最新人教版小学六年级数学上册知识点和题型总结

合集下载

人教版六年级上册数学知识点汇总

人教版六年级上册数学知识点汇总

人教版六年级上册数学知识点汇总汇总一第一单元分数乘法一、分数乘法〔一〕分数乘法的意义:1、分数乘整数与整数乘法的意义一样。

都是求几个一样加数的和的简便运算。

2、分数乘分数是求一个数的几分之几是多少。

〔二〕、分数乘法的计算法那么:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。

2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。

注意〔1〕分数的化简:分子、分母同时除以它们的最大公因数。

〔2〕关于分数乘法的计算:可在乘的过程中约分,也可将积的分子分母约分,提倡在计算过程中约分,这样简便。

〔3〕当带分数进展乘法计算时,要先把带分数化成假分数再进展计算。

〔三〕、规律:〔乘法中比拟大小时〕一个数〔0除外〕乘大于1的数,积大于这个数。

一个数〔0除外〕乘小于1的数〔0除外〕,积小于这个数。

一个数〔0除外〕乘1,积等于这个数。

〔四〕、分数混合运算的运算顺序和整数的运算顺序一样。

〔五〕、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

乘法交换律: a×b=b×d乘法结合律: a×b×c=a×(b×c)乘法分配律:a×(b+c)=ab+ac 或a×(b-c)=ab-ac二、分数乘法的解决问题〔单位“1”的量〔用乘法〕,求单位“1”的几分之几是多少〕1、找单位“1”:“占”、“是”、“比”的后面2、求一个数的几倍是多少;求一个数的几分之几是多少。

用乘法三、倒数1、倒数的意义:乘积是1的两个数互为倒数。

(互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。

)2、求倒数的方法:〔1〕、求分数的倒数:交换分子分母的位置。

〔2〕、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。

〔3〕、求带分数的倒数:把带分数化为假分数,再求倒数。

〔4〕、求小数的倒数:把小数化为分数,再求倒数。

3、1的倒数是1; 0没有倒数。

六年级数学上册期末复习知识点汇总(人教版)

六年级数学上册期末复习知识点汇总(人教版)

六年级数学上册期末复习知识点汇总(人
教版)
1. 数的读写和数位在数表中的比较
- 掌握百以内数的读写方法
- 进一步练百以内数字的大小比较
- 在数表中比较数位的大小
2. 术语的认识和深化
- 理解单位和量的关系,研究长度、容量、时间等单位的名称和换算
- 认识图线表、拔河运动、神奇图等特殊的数学问题
- 进一步掌握理论题中的数学术语,如加法、减法、乘法、除法等
3. 两位数和三位数的认识
- 认识两位数和三位数,并通过具体的例子进行演算
- 进一步研究如何将两位数和三位数的大小进行比较
- 在实际问题中运用两位数和三位数进行计算
4. 数量和对应关系的探讨
- 了解相等的概念,并通过具体例子进行对比
- 研究图表和表格的分析,找出其中的规律
- 运用对应关系解决实际问题,如物品的分组、排列等
5. 探究几何图形和图形的特征
- 了解常见的平面图形和立体图形,如三角形、四边形、圆、长方体、正方体等
- 掌握几何图形的命名及其特征
- 研究分析和比较不同几何图形的性质和关系
6. 数据的收集和分析
- 研究如何进行数据的收集、整理和表示
- 给出简单的表格和图表,进行数据的分析和总结
- 运用数据分析解决实际问题,如人数统计、天气变化等
以上是六年级数学上册的期末复习知识点汇总,希望同学们认真复习,并做好复习笔记和习题,以便顺利应对期末考试。

祝大家取得好成绩!。

人教版小学六年级数学知识点归纳梳理及总复习归类讲解及训练中(含答案)附公式大全

人教版小学六年级数学知识点归纳梳理及总复习归类讲解及训练中(含答案)附公式大全
简称圆。 集合说:到定点的距离等于定长的点的集合叫做圆。
5
2. 圆 弧 和 弦 :圆 上 任 意 两 点 间 的 部 分 叫 做 圆 弧 ,简 称 弧 。大 于 半 圆 的 弧 称 为 优 弧 ,小 于 半 圆 的 弧 称 为 劣 弧 ,半 圆 既 不 是 优 弧 ,也 不 是 劣 弧 。连 接 圆 上 任 意 两 点 的 线 段 叫 做 弦。圆中最长的弦为直径。 3. 圆 心 角 和 圆 周 角 :顶 点 在 圆 心 上 的 角 叫 做 圆 心 角 。顶 点 在 圆 周 上 ,且 它 的 两 边 分 别 与圆有另一个交点的角叫做圆周角。 4. 内 心 和 外 心 :和 三 角 形 三 边 都 相 切 的 圆 叫 做 这 个 三 角 形 的 内 切 圆 ,其 圆 心 称 为 内 心 。 过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。 5. 扇 形 :在 圆 上 ,由 两 条 半 径 和 一 段 弧 围 成 的 图 形 叫 做 扇 形 。圆 锥 侧 面 展 开 图 是 一 个 扇形。这个扇形的半径称为圆锥的母线。 6.圆 的 种 类 : ( 1) 整 体 圆 形 , ( 2) 弧 形 圆 , ( 3) 扁 圆 , ( 4) 椭 形 圆 , ( 5) 缠 丝 圆 ,( 6)螺 旋 圆 ,( 7)圆 中 圆 、圆 外 圆 ,( 8)重 圆 ,( 9)横 圆 ,( 10 )竖 圆 ,( 11 ) 斜圆。 7.圆和其他图形的位置关系:圆和点的位置关系:以点 P 与圆 O 的为例(设 P 是一点, 则 PO 是点到圆心的距离),P 在⊙O 外,PO>r;P 在⊙O 上,PO=r;P 在⊙O 内,0≤ PO<r。 8.百分数的由来
比的意义是两个数的除又叫做两个数的比,而比例的意义是表示两个比相等的式 子是叫做比例。比是表示两个数相除,有两项;比例是一个等式,表示两个比相等, 有四项。因此,比和比例的意义也有所不同。 而且,比号没有括号的含义 而另一种 形式,分数有括号的含义! 19.比和比例的联系:

