑== +???++= 1 2222 21 均 (2-3) (4) 对数平均值 在化学反应、热量和质量传递中,其分布曲线多具有对数的特性,在这种情况下表征平均值常用对数平均值。 设两个量1x 、2x ,其对数平均值 2 1212 121ln ln ln x x x x x x x x x -=--=对 (2-4) 应指出,变量的对数平均值总小于算术平均值。当1x /2x ≤2时,可以用算术平均值代替对数平均值。 当1x /2x =2,对x =, =x , (对x -x )/对x =%, 即1x /2x ≤2,引起的误差不超过%。

普通水准测量观测误差的形成原因及解决方法

普通水准测量观测误差的形成原因及解决方法 【摘要】测量工作是在一定观测条件下进行的,只要按操作规范要求作业,采取正确有效的措施观测,使用合适的仪器,其综合影响很小,完全能够满足施测精度要求。 【关键词】系统误差;偶然误差;误差形成的原因;减小误差的方法 abstract:measurement work was carried out under the condition of certain observations, as long as according to the operations specification work, take effective measures of observation, using suitable instruments, their combined effect is small, fully able to meet the measurement accuracy. [Key words] system error, and accidental errors; error causes the formation of; reduce the error method 0引言 测量工作是在一定观测条件下进行的,这些条件主要指的是外界环境、观测者的技术水平和仪器本身构造不完善等因素,这些都是导致测量误差产生的主要根源。在相同的观测条件下进行一系列观测,如果误差在数值大小、正负上表现出一致性,或者按一定规律变化,或者保持某一常数,则这种带有系统性和方向性的误差就称为系统误差。同样,如果在一定的观测条件下做一系列观测,如果误差在数值大小、正负上都表现不出一致,即从表面现象看,所出现的误差没有规律性,纯属偶然发生,而实际上是服从一定的统计学规律,则这种随机变化的误差就称为偶然误差。系统误差产生的原因,主要是仪器的构造不完善,或在工作前没有很好的校正,以及感觉器官的欠缺和客观条件不好等。系统误差在观测成果中一般具有累积性----在测量过程中不断增加或减少,还表现出周期性----数值和符号有规律的变化,所以其对成果质量影响严重。我们可以采用一定的公式,用合理计算的方法对观测结果加以改正,还可以在测量前对仪器进行认真的检验和校正,在测量过程中,用特定的观测方法或改变观测程序等来设法加以消除或减少其影响。偶然误差在观测过程中是永远存在的,其在测量成果中处于主要地位,偶然误差具有规律性、有界性、对称性和抵偿性,它们不能被消除,只能减少它对测量成果的影响,例如读数时的毫米,整置水准气泡居中误差,望远镜的瞄准误差等。由此可见,在整个观测过程中,系统误差和偶然误差往往是同时存在的,影响力各不相同,会随着观测条件的变化而不断变化。但对于系统误差总是设法可以消除,或减少其影响到可忽略的程度,所以,在观测中起主导作用的,主要是偶然误差。 1 误差形成的原因 1.1仪器设备的影响

水准测量误差原因分析及控制方法-建筑机械

122建筑机械水准测量误差原因分析及控制方法 刘超 (中铁十八局集团第四工程有限公司,天津 300350) [摘要]水准测量是高程测量中精度最高、用途最广、使用最普遍的一种测量方法。结合自身的工作经验并参考大量书籍,对水准测量的误差及预控谈谈个人的看法和理解。 [关键词]水准测量;误差;预控 [中图分类号]P224.1 [文献标识码]B [文章编号]1001-554X(2017)06-0122-03 Error cause analysis and control method of leveling LIU Chao 水准测量又名“几何水准测量”,是用水准仪和水准尺测定地面上两点间高差的方法。它是高程测量的主要方法,用于建立国家水准网,监测地壳垂直运动和人为原因引起的地面沉降,以及建立工程测量所需要的高程控制网[1]。水准测量的误差按其来源可分为3类:仪器误差、观测误差和外界条件影响产生的误差。在水准测量中,误差受各种条件的制约直接影响测量结果,但是测量者可以采取一些措施、办法创造条件减小甚至消除误差,使得测量值更接近真实值,提高工作效率,减小误差。 1 仪器误差 1.1 视准轴与水准管轴不平行的误差 成因:仪器虽经过检验校正,但不可能绝对完善,还会存在残余误差;同时,在使用时间过长或受到震动后,使得视准轴与水准管轴不平行而产生一定夹角。即使在水准气泡居中时,视准轴也不会水平,结果会造成在水准尺上的读数误差。实验证明,在一个测站的水准测量中,如果使前视距与后视距相等,则夹角误差对高差测量的影响可以消除。 预控措施:严格地检校仪器和使用前后视距相等的方法测量,可消除或减小该误差的影响。 1.2 水准尺的误差 成因:水准尺的误差,包括尺长误差、刻划误差、尺底零点误差,以及在使用过程中造成的尺身弯曲的误差。 预控措施:观测前应对水准尺进行检验,对尺长误差和刻划误差不符合规定要求的水准尺应停止使用。对于尺长误差较大的水准尺,使用时应在最后的高差加上水准尺每1m的尺长改正。对由于尺底磨损引起的零点误差,可采用测偶数站的方法来消除。 2 观测误差 2.1 视差 由于对光不完善,造成水准尺的成像面与十字丝面不重合而引起的读数误差。 预控措施:切实做好对光工作,即先转动目镜螺旋,使十字丝成像清晰,再转动对光螺旋使水准尺成像清晰,此时水准尺成像面与十字丝面重合,消除了视差的影响[2]。 2.2 整平误差 水准测量是利用水平视线测定高差的,当仪器没有精确整平,则倾斜的视线将使标尺读数产生误差。公式如下 l D p ?=? DOI:10.14189/https://www.360docs.net/doc/b09587768.html,ki.cm1981.2017.06.020 [收稿日期]2017-04-05 [通讯地址]刘超,天津市津南区双港科技产业园丽港园33号

