齐次和非齐次线性方程组的解法定稿

合集下载

齐次与非齐次方程

齐次与非齐次方程

齐次与非齐次方程方程是数学研究的基础,并且在各个领域中都起着重要作用。

在代数方程中,可以将其分为齐次方程和非齐次方程。

一、齐次方程齐次方程是指方程中所有项的次数均相同的方程,例如:ax^n + bx^n-1 + cx^n-2 + … + px + q = 0其中n为常数,a、b、c、…、p和q为系数。

解齐次方程的方法是假设方程有一个非零解,然后通过一系列的代数运算找到方程的通解。

例如,对于一次齐次方程ax + by = 0,可以假设x = 1并求解出y = -a/b,这就是方程的通解。

对于高次齐次方程,可以使用特征根法来解。

假设ax^n + bx^n-1 + cx^n-2 + … + px + q = 0有一个非零解y = x^m,其中m为常数。

将y 代入原方程中,得到:a(x^m)^n + b(x^m)^n-1 + c(x^m)^n-2 + … + px^m + q = 0化简后可得到:a + b/x + c/x^2 + … + p/x^(n-m-2) + q/x^(n-m) = 0由于x ≠ 0,所以方程可继续化简为:a + b/x + c/x^2 + … + p/x^(n-m-2) + q/x^(n-m) = 0这是一个关于x的齐次方程,可以通过求解它的特征根来得到方程的通解。

二、非齐次方程非齐次方程是指方程中至少有一个项的次数与其他项不同的方程,例如:ax^n + bx^n-1 + cx^n-2 + … + px + q = f(x)其中f(x)为非零函数。

求解非齐次方程的常用方法是通过特解和通解相加得到方程的完整解。

首先,找到一个特解y1,使得f(x) = q,然后将特解代入原方程得到齐次方程。

求解齐次方程得到通解y2,将特解和通解相加即可得到非齐次方程的解。

具体步骤如下:1. 求解齐次方程ax^n + bx^n-1 + cx^n-2 + … + px + q = 0的通解y2。

2. 找到一个特解y1,满足f(x) = q。

齐次线性方程组与非齐次线性方程组

齐次线性方程组与非齐次线性方程组

齐次线性方程组与非齐次线性方程组线性方程组是数学中经常遇到的一类问题,其中,常常会涉及到齐次线性方程组和非齐次线性方程组。

本文将介绍齐次线性方程组和非齐次线性方程组的定义、特点以及解的求解方法。

一、齐次线性方程组(Homogeneous Linear Equations)齐次线性方程组是指系数矩阵中各行线性组合的和为零的线性方程组。

一般形式为:A_11x_1 + A_12x_2 + ... + A_1nx_n = 0A_21x_1 + A_22x_2 + ... + A_2nx_n = 0...A_m1x_1 + A_m2x_2 + ... + A_mnx_n = 0其中,A_ij为系数矩阵的元素,x_i为未知数。

齐次线性方程组的特点是零解的存在。

零解是指将所有未知数都取零时,方程组成立。

除了零解外,齐次线性方程组可能还存在非零解。

对于齐次线性方程组的求解可以采用矩阵的方法,即对系数矩阵进行行变换,将其化为行阶梯型矩阵或行最简形矩阵,然后根据矩阵的特性来求解未知数。

具体的求解方法不再赘述。

二、非齐次线性方程组(Non-Homogeneous Linear Equations)非齐次线性方程组是指系数矩阵中各行线性组合的和不为零的线性方程组。

一般形式为:A_11x_1 + A_12x_2 + ... + A_1nx_n = b_1A_21x_1 + A_22x_2 + ... + A_2nx_n = b_2...A_m1x_1 + A_m2x_2 + ... + A_mnx_n = b_m其中,A_ij为系数矩阵的元素,x_i为未知数,b_i为常数向量。

非齐次线性方程组的特点是除了零解外,可能还存在其他解。

当方程组存在解时,称其为有解方程组。

对于非齐次线性方程组的求解,可以将其转化为齐次线性方程组的形式来求解。

具体方法是将方程组转化为增广矩阵,然后对增广矩阵进行行变换,化简为行阶梯型矩阵或行最简形矩阵。

齐次和非齐次线性方程组的解法(整理定稿)

齐次和非齐次线性方程组的解法(整理定稿)

线性方程组解的结构(解法)一、齐次线性方程组的解法【定义】 r (A )= r <n ,若AX = 0(A 为m n ⨯矩阵)的一组解为,,,n r -12ξξξ ,且满足:(1) ,,,n r -12ξξξ线性无关;(2) AX = 0 的)任一解都可由这组解线性表示. 则称,,,n r -12ξξξ为AX = 0的基础解系.称n r n r k k k --=+++1122X ξξξ为AX = 0的通解 。

其中k 1,k 2,…, k n-r 为任意常数).齐次线性方程组的关键问题就是求通解, 而求通解的关键问题是求基础解系. 【定理】 若齐次线性方程组AX = 0有解,则(1) 若齐次线性方程组AX = 0(A 为m n ⨯矩阵)满足()r A n =,则只有零解; (2) 齐次线性方程组有非零解的充要条件是()r A n <.(注:当m n =时,齐次线性方程组有非零解的充要条件是它的系数行列式0A =.)注:1、基础解系不唯一,但是它们所含解向量的个数相同,且基础解系所含解向量的个数等于()n r A -. 2、非齐次线性方程组AX B =的同解方程组的导出方程组(简称“导出组”)为齐次线性方程组AX O =所对应的同解方程组。

由上述定理可知,若m 是系数矩阵的行数(也即方程的个数),n 是未知量的个数,则有:(1) 当m n <时,()r A m n ≤<,此时齐次线性方程组一定有非零解,即齐次方程组中未知量的个数大于方程的个数就一定有非零解;(2)当m n =时,齐次线性方程组有非零解的充要条件是它的系数行列式0A =; (3)当m n =且()r A n =时,若系数矩阵的行列式0A ≠,则齐次线性方程组只有零解; (4)当m n >时,若()r A n ≤,则存在齐次线性方程组的同解方程组;若()r A n >,则齐次线性方程组无解。