人教版六年级上册数学重点知识归纳

人教版六年级上册数学重点知识归纳

人教版六年级上册数学重点知识归纳一、整数1. 整数的概念:整数是正整数、零、负整数的统称。

2. 整数的比较:可以利用数轴上数的相对位置进行比较。

3. 整数的加减法:同号两数相加/减,异号两数相减/加,差的符号与绝对值大的数一致。

二、分数1. 分数的概念:分数是一个整数除以另一个整数的结果。

2. 分数的大小比较:通分后比较分子的大小。

3. 分数的加减法:通分,按照分子进行加减法计算。

三、小数1. 小数的概念:有限小数和无限循环小数的概念。

2. 小数的大小比较:补0后比较大小。

3. 小数的加减法:按位相加/减,注意进位和借位。

四、长度1. 厘米、分米、米、千米之间的换算:1米=100厘米,1米=10分米,1千米=1000米。

2. 分米、厘米转换:1分米=10厘米。

3. 毫米、厘米转换:1毫米=0.1厘米。

五、容积1. 升与毫升:1升=1000毫升。

2. 升、毫升之间的换算。

3. 升、毫升的加减法。

六、质量1. 千克与克之间的换算:1千克=1000克。

2. 公斤、克之间的换算。

3. 公斤、克的加减法。

七、图形1. 平行四边形的特点及应用。

2. 正方形、长方形的计算。

3. 三角形的计算和特点。

八、时、刻表1. 时、分、秒之间的换算:1小时=60分钟,1分钟=60秒。

2. 时、分、秒的加减法。

3. 用时、刻、表表示时间。

以上为人教版六年级上册数学的一些重点知识归纳,希望同学们能够加强练习,巩固这些知识,做到理论通联实际,灵活运用。

接下来我们将继续扩展上述数学知识的内容,并进一步加深对六年级上册数学重点知识的理解和掌握。

九、约数和倍数1. 约数的概念:对于整数a和b,如果存在一个整数c,使得a=bc,则称c是a的约数。

2. 倍数的概念:如果存在整数m,使得a=mb,则称a是b的倍数,b是a的约数。

3. 最大公约数和最小公倍数:对于两个整数a和b,它们公有的约数中最大的称为最大公约数,它们公有的倍数中最小的称为最小公倍数。

人教版六年级数学上册各单元知识点汇总

人教版六年级数学上册各单元知识点汇总

第一单元考点梳理及易错探析总结归纳一览表单元考点基本概念与性质易错探析分数乘整数及整数乘分数用分敛的分子和整数相乘的积作分子,分母不变。

易错点:单位“1”的选取容易出错。

举例探析:判断:甲数比乙数多[,则5乙敛匕甲教少1O(X)S探析:甲数比乙数多1,则S乙数;匕甲数少】°6分数乘分数分敛乘分敛,用分子相乘的积作分子、分母相乘的积作分母。

小数乘分数可以把小数化成分数,也可以把分数化成小数,再计算a分数乘法混合运算和简便计算1.分数乘法混合运算,没有括号的先算束法,后算加、减法;有括号的,先算括号里面的,再算括号外面的。

2.整数乘法的交换律、结合律和分配津,对于分数乘法也适用,解决问题1.连续求一个歇的儿分之几是多少,用连乘。

2.求比一个数多几分之几的数是多少,列式为ax(1+儿分之几)©3.求比一个数少几分之几的数是多少,列式为q x(1-几分之几)。

第二单元考点梳理总结归纳一览表单元考点基本概念与性质位置与方向1.描述物休的位丑与观浏点有关,说浏点不同,物休位置的描述洸不同,物体的位置关系具有相对性勺2.描述物体位丑的三要素:观测点、方向、距离口简单的路线图描述路线图时,要先按行走的路线确定每一个观测点,然后,以每一个观测点为参照,描述到下一个目标行走的方向和路程口-1-第三单元考点梳理及易错探析总结归纳一览表单元考点基本概念与性质倒数的认识1.乘积是1的两个数互为例数。

2.1的倒数是1,0没有倒敬。

分数除法除以一个数(0除外),等于乘这个数的倒数。

整数可以寿成分母是1的分数,分数四则混合运算分数混合运角和整数混合运算的运算顺序相同,,解决问题1.巳知一个数的几分之几是多少,求这个数。

1.方程法:(1)找出单位“1”,设未知堇为心(2)我出题中的等量关系式;(3)列方程.2.算术法:(1)我出单位“T;(2)找出题中的对应关系;(3)列出算式。

2.已知一个数以及这个数比另一个数多(少)几分之几,求另一个数,要找准单位“1”,若设另一个数为心列方程:(1±几分之几*=b或列算式:b-r(1土几分之几)〉3.求两分量:找一个未知量设心用两分量的关系列出等式即可。

新人教版六年级上册数学知识点总结

新人教版六年级上册数学知识点总结

新人教版六年级上册数学知识点总结新人教版六年级上册数学知识点简单总结第一单元分数乘法在分数乘法中,有以下几个计算法则:1.分数与整数相乘时,分子与整数相乘的积做分子,分母不变。

