低压缸胀差在DCS系统上的修正

低压缸胀差在DCS系统上的修正
低压缸胀差在DCS系统上的修正

低压缸胀差在DCS系统上的修正

我厂#1机组TSI系统使用本特利3500系统,其中低压缸胀差传感器为本特利3300系列50mm传感器,经过十几年的使用,探头的灵敏度发生了很大的变化,因为本特利公司已停产3300系列50mm传感器并且3500系统不能对传感器线性进行修正,因此,要想准确的监视低压缸胀差,使用DCS系统对其进行修正成为临时解决方案。

标签:低压缸胀差;修正;DCS

1 低压缸胀差简介

汽轮机转子与汽缸的相对膨胀的差值,称为胀差。汽轮机转子与低压缸之间的胀差称为低压缸胀差,习惯上规定转子膨胀大于汽缸膨胀时的胀差值为正胀差,转子膨胀小于汽缸膨胀时的胀差值为负胀差。胀差数值是很重要的运行参数,特别是在启停机的过程中,胀差是一个重要的参考值,若胀差超限,动静部分可能发生摩擦,造成设备损坏。

2 低压缸胀差存在的问题

我厂#1机组低压缸胀差使用的本特利3300系列50mm传感器,测量卡为本特利3500系统45卡,其中零点电压设为-3.5V,量程为0-20mm,报警值为小于0或者大于14mm,动作值未设。因为传感器线性发生迁移,灵敏度降低,导致传感器不能和测量卡45卡兼容,胀差测量不准。

校验数据如表1。

从以上数据可以看出,虽然此低胀探头线性很好,但是灵敏度已经很低,大概为0.2V/mm,给定值与显示值也有很大的误差,本特利3500系统不能对低胀探头进行线性修正,如果要继续使用该探头,只能在DCS上对测量结果进行修正。

3 DCS简介

DCS是英文Distributed Control System的缩写,是在集中控制系统基础上发展演变而来的分布式控制系统或者称为集散控制系统。我厂#1机组DCS系统为艾默生过程控制有限公司的OV ATION控制系统,系统中FUNCTION算法可生成分段线性函数,该函数由12元素的X-Y断点阵列的元素决定,断点数决定了阵列的大小,FUNCTION算法可简单表示为F(x)。

4 低压缸胀差在DCS上修正的方法

从表1可以看出,我们取15个点(15mm)对低压缸胀差进行校验,而F(x)

机组启动时胀差的分析与控制

机组启动时胀差的分析与控制 汽轮机胀差就是指汽轮机转子与汽缸膨胀的差值。它是反映汽轮机动静部分之间的间隙,是汽轮机启动、运行及变工况运行时的最重要监视和控制的参数之一。如果胀差控制的好,机组就能按规定启动时间顺利启动,我厂两台N-100-535/8.81汽轮机的胀差控制经历了一个摸索、探讨阶段,目前已基本上得到解决。汽轮机胀差的出现,发生在以下几个阶段。 一、冷态启动时的成因和控制 机组冷态启动时,汽缸、转子及其附件温度与环境温度相同,冲转时,高温蒸汽进入汽轮机冲动转子做功,大量的热能大部分消耗在汽轮机的高压转子上,使汽轮机转子温升较快,在冲转过程中,为了控制其升速,汽轮机进汽量较少,汽缸基本得不到加热,导致汽轮机高压正胀差出现。在定速成后,为了维持汽轮机空转,低压转子也有部分蒸汽进入做功,3000rpm转速下,低压转子鼓风摩擦发热,而排汽温度较低,低压正胀差也同时出现,控制不好往往会造成启动失败。 2000年5月9日,在#1机冷态启动过程中,由于启动控制参数控制不当和启动方式存在问题,在并网后导致低压胀差+3.02mm,后经采取措施得以顺利启动。具体地说,在冷态启动过程中,应采取以下措施。