1、求AX = 0(A 为m n ⨯矩阵)通解的三步骤(1)−−→A C 行(行最简形); 写出同解方程组CX =0. (2) 求出CX =0的基础解系,,,n r -12ξξξ;(3) 写出通解n r n r k k k --=+++1122X ξξξ其中k 1,k 2,…, k n-r 为任意常数.【例题1】 解线性方程组12341234123412342350,320,4360,2470.x x x x x x x x x x x x x x x x +-+=⎧⎪++-=⎪⎨+-+=⎪⎪-+-=⎩解法一:将系数矩阵A 化为阶梯形矩阵12472315071014312143001641367124726000743A --⎡⎤⎢⎥-⎡⎤-⎢⎥⎢⎥-⎢⎥⎢⎥=→→-⎢⎥⎢⎥-⎢⎥⎢⎥--⎢⎥⎣⎦⎢⎥⎣⎦显然有()4r A n ==,则方程组仅有零解,即12340x x x x ====.解法二:由于方程组的个数等于未知量的个数(即m n =)(注意:方程组的个数不等于未知量的个数(即m n ≠),不可以用行列式的方法来判断),从而可计算系数矩阵A 的行列式:23153121327041361247A --==≠---,知方程组仅有零解,即12340x x x x ====.注:此法仅对n 较小时方便【例题2】 解线性方程组12345123452345123450,3230,2260,54330.x x x x x x x x x x x x x x x x x x x ++++=⎧⎪+++-=⎪⎨+++=⎪⎪+++-=⎩解:将系数矩阵A 化为简化阶梯形矩阵11111321130122654331A ⎡⎤⎢⎥-⎢⎥=⎢⎥⎢⎥-⎣⎦1412(5)(3)r r r r ⨯-+⨯-+−−−−→11111012260122601226⎡⎤⎢⎥----⎢⎥⎢⎥⎢⎥----⎣⎦2123242(1)(1)r r r r r r r ++⨯-+-⨯−−−−→10115012260000000000---⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦可得()2r A n =<,则方程组有无穷多解,其同解方程组为134523455,226.x x x x x x x x =++⎧⎨=---⎩(其中3x ,4x ,5x 为自由未知量)令31x =,40x =,50x =,得121,2x x ==-; 令30x =,41x =,50x =,得121,2x x ==-; 令30x =,40x =,51x =,得125,6x x ==-, 于是得到原方程组的一个基础解系为112100ξ⎡⎤⎢⎥-⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,212010ξ⎡⎤⎢⎥-⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,356001ξ⎡⎤⎢⎥-⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦.所以,原方程组的通解为 112233X k k k ξξξ=++(1k ,2k ,3k R ∈). 二、非齐次线性方程组的解法 求 AX = b 的解(,()m n r r ⨯=A A ) 用初等行变换求解,不妨设前r 列线性无关1112111222221()00rn r n rrrn r r c c c c d c c c d c c d d +⎡⎤⎢⎥⎢⎥⎢⎥−−→⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A b 行其中 0(1,2,,),ii c i r ≠= 所以知1(1)0r d +≠时,原方程组无解.1(2)0,r d r n +==时,原方程组有唯一解. 1(3)0,r d r n +=<时,原方程组有无穷多解.其通解为01122n r n r k k k --=++++X ξξξη,12,,,n r k k k -为任意常数。

非齐次线性方程的解

非齐次线性方程的解

非齐次线性方程的解
这个结论在微分方程里很好用
之前回答的可能有点啰嗦了,
直接点就是
1 非齐次线性方程组的解由特解,齐次通解构成,
2 齐次通解由基础解系和系数构成,
3 相同的基础解系对应相同的特解,
4 同一方程组的基础解系是可以相互转化的
这样两个解一减就消掉了特解
以下是之前的回答
有一个直观的方法:
可以从非齐次线性方程组通解的结构入手
x =特解 + 齐次通解
其中特解和齐次通解是线性无关的
而齐次通解,之所以叫通解,是因为他可以表示所有的解,只是选不同的自由变量,可能会有不同的形式(基础解系不同),但可以转化为同一个解系
所以说本质上,非齐次的特解“只有一个”
所以非齐次解k·x1 -k·x2 会消去特解,(k表示相同倍数),只剩下齐次方程组的解
再详细说明一下过程: 用非齐次通解表示x1,x2,只要用同样的齐次通解的基础解系,必然可以有相同的特解,可以消去。

补充说明:
在解方程时,我们可以发现特解是由你的齐次通解(因为它必须是线性无关的)和系数矩阵决定的,其中系数矩阵是主体条件,不会改变。

那么决定特解的因素就是齐次通解,实际上是基础解系,而同一题目有不同的基础解系,是因为选取的自由变量不同(自由变量个数=n-r)
从以上两段论述可以看出,特解的不同本质在于选取自由变量的不同,写一下算一算就知道可以通过调整基础解系的系数ki,来将不同解系转化为同一个
(突然看到问题,手机打的,后续有空会补充形式化描述和相关例子)。

齐次和非齐次线性方程组的解法(整理定稿)

齐次和非齐次线性方程组的解法(整理定稿)

齐次和非齐次线性方程组的解法(整理定稿)
一、齐次线性方程组
1.定义:所有方程的常数项都为0的线性方程组称为齐次线性方程组。

2.求解方法:
(1)齐次线性方程组必有解x=0,称为零解。

(2)如果齐次线性方程组的系数行列式不为0,则方程组只有零解。

(3)如果齐次线性方程组的系数行列式等于0,则方程组有非零解。

(4)对于齐次线性方程组的非零解,若x1是其中一个解,则对于k≠0,kx1也是方程组的解。

例如,对于齐次线性方程组
a1x1+a2x2+...+anxn=0
b1x1+b2x2+...+bnxn=0
……
c1x1+c2x2+...+cnxn=0
如果a1a2...an≠0,则只有零解x1=0。