例如:3/5×4=12/5.2.分数与分数相乘时,用分子相乘的积做分子,分母相乘的积做分母。

例如:3/4×1/2=3/8.3.为了计算简便,能约分的要先约分,再计算。

带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

乘法中比较大小时,有以下规律:1.一个数(除外)乘小于1的数(除外),积小于这个数。

例如:3/6×3/5<3/6.2.一个数(除外)乘1,积等于这个数。

例如:5/5×1=5/5.3.一个数(除外)乘大于1的数,积大于这个数。

例如:3/5×2>3/5.分数混合运算的运算顺序和整数的运算顺序相同。

整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

第二单元位置与方向在位置和方向的概念中,有以下几个要点:1.位置是相对的,要指出一个物体的位置,必须以另一个物体为参照物。

以谁为参照物,就以谁为观测点。

2.方向可以用角度表示,例如XXX也可以说成北偏东60°。

但在生活中一般先说与物体所在方向离得较近(夹角较小)的方位。

3.确定一个物体的准确位置,只知道方向或距离是不可以的,要同时知道这两个条件才行。

4.根据方向和距离确定物体位置的方法:1)确定好方向并用量角器测量出被测物体所在的方向(角度);2)用直尺测量出被测物体和观测点之间的图上距离,结合单位长度计算出实际距离。

分数除法是指将一个分数除以另一个分数,得到一个新的分数,表示被除数能够被除数整除的次数。

2、分数除法的方法:将除法转化为乘法,即将被除数乘以除数的倒数。

3、分数除法的性质:1)分数除以一个数,等于分子除以这个数再除以分母。

2)分数除以分数,等于分子乘以除数的倒数再除以分母。

3)分数除以分数,可以先将除数取倒数,再将除法转化为乘法。

新课标人教版六年级数学上册各单元知识点归纳

新课标人教版六年级数学上册各单元知识点归纳

新课标人教版六年级数学上册各单元知识点归纳研究必备,欢迎下载新课标人教版六年级数学上册各单元知识点归纳。

第一单元:分数乘法一、分数乘法的意义:1.分数乘整数与整数乘法的意义相同,都是求几个相同加数的和的简便运算。

例如:65×5表示求5个65的和是多少?1/3×5表示求5个1/3的和是多少?2.一个数乘分数的意义是求一个数的几分之几是多少。

例如:1/3×4/7表示求1/3的4/7是多少。

4×3/8表示求4的3/8是多少。

二、分数乘法的计算法则:1.分数与整数相乘:分子与整数相乘的积做分子,分母不变(整数和分母约分)。

2.分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。

注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

3.为了计算简便,能约分的要先约分,再计算。

常考的质因数有11×11=121;13×13=169;17×17=289;19×19=361.4.小数乘分数,可以先把小数化为分数,也可以把分数化成小数再计算(建议把小数化分数再计算)。

三、乘法中比较大小的规律:1.一个数(0除外)乘大于1的数,积大于这个数。

2.一个数(0除外)乘小于1的数(0除外),积小于这个数。

3.一个数(0除外)乘1,积等于这个数。

四、分数混合运算的运算顺序和整数的运算顺序相同。

整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

1.乘法交换律:a×b = b×a2.乘法结合律:( a×b )×c = a×( b×c )3.乘法分配律:( a + b )×c = a c + b c二、分数乘法的解决问题(已知单位“1”的量(用乘法),即求单位“1”的几分之几是多少)1.画线段图:1)两个量的关系:画两条线段图,先画单位一的量,注意两条线段的左边要对齐。