水准测量误差及注意事项

水准测量误差及注意事项 ⑴误差来源有:仪器误差、操作误差、外界条件影响 1.仪器误差 主要有:视准轴不平行于水准管轴(i角)的误差、水准尺误差。 2.操作误差 主要有:水准气泡未严格居中、视差、估读误差、水准尺未竖直。 3.外界条件影响的误差 主要有:仪器下沉、尺垫下沉、地球曲率、大气折光、气温和风力。 ⑵注意事项 水准测量的误差对高程的影响很大,了解误差的性质及其对成果的影响是很有必要的;特别是系统性误差,虽然对单个测站来说微不足道,但累计的结果却是不可忽视的。掌握这些规律,就可很好的指导我们的操作,获得优质的成果。在整个测量过程中,只要有一个测站出错,就会导致整个测段内的成果不合格。要做到每个测站都正确无误,测量人员必须紧密配合,认真细致的做好扶尺、观测、记录、计算等每一项工作。现将水准测量注意事项列下: ㈠扶尺“四要” 1.尺子要检查:测量前要检查标尺刻划是否准确,塔尺衔接是否严密,测量过程中要随时检查尺底或尺垫是否粘有泥土。 2.转点要牢靠:转点最好用尺垫,或者选择坚硬稳固而又有凸棱的石头上,保证转点在两个测站的前后视中不改变位置。

3.扶尺要检查:塔尺如有横向倾斜,观测者易于发现可指挥立直;如前后倾斜则不易发现,会造成读数偏大。故扶尺者身体要站直,如尺上有水准器时要检查使气泡居中。 4.要用同一的尺:由于塔尺底部的磨损或包铁松动,将会使尺底部零点位置不准,为消除其影响,在同一测段要用同一个尺。且测站数为偶数。 ㈡观测“六要” 1.仪器要检校:测量前要把仪器校正好,使各轴线间满足应有的几何条件。 2.仪器要安稳:中心螺旋连接要稳固可靠,松紧适当,架腿要踩实,观测者不得扶压或骑跨架腿,观测过程中不得碰动仪器。 3.前、后视要等长:前、后视等长的水准测量,可以消除i角误差以及地球曲率的影响,如果地面坡度不大还可消除大气折光的影响。普通水准测量最大视线长度不得大于150m,视线不要靠近地面,最小读数要大于0.3m。 4.视线要水平:使用微倾式水准仪度数前气泡要符合,为避免匆忙读数之差错,读数前后均应检查气泡是否符合。烈日下要打伞。 5.读数要准确:读数前要消除视差,要认准横丝,要认请标尺刻划特点,每次读数最好读两次。 6.迁站要慎重:未读前视读数时不得匆忙搬动仪器,以免使水准路线中间“脱节”,造成返工;中途休息时,应将前视点选择在容易寻找的地方,并作好标志,列如记录,以便下次续测。 ㈢记录四要

水准测量误差分析及注意事项分析

龙源期刊网 https://www.360docs.net/doc/b09587768.html, 水准测量误差分析及注意事项分析 作者:赵杰 来源:《中国房地产业·下半月》2017年第01期 【摘要】在测量工作中,高程测量是一项不可缺少基本工作,一般使用的测量方法有三角高程测量与水准测量等,在高程测量中,水准测量具有较高的测量精准度。分析了水准测量误差分析及注意事项,以减弱水准测量误差影响。 【关键词】水准测量;误差;影响 因为多重因素的影响,如,外界环境及仪器等,不利把控水准测量。产生的错误不容易发现,使得基础资料不准确,进而导致水准点间高差出现错误,对工程施工造成直接影响,带来时间及经济损失。所以,分析水准测量误差的影响影响很重要。 1、水准测量误差分析 测量中难免存有误差,按照水准测量误差产生原因不同,可将误差划分为三个方面:外界条件引起的误差、仪器误差、观测误差。 1.1外界条件引起的误差 1.1.1地球曲率与大气折光误差 地球曲率影响高程测量,这点不能忽略,如果视距为100m,高程方面误差接近1mm,影响较大。该误差类1以于水准管轴不平行视准轴,以前后视距离相等的方法可消除该误差对高差带来的影响。地面上空气密度以梯度呈现,光线进入各密度媒介时,产生折射,通常从疏媒介向密媒介折射,因为水准仪视线不理想。通常大气层上层空气密度疏,下层空气密,视线经过大气层,变成了向下弯曲的曲线,导致尺上读数变小,与水平线出现差值,也就是遮光差。 山地连续下坡或上坡时,前后视线和地面的高度增大,遮光差产生的影响越来越大,体现相应的系统性,需要减少视线长度,提升视线高度,以此,将大气遮光影响减至较低。 如果天气晴朗,接近地面的温度比较高,使得下层空气密度相对较稀,这时视线变成了向上弯曲的曲线,导致尺上读数变大。视线线越接近地面,产生的折射越大,所以,通常视线要高出地面一定高度,比地面高出0.5m,就是为了减弱这种影响。如果地面平坦,地面覆盖的物体大致相同,前视距与后视距是相等的,前视距与后视距具有相同的遮光差方向,大小大致相同,能够很大程度上消除遮光差影响。 1.1.2尺子与仪器下沉误差

相关文档
最新文档