如果a1a2...an=0,且b1b2...bn≠0,则有非零解
x=(b1,b2,...,bn)T和x=k(b1,b2,...,bn)T。

3.推论:对于齐次线性方程组,n个未知量的向量{x1,x2,...,xn}张成的向量空间叫做齐次线性方程组的解空间,其维数等于n-r,其中r是系数矩阵的秩。

二、非齐次线性方程组
1.定义:所有方程的常数项不都为0的线性方程组称为非齐次线性方程组。

2.求解方法:
(1)若常数项b≠0,则非齐次线性方程组必定有解。

(2)设x1和x2为非齐次线性方程组的两个解,则x1-x2为其对应齐次线性方程组的解。

(3)设x0为非齐次线性方程组的一个解,则一般解为
x=x0+kx1,其中x1为对应齐次线性方程组的解,k为任意实数。

3.推论:非齐次线性方程组的解集为齐次线性方程组的解集加上非齐次线性方程组的特解。

线性代数非齐次方程求解

线性代数非齐次方程求解

1 2 3 1 1 2 3 1 1 2 3 1
A
1 2
4 4
4 6
3 4
0 0
2 0
1 0
4 6
0 0
2 0
1 0
4 6
1 2 3 4 0 0 0 3 0 0 0 0
1 0 2 5 1 0 2 0
0 0
1 0
1 2
0
2 1
0 0
1 0
1 2
0
0 1
0 0 0 2021/4/22 0 0 0 0 0
故, 1, 2, …, s 是AX = 0的基础解系.
2021/4/22
15 返回
例5 设n阶矩阵A, B满足AB = O, 证明: R(A)+R(B)≤ n.
证 设 B = (b1, …, bn), 则 AB = A(b1, …, bn) = (A b1 , …, Abn) =O, A bi = 0, i = 1, …, n.
0
2
1 5
0
3 10
1
X k11 k22, k1, k2 R.
2021/4/22
11 返回
例2 解 解
x1 2x2 3x3 0
32xx1165xx22
10 x3 7x3
0 0
x1 2x2 4x3 0
1
A
3 2
1
2 6 5 2
3 1
10 7
0 0
4 0
(证明这样的解 构成基础解系)
7 返回
5. 通解
设1, 2, …, n - r 为AX = 0 的一个基解系,则 AX = 0 的解,
= k11+ k22+ …+ kn-rn-r , k1, k2, …, kn-r R.

第九讲 求解非齐次线性方程组

第九讲 求解非齐次线性方程组

中基础解系向量个数为
9.1 复习
以上例说明: 令
为主变量,
分别得
的解为

为自由变量.
9.2 求特解
这次课,考虑求解一般线性方程组
已知:(1)
有解
(2)设 是
的一特解,则
是方程全部解.
9.2 求特解

一个特解
则原方程组解集
从图像上看,

是两条平行直线.
9.2 求特解
如何求特解? 例 解:考虑增广矩阵
§9 求解非齐次线性方程组
9.1 复习
设是
阶矩阵,考虑
行变换
行变换
(阶梯形)
主变量:主列对应的变量. 主列个数 主元个数 主变量个数
秩 无关行向量个数 无关列向量个数
列对换
9.1 复习
(1) 中主列设为第
列,则 中
列线性无关
(称为 中主列),且 中其余列均是这些主列的线性组合.
例:
容易看出

(2)
则 是可逆的.
有唯一解
9.3 解的一般性讨论
则 有唯一解(特解).
只有零解,此时
例:
的列数. 考虑
无解或
有解
9.3 解的一般性讨论
则 行消去得到 个主元,即
列对换

变为
此时自由变量有
故这种情况下
(同解). 个.
有无穷多解.
总有特解
9.3 解的一般性讨论
有解
有解.
满足
若有解,则有无穷解
有无穷解.
9.3 解的一般性讨论
注记:
列满秩.
即 有左逆 行满秩.
即 有右逆
9.3 解的一般性讨论

齐次和非齐次线性方程组的解法整理

齐次和非齐次线性方程组的解法整理

践性方程组解的结构(解法)一、齐sail方程纽的解法【定义】r<n,若从=0 (A为加x川矩阵)的一组解为询,$,…,爲―,且満足:(1) …境"线性无关;(2) 如GO的)任一解部可由这组解找性表示.H称盒,益,…,仏t为从=0的基硏解系.祢X = +心疋2 +…+心心为从=0的逋解。

其中危危…,怎冷任«»»).齐®att方程组的关键冋题就是来通解,而求通解的关键阿题是求基•解系.【定理】若齐次线性方程组从=0有解,!!(1) 若齐次裁性方程组以=O(A为〃以〃拒阵)葫足HA) = ", K只有零解;(2) 齐次拔性方程组有非零解的充嬰条件是r(A)<n.(注:当〃匸”时,齐ftStt方程组有非零解的充要条件是它的系数行列3|A|=0.)注:1、基础解系不唯一,但是它0所含解向最的个数相同,且基碣解系所含解旬量曲个数等于n-r(A).2、非齐次线性方程组AX=B的同解方程组的导出方程组(简称“导出组”)为齐ftSft方程组AX=O^对应的同解方程组。

由上述定理可知,若加是系数矩阵的打数(也即方程的个效),”是未知量的个数,II有:(1) 当加<"时,r(A)<m<n t ft时齐次线性方程组一定有非零解,即齐次方程组中未知量的个数大于方程的个数旅一定有非零解;(2) 当〃匸"时,齐次拔性方程组有非零解的充要条件是它的系数行则衣国=0;(3) 当m = n且r(A) = “时,若泵数拒阵的行列刻A|H O, H齐次线U方程组只有零解;(4) 当m > H时,若r(A)<//r IS存在齐次城性方程组的同解方程组;若心)>”,则齐次拔性方程组无解。

1、来从=O(A为〃7X"矩阵)通解的三步U(1) A^-^C (行最简形);写出同解方程组CX=Q.(2) 来岀的基硏解系询爲,•••,&・『;(3) 耳出i解X = + «$ +…+ Vr^-r其中东,忽・・・,紿为任显热有r (A ) = 4 = //,则方程组仅有零解.解法二:由于方程组的个数等于未知量的个数(即m “)(注ih 方程组的个数不等于未知量的个数(即m 知i ),不可以用行列衣的方法来判Bi h 从而可廿算系数矩l?A 的行列式:23-15:: :=327工0,知方程组仅有零解,即x 1=x 2=x 3=x 4=0.41—3 o1 -2 4 -7注:ft 法仅对n 较小时方便令 x 3 = 1 , x 4 = 0 , x 5=0 9 II x, =l,x 2 =-2; 令 x 3 = 0 , x 4= \ f x 5 = 0 F 得 X] = h 忑=一2 ; 令七=0 , 兀=0, X 5= \ 9 x } =5,X 2 =-6 , 于是得到原方程组的一个基碣解系为+3X 2 ~X 3 +5X 4 =0, +x 2 +2® ~X4=0, +x 2 _3兀 +6X 4 =0,—2X 2 +4X 3 一 7q =0.2xl 3x [«R1】解线性方程组「+Xy +£ +X5=0, 3x }+2x ? +九 +q—3*5 =0,X 2+2X 3 +2X 4 +6X 5 =0,5zV)+4x ) +3X 3 +3X 4 "X 5=0.[flH2]解找性方程组解法一: 将系数矩阵A 化为阶梯形矩薛2 3 4 13 11 -2-1 2 -3 45 -16 -7-274 -10 43 'T-7 14 16即 x\ =x 2=x 3=x 4=0.ri 1 1 1r"1 1 1 1■ 132 1 1 a 斤x(-5)+、 0 -1 -2 - 2 -6 1 1 一/|X (-3)+G0 1 2 2 61 2 2 6.5 4 3 3 一 L_0 _1 -2 -2 -610-1-1 0 12 2 0 0 0 0 00 0一5 6 0 0可得 r(A) = 2<n 9 解:将系数矩阵A 化为筒化阶U 站矩阵A = ;2^(-1)+?4舅方程组有无穷多解・其同解方程组为x } = x 3 +x 4 x 2 = -2X 3 -2X 4(其中X- x 4f x 5为自由未知量)所以,原方程组的通解为X=k^+k^2+k^ (k lt k2f k3eR).二、非齐次线性方程组的解狀AX=b { A mxn r(A) = r )用初等行变换*解,不ffiSSir列践性无关(1) 〃冲工0时,原方程组无解.(2) <+1=0,r = n时,泉方程纽有唯一解.(3) 為=O,r<HW,g方程组有无穷多解.其通解为X =班 +出f +••• + «—$_ , k、、%、•••,匕”为任其中:盲疋2,…疋…为从=力导出组AX=0的基碣解系,久为AX=b^特解,【定理1】如果〃是非齐次拔性方程组AX=b的解,◎是其导出组AX=0ffl-个解,»a +〃是非齐次缆性方程组AX=b的解。