六年级上册数学知识点总结

六年级上册数学知识点总结

六上数学知识点总结一、数的认识1.1 整数1.理解整数的概念,掌握整数的分类:自然数、整数、负整数。

2.掌握整数的性质:加法、减法、乘法、除法。

3.掌握整数的运算规律:结合律、交换律、分配律。

1.2 小数1.理解小数的概念,掌握小数的构成:整数部分、小数点、小数部分。

2.掌握小数的性质:小数的末尾添上“0”或去掉“0”小数的大小不变。

3.掌握小数的运算规律:加法、减法、乘法、除法。

1.3 分数1.理解分数的概念,掌握分数的构成:分子、分母、分数线。

2.掌握分数的性质:分数的基本性质、分数与除法的关系。

3.掌握分数的运算规律:加法、减法、乘法、除法。

二、数的运算2.1 加减法1.理解加减法的概念,掌握加减法的运算规律。

2.掌握加减法的运算顺序:同级运算从左到右,有括号的先算括号里面的。

2.2 乘除法1.理解乘除法的概念,掌握乘除法的运算规律。

2.掌握乘除法的运算顺序:两级运算先算乘除,同级运算从左到右,有括号的先算括号里面的。

2.3 混合运算1.理解混合运算的概念,掌握混合运算的运算顺序。

2.能够正确计算混合运算,注意运算符号和括号的使用。

三、几何初步3.1 平面图形的认识1.理解平面图形的概念,掌握常见平面图形的特征:三角形、四边形、五边形、六边形。

2.掌握平面图形的分类:三角形、四边形、五边形、六边形。

3.2 平面图形的面积1.理解平面图形面积的概念,掌握平面图形面积的计算方法。

2.掌握三角形的面积计算公式:底×高÷2。

3.掌握四边形的面积计算公式:底×高。

3.3 立体图形的认识1.理解立体图形的概念,掌握常见立体图形的特征:正方体、长方体、圆柱、圆锥。

2.掌握立体图形的分类:正方体、长方体、圆柱、圆锥。

3.4 立体图形的体积1.理解立体图形体积的概念,掌握立体图形体积的计算方法。

2.掌握正方体体积计算公式:棱长×棱长×棱长。

3.掌握长方体体积计算公式:长×宽×高。

人教版六年级上册数学总复习知识点和典型例题

人教版六年级上册数学总复习知识点和典型例题

小学六年级上册数学复习资料第一单元:位置与方向(一)用数对表示位置 如:第三列第二行 表示为(3,2)。

一般情况下表示为(列,行) 位置与方向(二)用方向和距离表示位置同一方向的不同描述:小明在小华的东偏北30°方向上,距离15米。

也可以说成:小明在小华的 方向上,距离 。

相对位置:小明在小华的东偏北30°方向上,距离15米。

小华在小明的 方向上,距离 。

第二单元:分数乘法1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

(如:75×4表示4个75是多少或75的4倍是多少。

) 2、一个数乘分数的意义就是求这个数的几分之几是多少。

(如:6×53表示6的53是多少; 65×52表示65的52是多少。

) 分数乘法的计算法则:分子相乘的积作分子,分母相乘的积作分母。

(能约分的先约分) 4、 小于1的数,积小于这个数,一个数(0除外) 乘 等于1的数,积等于这个数, 大于1的数,积大于这个数。

5、乘积是1的两个数互为倒数。

1的倒数是1,0没有倒数。

[典型练习题](1)38 +38 +38 +38 =( )×( )=( ) (2)12个 56 是( );24的 23 是( )。

(3)边长 12 分米的正方形的周长是( )分米。

第三单元:分数除法1、分数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中的一个因数,求另一个因数的运算。

2、分数除法的计算法则:被除数除以除数(0除外)等于被除数乘除数的倒数。

3、一个数除以真分数,商大于这个数(如:4÷21﹥4); 一个数除以大于1 的假分数,商小于这个数 (如:3÷ 23﹤3)。

4、两个数相除又叫做两个数的比。

在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。

比 的前项除以后项所得的商,叫做比值。

比值通常用分数表示,也可以用小数或整数表示。

人教版小学数学六年级上册知识点整理归纳

人教版小学数学六年级上册知识点整理归纳

人教版小学数学六年级上册知识点整理归纳六年级上册数学知识点第一单元位置数对是由两个数字组成,中间用逗号隔开,用括号括起来。

括号里面的数字由左至右为列数和行数,即“先列后行”。

数对的作用是确定一个点的位置,类似于经度和纬度的原理。

在方格图(平面直角坐标系)中,可以用数对来表示一个点的位置,例如数对(3,5)表示第三列,第五行。

第二单元分数乘法一)分数乘法意义分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

例如,333×7表示求7个333的和是多少,或者表示333的7倍是多少。

一个数乘分数的意义就是求这个数的几分之几是多少。

二)分数乘法计算法则分数乘整数的运算法则是:分子与整数相乘,分母不变。

为了计算简便,可以先约分再计算。

约分是用整数和分母约掉最大公因数。

分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。

如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

分数化简的方法是:分子、分母同时除以它们的最大公因数。

在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。

约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简分数。

分数的基本性质是:分子、分母同时乘或者除以一个相同的数(除外),分数的大小不变。

三)积与因数的关系一个数(除外)乘大于1的数,积大于这个数。

当b。

1时,a×b。

a。

一个数(除外)乘小于1的数,积小于这个数。

当b <1时,a×b <a (b≠0)。

一个数(除外)乘等于1的数,积等于这个数。

当b =1时,a×b =a。

2/3,已知乙数是15,求甲数。

解:甲数=乙数×(1+2/3)=15×(5/3)=25分数乘法混合运算的顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。

同时,分数乘法也适用整数乘法运算定律,如乘法交换律、结合律和分配律。

人教版小学六年级数学上册练习题及典型题型解析

人教版小学六年级数学上册练习题及典型题型解析

人教版小学六年级数学上册练习题及典型题型解析2023年最新人教版小学六年级数学典型题型解析数学是小学六年级的重要课程之一,学生需要掌握各种数学知识和技能。

本文将分为以下部分,详细解析2023年最新人教版小学六年级数学典型题型,包括分数计算、分数应用题、比例与比例尺、圆与扇形、圆柱与圆锥、可能性与统计、面积计算、体积计算、图形运动、代数初步、整数计算、应用题、数与代数、图形与几何和统计与概率。