线性代数-非齐次线性方程组

线性代数-非齐次线性方程组
这时又分两种情形: 1) 2时, r A r A 3, 方程组有唯一解:
1 1 x1 , x2 , x3 . 2 2 2
Hale Waihona Puke 12定理1 线性方程组 Amn x b有解 r ( A) r ( A | b).
且在有无穷多解时,其 通解表达式中含有 n r ( A)个任意参数。
推论
矩阵方程 AX B有解的充分必要条件是
r ( A) r ( A, B )
证明: 不妨设r(A)=r,利用初等行变换把增广 矩阵化为行阶梯形
(1) r ( A) r ( A ) 方程组无解 .
(2) r ( A) r ( A ) n 方程组有唯一解;
(3) r ( A) r ( A ) < n 方程组有无穷多解;
Ann x b , 推论 对n 元非齐次线性方程组
(1)r ( A) n,即 A可逆时,方程组有唯一 解.

对增广矩阵 A 进行初等变换,
方程组的增广矩阵为
0 0 1 1 0 1 1 0 0 0 0 1 1 0 A 0 0 0 1 1 0 1 0 0 0 1
0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 ~ 0 1 1 0 0 0 0 0 0 0
方程组
例3
x1 x2 x x 2 3 证明方程组 x3 x4 x x 5 4 x5 x1
a1 a2 a3 a4 a5 有解的充要条件
是a1 a2 a3 a4 a5 0. 在有解的情况下,求出 它 的一切解.
问取何值时, 有唯一解? 无解?有无穷多个解 ?
解一 对增广矩阵 A ( A, b) 作初等行变换,

非齐次线性方程组的解

非齐次线性方程组的解

非齐次线性方程组的解线性方程组是数学中一个非常重要的概念,可以用来描述多个未知数之间的关系。

在实际问题中,我们经常会遇到非齐次线性方程组,即右端项不为0的线性方程组。

非齐次线性方程组的解是指使得方程组中所有方程都成立的未知数的取值。

在本文中,将详细讨论非齐次线性方程组的解及其求解方法。

首先,我们先回顾一下齐次线性方程组的解。

对于齐次线性方程组Ax=0,其中A为系数矩阵,x为未知数向量,0为零向量,如果存在一个非零向量x使得Ax=0,那么x就是齐次线性方程组的解。

齐次线性方程组总有非零解,因为零向量满足Ax=0。

但齐次线性方程组的解不唯一,它有无穷多个解。

可以通过求解方程组的增广矩阵,经过高斯消元法得到阶梯形矩阵,再得到最简形矩阵,从而得到基础解系。

然而,非齐次线性方程组Ax=b是指右端项不为0的线性方程组,我们需要找到一组解使得Ax=b成立。

如果存在一个向量x使得Ax=b,那么x就是非齐次线性方程组的解。

但是,非齐次线性方程组的解不再有无穷多个,而是只有一个特解x0加上齐次线性方程组的解。

也就是说,非齐次线性方程组的解是特解加上齐次线性方程组的解。

具体来说,对于非齐次线性方程组Ax=b,我们可以通过增广矩阵的高斯消元法来求解。

我们将增广矩阵进行行变换,使得增广矩阵的左半部分变为一个最简形矩阵,然后根据最简形矩阵的形式来确定特解。

最后,我们可以通过求解齐次线性方程组Ax=0来得到齐次线性方程组的解。

举个例子来说明非齐次线性方程组的解的求解过程:假设我们有一个非齐次线性方程组:2x+y+z=23x+2y+z=4首先,我们可以写出增广矩阵:[211,2][321,4]接下来,我们对增广矩阵进行高斯消元法。

通过行变换,将增广矩阵的左半部分变为最简形矩阵:[10-1,0][011,2]从最简形矩阵中可以看出,特解x0=0,y=2,z=-2、然后,我们需要求解齐次线性方程组Ax=0。

根据最简形矩阵的形式,我们可以得到齐次线性方程组的解:x=t,y=-t,z=t,其中t为任意实数。

齐次方程组和非齐次方程组的解

齐次方程组和非齐次方程组的解

齐次方程组和非齐次方程组的解齐次方程组和非齐次方程组是线性代数中的重要概念,它们在解决实际问题中起着重要作用。

本文将分别介绍齐次方程组和非齐次方程组的定义、特点以及求解方法。

一、齐次方程组的解齐次方程组是指方程组的右边等于零的线性方程组。

具体来说,对于一个n元线性方程组,可以表示为:a11x1 + a12x2 + ... + a1nxn = 0a21x1 + a22x2 + ... + a2nxn = 0...an1x1 + an2x2 + ... + annxn = 0其中a11, a12, ..., ann为常数,x1, x2, ..., xn为未知数。

齐次方程组的特点是它必定有解,因为至少有一个平凡解,即所有未知数取零的解。

除了平凡解外,齐次方程组还可能有非平凡解,即至少存在一组未知数不全为零的解。

求解齐次方程组的一种方法是利用矩阵的性质,将其转化为矩阵方程。

具体步骤是将系数矩阵A和未知数向量X写成矩阵的形式:AX = 0其中A是一个n×n的矩阵,X是一个n×1的列向量。

根据线性代数的知识可知,当且仅当矩阵A的行列式不为零时,方程组有唯一解即平凡解。

当矩阵A的行列式为零时,方程组有无穷多解即非平凡解。

这是因为非零行向量可以线性组合得到零向量,从而得到非平凡解。

另一种求解齐次方程组的方法是使用高斯消元法。

通过对系数矩阵进行行变换,将其化为行简化阶梯形矩阵,从而得到方程组的解。

二、非齐次方程组的解非齐次方程组是指方程组的右边不等于零的线性方程组。

具体来说,对于一个n元线性方程组,可以表示为:a11x1 + a12x2 + ... + a1nxn = b1a21x1 + a22x2 + ... + a2nxn = b2...an1x1 + an2x2 + ... + annxn = bn其中a11, a12, ..., ann为常数,b1, b2, ..., bn为已知常数,x1, x2, ..., xn为未知数。

线性齐次及非齐次方程的解法

线性齐次及非齐次方程的解法
上面结论也适合于一阶线性非齐次方程,还可推广到二阶 以上的线性非齐次方程。
作业
习 题 五 (P230)
1 (1)(3)(5);
4 ; 6 (2)。
4.4.2 常系数 线性微分方程
第十二章
一、求解常系数线性齐次微分方程 二、求解常系数线性齐次微分方程
18
一、二阶常系数齐次线性微分方程:

和它的导数只差常数因子,
∴ e x 与 xe x 线性无关。
定理 2.
是二阶线性齐次方程的两个线
性无关特解, 则 y C1y1(x) C2 y2 (x)
数) 是该方程的通解. (自证)
例如, 方程
有特解

y2 y1
tan
x
常数, 故方程的通解为
推论.
是 n 阶齐次方程
的 n 个线性无关解, 则方程的通解为
y C1y1 Cn yn (Ck为任意常数)
4
说明:
y C1y1(x) C2 y2 (x) 不一定是所给二阶方程的通解.
例如,
是某二阶齐次方程的解, 则
也是齐次方程的解
但是
并不是通解
为解决通解的判别问题, 下面引入函数的线性相关与 线性无关概念.
5
定义: 设 y1(x), y2 (x), , yn (x) 是定义在区间 I 上的
n 个函数, 若存在不全为 0 的常数
u 0
取 u = x , 则得 y2 x er1 x , 因此原方程的通解为 y ( C1 C2 x ) er1 x
20
3. 当 p2 4 q 0 时, 特征方程有一对共轭复根
这时原方程有两个复数解:
y1 e( i ) x e x (cos x i sin x ) y2 e( i ) x e x (cos x i sin x )

齐次和非齐次线性方程组的解法

齐次和非齐次线性方程组的解法

齐次和非齐次线性方程组的解法第一篇:《齐次和非齐次线性方程组的解法,轻松入门》朋友们,今天咱们来聊聊齐次和非齐次线性方程组的解法。

比如说,你要规划一个旅行预算。

假设你每天的住宿费用是 x 元,餐饮费用是 y 元。

如果告诉你 3 天的住宿和 5 天的餐饮总共花费 1000 元,这就是一个非齐次线性方程。

那齐次方程呢?就好比你去购物,有两种商品,它们的价格分别是 a 和 b ,但是告诉你买这两种商品的总价是 0 ,这就是齐次方程啦。

解齐次线性方程组,通常可以先看看系数矩阵是不是满秩的。

如果不是,那就有无数个解。

非齐次线性方程组的解,就得先找到对应的齐次方程的通解,再加上一个特解。

怎么样,是不是有点感觉啦?第二篇:《齐次和非齐次线性方程组,解法大揭秘》嗨,大伙!咱们继续来唠唠齐次和非齐次线性方程组的解法。

比如说,小王要装修房子,买材料的费用设为 x ,人工费用设为y 。

如果说材料和人工总费用是 15000 元,这就是个非齐次线性方程。

那齐次方程呢?就像小李开了个小店,卖两种东西,一种东西的收入设为 a ,另一种设为 b ,结果发现这两种东西的总收入为 0 ,这就是齐次方程。

解齐次方程的时候,咱们就多观察观察方程的特点。

解非齐次方程呢,就先把对应的齐次方程搞定,再去找那个特别的解。

别觉得难,多琢磨琢磨就明白啦!第三篇:《走进齐次和非齐次线性方程组的解法世界》亲爱的朋友们,今天咱们深入了解一下齐次和非齐次线性方程组的解法。

举个例子,小张打算做个小生意,进货成本是 x ,运输成本是y 。

如果说 2 倍的进货成本加上 3 倍的运输成本一共是 8000 元,这就是非齐次线性方程组。

再比如说,小赵搞种植,两种作物的产量分别设为 m 和 n ,结果它们的总产量是 0 ,这就是齐次线性方程组。

解齐次方程组,咱们得灵活运用一些小技巧。

解非齐次方程组,就按步骤来,先处理齐次的部分,再找那个关键的特解。

相信大家都能学会!第四篇:《齐次和非齐次线性方程组的解法,你会了吗?》朋友们,咱们还得说说齐次和非齐次线性方程组的解法。

齐次和非齐次的区别非齐次线性方程组解如何判别

齐次和非齐次的区别非齐次线性方程组解如何判别

齐次和非齐次的区别非齐次线性方程组解如何判别
常数项不同:齐次线性方程组的常数项全部为零,非齐次方程组的常数项不全为零。

表达式不同:齐次线性方程组表达式:Ax=0;非齐次方程组程度常数项不全为零:Ax=b。

如果系数矩阵的秩小于增广矩阵的秩,方程组无解;如果系数矩阵的秩等于增广矩阵的秩,方程组有解。

齐次和非齐次的区别
1、常数项不同:
齐次线性方程组的常数项全部为零,非齐次方程组的常数项不全为零。

2、表达式不同:
齐次线性方程组表达式:Ax=0;非齐次方程组程度常数项不全为零: Ax=b。

非齐次线性方程组解的判别
如果系数矩阵的秩小于增广矩阵的秩,方程组无解;如果系数矩阵的秩等于增广矩阵的秩,方程组有解。

在有解的情况下,如果系数矩阵的秩等于未知数的个数,非齐次线性方程组有唯一解。

如果系数矩阵的秩小于未知数的个数,非齐次线性方程组有无穷多解,如果有无穷多解,先求所对应齐次线性方程组的基础解系,再求出非齐次线性方程组的一个特解。

由此可知:如果非齐次线性方程组有无穷多解,则其对应的齐次线性方程组一定有非零解,且非齐次线性方程组的全部解(通解)可表示为:对应齐次线性方程组的通解+非齐次线性方程组的特解。

齐次线性方程组求解步骤
(1)对系数矩阵A进行初等行变换,将其化为行阶梯形矩阵;
(2)若r(A)=r=n(未知量的个数),则原方程组仅有零解,即x=0,求解结束;若r(A)=r<n(未知量的个数),则原方程组有非零解,进行以下步骤:
(3)继续将系数矩阵A化为行最简形矩阵,并写出同解方程组;
(4)选取合适的自由未知量,并取相应的基本向量组,代入同解方程组,得到原方程组的基础解系,进而写出通解。