一、分数计算分数计算是小学六年级数学的重要知识点之一,学生需要掌握分数的加减法、乘法和除法。

典型题型包括:1.两个分数的加减法:学生需要掌握分数的通分和约分,以及分数加减法的计算方法。

2.两个分数的乘法:学生需要掌握分数乘法的计算方法,例如分子乘分子、分母乘分母。

3.两个分数的除法:学生需要掌握分数除法的计算方法,例如分子乘分母、分母乘分子。

二、分数应用题分数应用题是小学六年级数学的难点之一,需要学生运用分数知识解决实际问题。

典型题型包括:1.比例问题:已知两个量的比例,求出两个量的具体值。

2.数量关系问题:已知两个量的具体值,求出两个量的比例。

3.百分数问题:已知一个量的百分数,求出这个量的具体值。

三、比例与比例尺比例与比例尺是小学六年级数学的重要知识点之一,学生需要掌握比例和比例尺的概念和计算方法。

典型题型包括:1.两个量的比例:已知两个量的比例,求出两个量的具体值。

2.比例尺的应用:已知实际距离和地图上的距离,求出地图上的比例尺。

四、圆与扇形圆与扇形是小学六年级数学的重要知识点之一,学生需要掌握圆的周长、面积和扇形的面积计算方法。

典型题型包括:1.圆的周长:已知圆的半径,求出圆的周长。

2.圆的面积:已知圆的半径,求出圆的面积。

3.扇形的面积:已知扇形的半径和圆心角,求出扇形的面积。

五、圆柱与圆锥圆柱与圆锥是小学六年级数学的重要知识点之一,学生需要掌握圆柱和圆锥的表面积和体积计算方法。

典型题型包括:1.圆柱的表面积:已知圆柱的底面半径和高,求出圆柱的表面积。

最新人教版六年级上册数学知识点归纳与整理

最新人教版六年级上册数学知识点归纳与整理

人教版六年级上册数学知识点归纳整理《人教版六年级上册数学知识点归纳整理》六年级上册的数学那可真是有不少有趣又重要的知识点呢。

分数乘法可是个大头。

比如说分数乘整数,就像2/3×3,这就相当于3个2/3相加呀,计算的时候分子乘整数就好啦,分母不变,最后能约分的再约分。

分数乘分数呢,分子乘分子,分母乘分母,就像3/4×2/5,就是3×2做分子,4×5做分母,这感觉就像是在给数字们牵红线,让它们组成新的数字组合呢。

接着就是分数除法啦。

除以一个分数等于乘以它的倒数,这就像是数学里的一种小魔法。

比如说2÷2/3,就等于2×3/2,一下就把除法变成乘法来计算了,简单又神奇。

百分数也很重要哦。

百分数其实就是分母是100的特殊分数。

像我们经常说的打几折,那就是百分之几十。

比如说一件衣服打八折,就是按原价的80%出售。

百分数在生活中的应用可多了,计算利息呀,统计增长率之类的都会用到。

圆的知识也特别有趣。

圆的周长公式是C=2πr或者C=πd,π这个数字可神奇了,约等于3.14,它是个无限不循环小数呢。

圆的面积公式是S=πr²。

想象一下,一个圆就像一个大披萨,要算出它的面积,就得用这个公式啦。

比和比例也有不少门道。

两个数相除又叫做两个数的比,像3÷2就可以写成3:2。

比例呢,就是表示两个比相等的式子,像3:2=6:4。

比例的基本性质是内项积等于外项积,这就像一种数字之间的平衡关系。

在学习这些数学知识的时候,就像在探索一个神秘的数字王国。

有时候会觉得有点难,就像在迷宫里找不到出口。

但是一旦掌握了,又会特别有成就感,就像找到了宝藏一样。

在做数学题的时候,可不能死记硬背公式哦,要理解每个知识点背后的意义。

就像交朋友,要了解对方的性格一样。

我觉得这些数学知识点虽然多,但是只要用心去学,就像在玩一场数字游戏,会很有趣的。

而且学好了这些知识,在生活中也能派上大用场呢,不管是计算购物折扣,还是了解一些工程进度之类的。

全册人教版数学六年级上册知识点总结1-8单元

全册人教版数学六年级上册知识点总结1-8单元

第1单元分数乘法一、分数乘整数的意义及计算方法分数乘整数的意义与整数乘法的意义相同, 都是求几个相同加数的和的简便运算。

计算时用分数的分子和整数相乘的积作分子,分母不变,能约分的要先约分。

二、一个数乘分数的意义一个数乘分数的意义就是求这个数的几分之几是多少。

三、分数乘分数的计算方法分数乘分数,用分子相乘的积作分子,分母相乘的积作分母,能约分的要先约分。

四、小数乘分数的计算方法小数乘分数,可以把小数化成分数再计算,也可以把分数化成小数再计算,还可以直接将小数与分数的分母进行约分,再计算。

五、分数混合运算的运算顺序没有括号的,先算乘除法,再算加减法;有括号的,先算括号里面的,再算括号外面的。

六、整数乘法运算律推广到分数乘法整数乘法的运算律对于分数乘法同样适用。

应用乘法的运算律进行计算,可以使一些计算简便。

七、连续求一个数的几分之几是多少的实际问题解答这类实际问题的关键是弄清楚单位“1”是谁,要求的量是单位“1”的几分之几,再根据分数乘法的意义进行解答。

八、求比一个数多(或少)几分之几的数是多少的问题解题方法:①单位“1”的量±单位“1”的量×比单位“1”多(或少)的几分之几=另一个量;②单位“1”的量×(1±比单位“1”多(或少)的几分之几)=另一个量。

第2单元位置与方向(二)一、根据平面示意图确定某个点的位置在平面图上描述某个点的位置时,需要描述清楚方向和距离这两个条件。

二、在平面图上确定某个点的位置在平面图上确定某个点的位置时,先确定方向,再确定距离。

三、描述简单的路线图先按行走路线确定每一个观测点, 然后以每一个观测点为起点,再描述到下一个目标行走的方向和距离。

四、绘制简单的路线图根据描述,从起点出发,确定方向和距离,第一段以起点为观测点,后面每段都要以前一段的终点为观测点。

以谁为观测点,就以谁为中心画出“十”字方向标,然后判断下一段的方向和距离。

第3单元分数除法一、倒数的意义积是1的两个数互为倒数。

人教版小学六年级数学上册知识点总结

人教版小学六年级数学上册知识点总结

人教版小学六年级数学上册知识点总结人教版小学六年级数学上册知识要点总结一、引言人教版小学六年级数学上册的知识要点总结旨在帮助学生更好地掌握所学内容,提高学习效率,并为初中数学学习奠定基础。