《非齐次线性方程组》PPT课件

《非齐次线性方程组》PPT课件

bm
第八页,共41页。
返回
则方程组④可写成:
x11 x22 xnn b
④的系数阵:
a11 a12 a1n
A
am1 am2 amn
(1, 2 , , n ).
第九页,共41页。

返回
a11 a12 a1n b1
④的增广阵:
B
am1 am2 amn bm
(1, , n , b).
(3). 当 2 时,
1 1 2 4 B [ A,b] 0 3 3 6.
0 0 0 3
R( A) 2, R(B) 3.
故方程组无解.
第三十页,共41页。
返回
题1 讨论当t 为何值时,
(1
x1
t) x1 x2 x3 0, (1 t) x2 x3 3,
(1)有唯一解;
5
ai 0
i 1
5
0 0 0 0 0 ai
i1
第十五页,共41页。
返回
5
方程组有解的充要条件是 ai 0.
i 1
由于原方程组等价于方程组 由此得通解:
x1 x2 a1
x2 x3
x3 x4
a2 a3
x4 x5 a4
x1 a1 a2 a3 a4 x5
x2 a2 a3 a4 x5 x3 a3 a4 x5
2 x1
x1 2x2 3x3 11x2 12x3
7x4 2x5 0 34x4 3x5 0
x1 5x2 2x3 16x4 3x5 0
的基础解系及通解.
第二页,共41页。
1 0 19 3 1
8 8 2

:A
0
1
7 8

齐次方程组的解与非齐次方程组的解的关系

齐次方程组的解与非齐次方程组的解的关系

齐次方程组的解与非齐次方程组的解的关系齐次方程组和非齐次方程组是线性代数中经常遇到的两类方程组。

它们之间存在着密切的关系。

本文将探讨齐次方程组的解与非齐次方程组的解之间的关系。

我们来回顾一下齐次方程组的定义。

一个齐次方程组是指方程组的常数项全为零的线性方程组。

例如,对于一个二元一次齐次方程组:\[\begin{cases}ax + by = 0 \\cx + dy = 0\end{cases}\]其中a、b、c、d为实数,这个方程组的常数项都是0,因此是一个齐次方程组。

对于一个齐次方程组,我们有以下结论:1. 齐次方程组总是有零解。

即使系数矩阵不是满秩的,也至少存在一组解全为0的解,称为零解。

2. 如果齐次方程组有非零解,那么它一定有无穷多个解。

这是因为如果有一个非零解,那么通过对这个非零解进行任意的线性组合,可以得到无穷多个解。

接下来,我们将探讨齐次方程组的解与非齐次方程组的解之间的关系。

考虑一个非齐次方程组:\[\begin{cases}ax + by = u \\cx + dy = v\end{cases}\]其中u、v为非零实数。

我们假设这个方程组有一个特解(x0, y0)。

那么我们可以将方程组改写为:\[\begin{cases}ax + by = 0 \\cx + dy = 0\end{cases}\]\[\begin{cases}ax + by = u \\cx + dy = v\end{cases}\]将这两个方程组相减,得到:\[\begin{cases}0x + 0y = u - 0 \\0x + 0y = v - 0\end{cases}\]也就是:\[\begin{cases}0 = u \\0 = v\end{cases}\]这显然是不成立的,因为u、v都是非零实数。

所以我们可以得出结论:非齐次方程组的解一定包括了齐次方程组的解之外的特解。

换句话说,非齐次方程组的解可以表示为齐次方程组的解加上一个特解。

非齐次方程组的解

非齐次方程组的解

非齐次方程组的解1、列出方程组的增广矩阵:做初等行变换,得到最简矩阵。

2、利用系数矩阵和增广矩阵的秩:判断方程组解的情况,R(A)=R(A,b)=3<4。

所以,方程组有无穷解。

3、将第五列作为特解:第四列作为通解,得到方程组的通解,过程如下图:扩展资料:非齐次线性方程组Ax=b的求解步骤:(1)对增广矩阵B施行初等行变换化为行阶梯形。

若R(A)<R(B),则方程组无解。

(2)若R(A)=R(B),则进一步将B化为行最简形。

(3)设R(A)=R(B)=r;把行最简形中r个非零行的非0首元所对应的未知数用其余n-r个未知数(自由未知数)表示,并令自由未知数分别等于,即可写出含n-r个参数的通解。

非齐次线性方程组有唯一解的充要条件是rank(A)=n。

非齐次线性方程组有无穷多解的充要条件是rank(A)<n。

(rank(A)表示A的秩)微分方程中有两个地方用到“齐次”的叫法:1、形如的方程称为“齐次方程”,这里是指方程中每一项关于x、y的次数都是相等的,例如都算是二次项,而算0次项,方程中每一项都是0次项,所以是“齐次方程”。

2、形如(其中p和q为关于x的函数)的方程称为“齐次线性方程”,这里“线性”是指方程中每一项关于未知函数y及其导数y',y'',……的次数都是相等的(都是一次)。