本总结涉及分数乘法、位置与方向(二)、分数除法、比、圆、百分数(一)和扇形统计图等方面的知识。

二、分数乘法1.概念:分数乘法是指两个或多个分数相乘得到一个新的分数的运算。

2.性质:o交换律:a × b = b × ao结合律:a × (b × c) = (a × b) × co分配律:a × (b + c) = a × b + a × c3.解题方法:o将分数相乘,约分得到最简结果。

o整数与分数相乘,将整数化成分数再相乘。

o乘法的交换律、结合律和分配律同样适用于分数乘法。

4.应用实例:o计算面积:长方形面积 = 长×宽,其中宽为分数。

o计算路程:速度×时间 = 路程,其中速度为分数。

三、位置与方向(二)1.知识点:o相对位置:通过方向角和距离描述两个物体之间的相对位置关系。

o方向角:描述物体相对于参考点在平面上的方向。

o距离:描述两个物体之间的直线距离。

2.应用实例:在地图上标注物体位置时,需要确定其相对于已知点的方向和距离。

四、分数除法1.概念:分数除法是指将一个分数除以另一个分数得到一个新的分数的运算。

2.性质:o倒数性质:a ÷ b = a × 1/b,其中1/b是b的倒数。

o除法的交换律、结合律和分配律同样适用于分数除法。

3.解题方法:o将除法转化为乘法,约分得到最简结果。

o整数与分数相除,将整数化成分数再相除。

4.应用实例:o计算数量:总数÷部分数 = 部分数所占总数的比例。

o计算平均数:总和÷个数 = 平均数。

五、比1.概念:比是指两个数相除得到的一个数值,表示两个数之间的比例关系。

人教版小学六年级上册数学知识点总结

人教版小学六年级上册数学知识点总结

人教版小学六年级上册数学知识点总结一、数与代数(一)分数的运算1.分数的加减法•同分母分数:分母保持不变,分子进行加减运算。

例如:2/5 + 3/5 = 5/5 或1;4/7 - 2/7 = 2/7。

•异分母分数:首先找到两个分母的最小公倍数,然后进行通分,使两个分数具有相同的分母,接着进行加减运算。

例如:1/2 + 1/3 = 3/6 + 2/6 =5/6;3/4 - 1/5 = 15/20 - 4/20 = 11/20。

2.分数的乘法•分子乘分子,分母乘分母。

例如:2/3 × 4/5 = 8/15。

•分数与整数相乘,整数可以看作是分母为1的分数,然后与另一个分数相乘。

例如:2 × 3/4 = 6/4 = 3/2。

3.分数的除法•将除数颠倒后与被除数相乘。

例如:4/5 ÷ 2/3 = 4/5 × 3/2 = 12/10 = 6/5。

4.带分数与假分数的互化•带分数转化为假分数:分母不变,分子为整数部分与分母的乘积加上原分数的分子。

例如:2(1/2) = 2 × 2 + 1 = 5/2。

•假分数转化为带分数:分母不变,分子除以分母得到的商为整数部分,余数作为新分数的分子。

例如:7/3 = 2...1,所以7/3 = 2(1/3)。

5.分数与小数的互化•分数转化为小数:直接进行除法运算,得到的结果即为小数形式。

例如:1/2 = 0.5;3/4 = 0.75。

•小数转化为分数:将小数表示为分数形式,能简化的要简化。

例如:0.5 = 1/2;0.75 = 3/4。

(二)百分数1.百分数的概念•百分数是表示一个数是另一个数的百分之几的数,也叫百分率或百分比。

百分数通常不会写成分数的形式,而采用符号“%”(百分号)来表示。

2.百分数与小数、分数的互化•百分数转化为小数:去掉百分号,小数点左移两位。

例如:75% = 0.75。

•小数转化为百分数:加上百分号,小数点右移两位。

完整版)人教版小学六年级数学主要知识点总结

完整版)人教版小学六年级数学主要知识点总结

完整版)人教版小学六年级数学主要知识点总结人教版小学六年级数学知识点总结目录1.分数乘除法1.1 分数乘法1.2 分数除法1.3 百分数2.位置与方向3.圆3.1 圆的周长3.2 圆的面积4.圆柱与圆锥4.1 圆柱4.2 圆锥5.比与比例5.1 比5.2 比例5.3 用比例解决问题1.分数乘除法1.1 分数乘法1) 分数乘整数:表示连续求几个相同分数相加的和的简便运算。

计算方法:用分子乘整数的积做分子,分母不变。

能约分的要先约分。

例如:2/5 × 5 可以表示为2/5 + 2/5 + 2/5 + 2/5 + 2/5.2) 分数乘分数:计算方法:分子乘分子,分母乘分母,能约分的要先约分再计算。

3) 分数乘小数:计算方法:用分子乘小数的积做分子,分母不变。

能约分的要先约分。

也可以把分数化成小数或者把小数化成分数再计算。

4) 解决问题的思路及方法A。

一个数乘分数:表示求这个数的几分之几是多少。

方法:“1”×对应分率=对应量。

例如:一袋大米重100千克,吃了它的2/5.吃了多少千克?解析:根据题意,就是求100的2/5是多少。

所以列式:100 × 2/5 = 40(千克)。

答案:吃了40千克大米。

B。

求比一个数多(少)几分之几的数是多少?方法:“1”×对应分率=对应量。

对应分率:多几分之几就是1+几分之几,少几分之几就是1-几分之几。

例如:商店运来一批水果,运来苹果50千克,运来的梨比运来的苹果多1/5,商店运来梨多少千克?分析:根据题意其实就是求比50多1/5的数是多少,单位1的量就是50,多1/5,那么对应分率就是1+1/5=6/5.列式:50 × (1+1/5) / 5 = 60(千克)。