“齐次”是指方程中没有自由项(不包含y及其导数的项),方程就不是“齐次”的,因为方程右边的项x不含y及y的导数,因而就要称为“非齐次线性方程”。

另外在线性代数里也有“齐次”的叫法,例如称为二次齐式,即二次齐次式的意思,因为f中每一项都是关于x、y的二次项。

高数考研备战常微分方程的齐次与非齐次解法

高数考研备战常微分方程的齐次与非齐次解法

高数考研备战常微分方程的齐次与非齐次解法常微分方程是高等数学中的重要内容,也是考研数学中必考的知识点之一。

在常微分方程中,齐次方程和非齐次方程的解法是备战考研的重点。

本文将为大家详细介绍常微分方程的齐次与非齐次解法,助力大家高效备考。

一、齐次方程的解法齐次方程是指形式为dy/dx = f(x,y)的方程,其中f(x,y)满足齐次性质f(tx,ty) = f(x,y)。

齐次方程的解法相对简单,可以通过变量分离法和换元法来求解。

1. 变量分离法变量分离法是求解齐次方程的常用方法。

具体步骤如下:(1)将方程变形为dy = g(x)dx,其中g(x)为x的函数。

(2)对方程两边同时积分,得到∫dy = ∫g(x)dx。

(3)对上式进行求积分,并加上任意常数C,得到y = ∫g(x)dx + C。

(4)得到的方程即为齐次方程的通解。

2. 换元法换元法是另一种常用的齐次方程求解方法。

具体步骤如下:(1)设u = y/x,即y = ux。

(2)将dy/dx = f(x,y)转化为关于u和x的方程,求出du/dx,并将y用u和x表示。

(3)对上式进行变量分离,得到du/u = g(x)dx。

(4)对上式进行求积分,并加上任意常数C,得到ln|u| = ∫g(x)dx + C。

(5)解出u,即得到u = e^(∫g(x)dx + C)。

(6)将u = y/x代入上式,得到y = xe^(∫g(x)dx + C)。

(7)得到的方程即为齐次方程的通解。

二、非齐次方程的解法非齐次方程是指形式为dy/dx = f(x,y) + g(x)的方程,其中g(x)为非零的函数。

求解非齐次方程的方法主要有常数变易法和特解叠加法。

1. 常数变易法常数变易法是求解非齐次方程的常用方法。

具体步骤如下:(1)先求齐次方程dy/dx = f(x,y)的通解y0。

(2)设非齐次方程的通解为y = y0 + u(x),其中u(x)为待定函数。

(3)将y = y0 + u(x)代入非齐次方程,得到dy/dx = f(x,y0+u) + g(x)。

齐次和非齐次的区别

齐次和非齐次的区别

齐次和非齐次的区别
1、常数项不同:齐次线性方程组的常数项全部为零,非齐次方程组的常数项不全为零。

2、表达式不同:齐次线性方程组表达式:Ax=0;非齐次方程组程度常数项不全为零:Ax=b。

齐次线性方程组求解步骤:
1、对系数矩阵A进行初等行变换,将其化为行阶梯形矩阵;
2、若r(A)=r=n(未知量的个数),则原方程组仅有零解,即x=0,求解结束;
若r(A)=r<n(未知量的个数),则原方程组有非零解,进行以下步骤:
3、继续将系数矩阵A化为行最简形矩阵,并写出同解方程组;
4、选取合适的自由未知量,并取相应的基本向量组,代入同解方程组,得到原方程组的基础解系,进而写出通解。

齐次线性方程组的解法

齐次线性方程组的解法

齐次线性方程组的解法非齐次线性方程组ax=b有解的充分必要条件是:系数矩阵的秩等于增广矩阵的秩,即rank(a)=rank(a, b)(否则为无解)。

非齐次线性方程组有唯一解的充要条件是rank(a)=n。

当系数矩阵a的秩等于增广矩阵b的秩时非齐次线性方程组有解。

(矩阵的秩就是指矩阵通过初等行变换和初等列变换得到的非零行或非零列的个数。

)当方程存有唯一解时,r(a)=r(b)=n;当方程组有无限多个解时,r(a)=r(b)=r\ucn;当方程组难解时,r(a)<r(b)。

1、非齐次线性方程组:常数项不全为零的线性方程组比如:x+y+z=1;2x+y+3z=2;4x-y+3z=3;2、齐次线性方程组:常数项全部为零的线性方程组例如:x+y+z=0;2x+y+3z=0;4x-y+3z=0;齐次线性方程组求解步骤:1、对系数矩阵a展开初等行转换,将其化成行阶梯形矩阵;2、若r(a)=r=n(未知量的个数),则原方程组仅有零解,即x=0,求解结束;若r(a)=r\ucn(未知量的个数),则原方程组存有非零求解,展开以下步骤:3、继续将系数矩阵a化为行最简形矩阵,并写出同解方程组;4、挑选出最合适的民主自由未知量,并挑适当的基本向量组,代入同解方程组,获得原方程组的基础卢播,进而写下吉龙德。

(1)对增广矩阵b施行初等行变换化为行阶梯形。

若r(a)\ucr(b),则方程组无解。

(2)若r(a)=r(b),则进一步将b化成行及最简形。

(3)设r(a)=r(b)=r;把行最简形中r个非零行的非0首元所对应的未知数用其余n-r个未知数(自由未知数)表示,并令自由未知数,即可写出含n-r个参数的通解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

齐次和非齐次线性方程组的解法定稿This manuscript was revised by the office on December 10, 2020.线性方程组解的结构(解法)一、齐次线性方程组的解法【定义】 r (A )= r <n ,若AX = 0(A 为m n ⨯矩阵)的一组解为,,,n r -12ξξξ ,且满足:(1) ,,,n r -12ξξξ线性无关;(2) AX = 0 的)任一解都可由这组解线性表示. 则称,,,n r -12ξξξ为AX = 0的基础解系.称n r n r k k k --=+++1122X ξξξ为AX = 0的通解 。

其中k 1,k 2,…, k n-r 为任意常数).齐次线性方程组的关键问题就是求通解, 而求通解的关键问题是求基础解系. 【定理】 若齐次线性方程组AX = 0有解,则(1) 若齐次线性方程组AX = 0(A 为m n ⨯矩阵)满足()r A n =,则只有零解; (2) 齐次线性方程组有非零解的充要条件是()r A n <.(注:当m n =时,齐次线性方程组有非零解的充要条件是它的系数行列式0A =.) 注:1、基础解系不唯一,但是它们所含解向量的个数相同,且基础解系所含解向量的个数等于()n r A -.2、非齐次线性方程组AX B =的同解方程组的导出方程组(简称“导出组”)为齐次线性方程组AX O =所对应的同解方程组。

由上述定理可知,若m 是系数矩阵的行数(也即方程的个数),n 是未知量的个数,则有: (1) 当m n <时,()r A m n ≤<,此时齐次线性方程组一定有非零解,即齐次方程组中未知量的个数大于方程的个数就一定有非零解;(2)当m n =时,齐次线性方程组有非零解的充要条件是它的系数行列式0A =; (3)当m n =且()r A n =时,若系数矩阵的行列式0A ≠,则齐次线性方程组只有零解; (4)当m n >时,若()r A n ≤,则存在齐次线性方程组的同解方程组;若()r A n >,则齐次线性方程组无解。