答案:商店运来梨60千克。

某养殖场有鸡45只,鹅比鸡少2/5,这个养殖场有鹅多3/5少几只?(此题有误,无法解答)1.2 分数除法1)分数除法计算方法:除以一个数等于乘以这个数的倒数。

人教版小学六年级数学上册知识点归纳

人教版小学六年级数学上册知识点归纳

小学六年级数学复习知识点归纳第一单元:分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

“分数乘整数”指的是第二个因数必须是整数,不能是分数。

2、一个数乘分数的意义就是求一个数的几分之几是多少。

“一个数乘分数”指的是第二个因数必须是分数,不能是整数。

(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。

(1)为了计算简便能约分的可先约分再计算。

(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。

(整数千万不能与分母相乘,计算结果必须是简分数)。

2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。

(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。

(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。

(约分后分子和分母必须不再含有公因数,这样计算后的结果才是简单分数)。

(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。

(三)积与因数的关系:①一个数(0除外)乘大于1的数,积大于这个数。

a×b=c,当b >1时,c>a。

②一个数(0除外)乘小于1的数,积小于这个数。

a×b=c,当b <1时,c<a③一个数乘等于1的数,积等于这个数。

a×b=c,当B=1时,c=a。

(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。

2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。

乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c) 乘法分配律:a×(b±c)=a×b±a×c(五)倒数的意义:乘积为1的两个数互为倒数。

最新人教版六年级(上册)数学知识点归纳与整理

最新人教版六年级(上册)数学知识点归纳与整理

最新人教版六年级(上册)数学知识点归纳与整理六年级数学上册知识点归纳与整理第一单元分数乘法一、分数乘法的意义1.分数乘整数的意义与整数乘法相同,都是求几个相同加数和的简便运算。

例如:3/4×6,表示6个3/4相加的和是多少,也表示6的3/4倍是多少。

2.一个数(小数、分数、整数)乘以分数的意义不同于整数乘法,它表示这个数的几分之几是多少。

例如:6×2/3,表示6的2/3是多少。

二、分数乘法的计算法则1.整数和分数相乘:整数和分子相乘的积作分子,分母不变。

2.分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。

3.注意:能约分的先约分,然后再乘,得数必须是最简分数。

当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

三、分数大小的比较1.一个数(除外)乘以一个真分数,所得的积小于它本身。

一个数(除外)乘以一个假分数,所得的积等于或大于它本身。

一个数(除外)乘以一个带分数,所得的积大于它本身。

2.如果几个不相等的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。

四、解决实际问题1.分数应用题一般解题步骤:1)找出含有分数的关键句。

2)找出单位“1”的量。

3)根据线段图写出等量关系式:单位“1”的量×对应分数=对应量。

4)根据已知条件和问题列式解答。

2.乘法应用题有关注意概念:1)乘法应用题的解题思路是:已知一个数,求这个数的几分之几是多少?2)找单位“1”的方法是:从含有分数的关键句中找,注意“的”前“比”后的规则。

当句子中的单位“1”不明显时,把原来的量看做单位“1”。

3)甲比乙多几分之几表示甲比乙多的数占乙的几分之几,甲比乙少几分之几表示甲比乙少的数占乙的几分之几。

4)在应用题中,例如“小湖村去年水稻的亩产量是750千克,今年水稻的亩产量是800千克,增产几分之几?”题目中的“增产”是指多的意思,因此应该是“多比少多”。

即今年水稻的亩产量比去年水稻的亩产量多几分之几。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学六年级上册数学知识点和题型第一单元分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。

2、一个数乘分数的意义就是求一个数的几分之几是多少。

(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘的积作分子,分母不变。

注:(1)为了计算简便能约分的可先约分再计算。

(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。

(整数千万不能与分母相乘,计算结果必须是最简分数)2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。

(分子乘分子,分母乘分母)注:①如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

②分数化简的方法是:分子、分母同时除以它们的最大公因数。

③在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。

(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)④分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。

3、小数乘分数的运算法则是:(1)把小数化成分数计算;(2)如果所乘分数可以化成有限小数,也可以把分数化成小数计算;(3)小数和分母能约分的,先约分在计算比较方便。

(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。

a×b=c,当b >1时,c>a. 一个数(0除外)乘小于1的数,积小于这个数。

a×b=c,当b <1时,c<a (b≠0).一个数(0除外)乘等于1的数,积等于这个数。

a×b=c,当b =1时,c=a .注:在进行因数与积的大小比较时,要注意因数为0时的特殊情况。

(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。

2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。

乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c(五)分数乘法应用题——用分数乘法解决问题1、连续求一个数的几分之几是多少的解题方法:用这个数(单位“1”的量)连续乘所对应的分率。

2、求比一个数多(或少)几分之几的数是多少的数是多少的解题方法:(1)单位“1”的量×[1±这个数量比单位“1”的量多(或少)几分之几]=这个数量;(2)单位“1”的量±单位“1”的量×这个数量比单位“1”的量多(或少)几分之几=这个数量。

题型:1、直接写得数。

1 3×0=14×25=56×12=712×314= 45×35=9×718=23×910=425×100= 18×16=411×114=2、能简算的要简算。

17×916(34+58)×3259×34+59×145 4×18×1615+29×31044-72×5124、在○里填上>、<或= 56 ×4○ 56 9×23 ○23 ×9 38 × 12 ○ 385、六年级同学给灾区的小朋友捐款。

六一班捐了500元,六二班捐的是六一班的45 ,六三班捐的是六二班的 98。

六三班捐款多少元? 6、一件西服原价180元,现在的价格比原来降低了15,现在的价格是多少元?第二单元 位置与方向(二)1、在平面图上标出物体位置的方法:先用量角器确定方向,再以选定的单位长度为基准用直尺来确定图上距离,最后找出物体的具体位置,标上名称。

2、描述路线图的方法:先按行走路线确定参照点,在确定行走的方向和路程。

即每走一步,都要说清从哪里出发,向什么方向走多远的距离。

3、绘制路线图的方法:(1)确定方向标和单位长度;(2)确定起点的位置;(3)根据描述,从起点出发,找好方向和距离,一段一段的画。

除第一段(以起点为参照点)外,其余每段都要以前一段的终点为参照点。

(4)以谁为参照点,就以谁为中心画“十”字方向标,然后判断下一点的方向和距离。

题型:1. 看图填空。

(1)学校在玲玲家( )偏( )( )的方向上;图书馆在玲玲家( )偏( )( )的方向上。

(2)亮亮从家里出发去玲玲家玩,要走( )米,如果每分钟走80米,要走( )分钟。

北 玲玲家学校 亮亮家 图书馆 40° 30° 200米2. 量一量,填一填。

(1)商场在影院的 偏 方向上,距离是 米; (2)影院在广场的 偏 方向上,距离是 米;(3)政府大楼在影院的 偏 方向上,距离是 米;(4)影院在政府大楼的 偏 方向上,距离是 米;(5)说说政府大楼和商场分别在广场的什么方向?3. 小明的爸爸从家里出发往正西方走300米,走到广场,再向北偏西40°方向走了200米到公司上班,画出路线示意图。

第三单元 分数除法(一)倒数1、倒数的意义:乘积为1的两个数互为倒数。

2、倒数是两个数的关系,它们互相依存,不能单独存在。

单独一个数不能称为倒数。

(必须说清谁是谁的倒数)3、判断两个数是否互为倒数的唯一标准是:两数相乘的积是否为“1”。

例如:a×b=1则a 、b 互为倒数。

4、求倒数的方法:小明家北 100米 影院 北 商场 广场 政府大楼100米①求分数的倒数:交换分子、分母的位置。

②求整数的倒数:整数分之1。

③求带分数的倒数:先化成假分数,再求倒数。

④求小数的倒数:先化成分数再求倒数。

5、1的倒数是它本身,因为1×1=10没有倒数,因为任何数乘0积都是0,且0不能作分母。

6、真分数的倒数是假分数,真分数的倒数大于1,也大于它本身。

假分数的倒数小于或等于1。

带分数的倒数小于1。

(二)分数除法的意义:分数除法是分数乘法的逆运算,已知两个数的积与其中一个因数,求另一个因数的运算。

(三)分数除法计算法则:除以一个数(0除外),等于乘于这个数的倒数。

1、被除数÷除数=被除数×除数的倒数。

2、除法转化成乘法时,被除数一定不能变,“÷”变成“×”,除数变成它的倒数。

3、分数除法算式中出现小数、带分数时要先化成分数、假分数再计算。

4、被除数与商的变化规律:①除以大于1的数,商小于被除数:a÷b=c当b>1时,c<a (a≠0)②除以小于1的数,商大于被除数:a÷b=c当b<1时,c>a (a≠0 b≠0)③除以等于1的数,商等于被除数:a÷b=c当b=1时,c=a(四)分数四则混合运算1、运算顺序:①连除:属同级运算,按照从左往右的顺序进行计算;或者先把所有除法转化成乘法再计算;或者依据“除以几个数,等于乘上这几个数的积”的简便方法计算。

加、减法为一级运算,乘、除法为二级运算。

②混合运算:没有括号的先乘、除后加、减,有括号的先算括号里面,再算括号外面。

注:(a±b)÷c=a÷c±b÷c(五)解决问题(1)“已知一个熟的几分之几是多少,求这个数”的问题的解法。

①设单位“1”的量为x ,列方程解答。

②已知量÷已知量占单位“1”的几分之几=单位“1”的量(2)“已知比一个数多(或少)几分之几的数是多少,求这个数” 的问题的解法。

①根据数量关系“单位‘1’的量×(1±几分之几)=已知量”或“单位‘1’的量±单位‘1’的量×几分之几=已知量” ,设单位“1”的量为x ,列方程解答。

②确定单位‘1’的量,计算出已知量占单位“1”的几分之几,再根据分数除法的意义列式解答。

(3)“已知两个数的和或差及这两个数的倍数关系,求这两个数” 的问题的解法。

先找出单位“1”的量并设为x ,用含有x 的式子表示另一个量,再根据两个数的和或差列方程解答。

(4)工程问题数量关系式:工作总量=工作效率×工作时间;工作效率=工作总量÷工作时间;工作时间=工作总量÷工作效率题型1、10的倒数是( ),( )没有倒数。

2、把98米长的铁丝平均分成4段,每段是全长的 ,每段长 米。

3、用你喜欢的方法计算下面各题。

187÷14= 98÷24=1913÷26= 125÷35=4、看谁算得又对又快。

21+31×43 43×32÷2 (61+81)÷92 65×(32-125) 10-1.5÷43 107÷516÷3221 5、请用简便方法计算。

85÷4+835×41(127+1811)÷3656、列式计算。

1. 一个数的43是2112,这个数是多少?2. 一个数的54是20,这个数的258是多少?7、走进生活,解决问题。

① 小岩买了一瓶橙汁,喝了53,正好是300毫升,这瓶橙汁总量是多少毫升?②实验小学参加艺术班的学生有1080人,占全校学生总数的52,全校共有学生多少人?第四单元 比(一)比:两个数相除也叫两个数的比1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。

注:连比如:3:4:5读作:3比4比52、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。

例:12∶20=12÷20=0.6 12∶20读作:12比20注:区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。

比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式。

3、比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变。

4、化简比:化简之后结果还是一个比,不是一个数。

(1)用比的前项和后项同时除以它们的最大公约数。

(2)两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。

也可以求出比值再写成比的形式。

(3)两个小数的比,向右移动小数点的位置,也是先化成整数比。

5、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。

6、比和除法、分数的区别:除法 被除数 除号(÷) 除数(不能为0) 商不变性质 除法是一种运算 分数 分子 分数线(—) 分母(不能为0) 分数的基本性质 分数是一个数比前项比号(∶)后项(不能为0)比的基本性质比表示两个数的关系附:商不变性质:被除数和除数同时乘或除以相同的数(0除外),商不变。

相关文档
最新文档