1、求AX = 0(A 为m n ⨯矩阵)通解的三步骤(1)−−→A C 行(行最简形); 写出同解方程组CX =0. (2) 求出CX =0的基础解系,,,n r -12ξξξ;(3) 写出通解n r n r k k k --=+++1122X ξξξ其中k 1,k 2,…, k n-r 为任意常数.【例题1】 解线性方程组12341234123412342350,320,4360,2470.x x x x x x x x x x x x x x x x +-+=⎧⎪++-=⎪⎨+-+=⎪⎪-+-=⎩解法一:将系数矩阵A 化为阶梯形矩阵12472315071014312143001641367124726000743A --⎡⎤⎢⎥-⎡⎤-⎢⎥⎢⎥-⎢⎥⎢⎥=→→-⎢⎥⎢⎥-⎢⎥⎢⎥--⎢⎥⎣⎦⎢⎥⎣⎦显然有()4r A n ==,则方程组仅有零解,即12340x x x x ====.解法二:由于方程组的个数等于未知量的个数(即m n =)(注意:方程组的个数不等于未知量的个数(即m n ≠),不可以用行列式的方法来判断),从而可计算系数矩阵A 的行列式:23153121327041361247A --==≠---,知方程组仅有零解,即12340x x x x ====.注:此法仅对n 较小时方便【例题2】 解线性方程组12345123452345123450,3230,2260,54330.x x x x x x x x x x x x x x x x x x x ++++=⎧⎪+++-=⎪⎨+++=⎪⎪+++-=⎩解:将系数矩阵A 化为简化阶梯形矩阵11111321130122654331A ⎡⎤⎢⎥-⎢⎥=⎢⎥⎢⎥-⎣⎦1412(5)(3)r r r r ⨯-+⨯-+−−−−→11111012260122601226⎡⎤⎢⎥----⎢⎥⎢⎥⎢⎥----⎣⎦2123242(1)(1)r r r r r r r ++⨯-+-⨯−−−−→10115012260000000000---⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦可得()2r A n =<,则方程组有无穷多解,其同解方程组为134523455,226.x x x x x x x x =++⎧⎨=---⎩(其中3x ,4x ,5x 为自由未知量)令31x =,40x =,50x =,得121,2x x ==-; 令30x =,41x =,50x =,得121,2x x ==-; 令30x =,40x =,51x =,得125,6x x ==-,于是得到原方程组的一个基础解系为112100ξ⎡⎤⎢⎥-⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,212010ξ⎡⎤⎢⎥-⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,356001ξ⎡⎤⎢⎥-⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦.所以,原方程组的通解为 112233X k k k ξξξ=++(1k ,2k ,3k R ∈). 二、非齐次线性方程组的解法 求 AX = b 的解(,()m n r r ⨯=A A )用初等行变换求解,不妨设前r 列线性无关1112111222221()00rn r n rrrn r r c c c c d c c c d c c d d +⎡⎤⎢⎥⎢⎥⎢⎥−−→⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A b 行其中 0(1,2,,),ii c i r ≠= 所以知1(1)0r d +≠时,原方程组无解.1(2)0,r d r n +==时,原方程组有唯一解. 1(3)0,r d r n +=<时,原方程组有无穷多解.其通解为01122n r n r k k k --=++++X ξξξη,12,,,n r k k k -为任意常数。

其中:12,,,n r -ξξξ为AX = b 导出组AX = 0的基础解系,0η为AX = b 的特解,【定理1】 如果η是非齐次线性方程组AX=b 的解,α是其导出组AX=0的一个解,则ηα+是非齐次线性方程组AX=b 的解。

【定理2】如果0η是非齐次线性方程组的一个特解,α是其导出组的全部解,则αη+0是非齐次线性方程组的全部解。

由此可知:如果非齐次线性方程组有无穷多解,则其导出组一定有非零解,且非齐次线性方程组的全部解可表示为: r n r n C C C --++++αααη 22110其中:0η是非齐次线性方程组的一个特解,r n -ααα,,,21 是导出组的一个基础解系。

【例题3】判断下列命题是否正确, A 为m ′n 矩阵.(1)若AX =0只有零解,则AX=b 有唯一解. 答:错, 因r (A )=n , r (A )= n = r (A |b )(2)若AX =0有非零解,则AX=b 有无穷多解. 答:错, 因r (A )<n , r (A )= r (A |b ) (3)若AX=b 有唯一解,则AX =0只有零解. 答:对, r (A )= r (A |b ) =n. (4)若AX =0有非零解,则A T X=0也有非零解.答:错,A 为m ′n , r (A )=m <n , r (A T )=m , 这时A T X=0只有零解. 例如A 为3′4, R (A )=3 <4, r (A T )=3=m .(5)若r (A )=r =m ,则AX=b 必有解. 答:对,r (A )=r =m= r (A |b ) . (6)若r (A )=r =n , 则AX=b 必有唯一解. 答:错,A 为m ′n ,当m >n 时, 可以r (A |b ) =n +1.⑴ 唯一解:()()r A r A n == ⇔线性方程组有唯一解【例题4】 解线性方程组12312312321,224,44 2.x x x x x x x x x ++=⎧⎪-+=-⎨⎪++=-⎩ 解:2113(2)(4)11211121()2124032641420346r r r r A A B ⨯-++-+⎡⎤⎡⎤⎢⎥⎢⎥==--−−−−−→---⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦ ))332311(224(3r r r r r ⨯-⨯+⨯-+−−−−−→21()3100110010306010200100010r ⨯---⎡⎤⎡⎤⎢⎥⎢⎥--−−−−−→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ 可见()()3r A r A ==,则方程组有唯一解,所以方程组的解为1231,2,0.x x x =-⎧⎪=⎨⎪=⎩⑵ 无解:()()r A r A ≠⇔线性方程组无解(或若阶梯形方程组出现100r d +=≠,则原方程组无解)【例题5】解线性方程组12312312321,22,2 4.x x x x x x x x x -++=⎧⎪-+=-⎨⎪+-=⎩ 解:1212132(1)21111212()1212033311240336r r r r r r A A B ↔⨯+⨯-+---⎡⎤⎡⎤⎢⎥⎢⎥==--−−−−−→--⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦23r r +−−−−→121203330003--⎡⎤⎢⎥--⎢⎥⎢⎥⎣⎦,可见()3()2r A r A =≠=,所以原方程组无解.⑶ 无穷多解:()()r A r A n =<⇔线性方程组有无穷多解【例题6】解线性方程组123412413423,231,2210 4.x x x x x x x xx x +-+=⎧⎪+-=⎨⎪--+=⎩解:1213(2)21112311123()21031012752021040241410r r r r A A B ⨯-+⨯+--⎡⎤⎡⎤⎢⎥⎢⎥==-−−−−−−→---⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦ 2321221(1)101520127500000r r r r r ⨯+⨯+⨯---⎡⎤⎢⎥−−−−−→-⎢⎥⎢⎥⎣⎦可见()()24r A r A ==<,则方程组有无穷多解,其同解方程组为13423425,527.x x x x x x =--+⎧⎨=+-⎩ (其中3x ,4x 为自由未知量)令340,0,x x ==得原方程组的一个特解2500η-⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦.又原方程组的导出组的同解方程组为1342345,27.x x x x x x =-+⎧⎨=-⎩(其中3x ,4x 为自由未知量)令31x =,40x =,得121,2x x =-=;令30x =,41x =,得125,7x x ==-,于是得到导出组的一个基础解系为 11210ξ-⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,25701ξ⎡⎤⎢⎥-⎢⎥=⎢⎥⎢⎥⎣⎦。

相关文档
最新文档