1.严格控制启动初参数,汽温控制在230℃左右,汽压控制在 1.0—1.2Mpa,初参数控制低,有利于增加进入汽轮机的蒸汽流量,便于汽轮机暖缸,同时,主蒸汽温度控制低,也会限制汽轮机转子的温升速度,减小正胀差的出现。 2.冲转至低负荷(10MW以下)时,凝汽器真空控制在70Kpa左右,低真空下,在相同转速和负荷情况时,蒸汽流量增加,有利于暖缸,使高压缸绝对热膨胀加快,高胀得以控制。同时低真空时,低压缸排汽温度上升,有利于减小低胀的发生。大量蒸汽带走低压转子因鼓风摩擦而产生的热量,使低压转子温升减小,更进一步减小了低压胀差。 3.低加随机启动。胀差产生的主要原因就是因为转子温升快,而汽缸温升慢,采用低加随机启动时,使下汽缸分汽流动充分,疏水彻底,加快了下缸均匀受热,提高了汽缸绝对膨胀上升速度,从而减小了正胀差。 4.在冲转过程中提前在1200rpm时暖法加,根据上、下法兰、螺栓温差情况,分步投入法加装置,使法兰、螺栓温度均匀上升。 5.严格控制锅炉升温速度,在冲转初期,控制主汽温度在230℃--280℃之间缓慢上升,当汽缸温度上升到100℃时,严格控制主汽温度上升速度与汽缸温度上升速度之差在80--100℃范围内。 6.并列后,全开调速汽门,采用全圆周进汽,充分暖

低压缸差胀大的原因分析

低压缸差胀大的原因分析 皖马发电有限公司“上大压小”两台机组1、2号660MW超临界机组主汽轮机由上海汽轮机有限公司生产,型式为超临界、一次中间再热、单轴、三缸四排汽、凝汽式,型号为N600-24.2/566/566,其中2号机组于2012年5月8日完成168小时试运转。2号机组自投产以后,低压缸差胀(测点安装在6号与7号瓦之间)一直正向偏大,特别是每年入冬以后,低压缸差胀长期在+15.0 mm 左右,曾有冬季开机因低压缸差胀大而跳机事件,而同等情况下同型号的1号机组低压缸差胀值只有+13.0 mm左右,尤其在夜间低负荷情况下2号汽轮机的低压缸差胀值有时会超过报警值+15 mm,曾一度接近跳闸限值16mm,严重影响了机组的安全运行。所谓的差胀,即转子与汽缸的膨差胀值。当汽轮机启动加热或停止运行冷却时以及负荷发生变化时,汽缸和转子都会产生受热膨胀或冷却收缩。由于转子受热表面积比汽缸大,且转子的质量比相对应的汽缸小,蒸汽对转子表面的放热系数较大。因此,在相同条件下,转子的温度变化比汽缸快,转子与汽缸之间存在膨差胀,转子的膨胀值大于汽缸,其相对膨差胀值称为正差胀,反之,则为负差胀。该厂2号机组低压缸差胀的保护定值是+16mm 和-1.02mm。差胀正向限值大于负向限值,主要是因为汽轮机同一级的静叶和动叶的间距小于该级动叶与下一级静叶之间的距离,如果差胀正向增长则说明该级动叶与下一级静叶间的距离在减小,负向增长说明本级内动静间隙在减小,因此,差胀的正向限值要大于负向限值。我们知道如汽轮机差胀过大,易引起动静部分碰磨,从而导致机组振动上升,危及转子及其叶片的安全,严重影响汽轮机组的安全运行。所以当发生低压缸差胀过大时要谨慎对待,及时分析查找原因并出台《低压缸差胀大的执行措施》。 原因分析我们知道影响汽轮机差胀的因素通常有以下: (1)启动时暖机时间太短,升速太快或升负荷太快。 (2)汽缸夹层、法兰加热装置的加热汽温太低或流量较低,引起汽加热的作用较弱。 (3)滑销系统或轴承台板的滑动性能差,滑销系统发生了卡涩。(4)轴封

汽轮机轴向位移与胀差增大原因及处理

汽轮机轴向位移与胀差 汽轮机轴向位移与胀差 (1) 一、汽轮机轴向位移增大的原因 (1) 二、汽轮机轴向位移增大的处理 (1) 三、汽机轴向位移测量失灵的运行对策 (1) 汽轮机的热膨胀和胀差 (2) 相關提問: (2) 1、轴向位移和胀差的概念 (3) 2、轴向位移和胀差产生的原因(影响机组胀差的因素) (3) 使胀差向正值增大的主要因素简述如下: (3) 使胀差向负值增大的主要原因: (4) 正胀差 - 影响因素主要有: (4) 3、轴向位移和胀差的危害 (6) 4、机组启动时胀差变化的分析与控制 (6) 1、汽封供汽抽真空阶段。 (7) 2、暖机升速阶段。 (7) 3、定速和并列带负荷阶段。 (7) 5、汽轮机推力瓦温度的防控热转贴 (9) 1 润滑油系统异常 (9) 2 轴向位移增大 (9) 3 汽轮机单缸进汽 (10) 4 推力轴承损坏 (10) 5 任意调速汽门门头脱落 (10) 6 旁路系统误动作 (10) 7 结束语 (10)

汽轮机轴向位移与胀差 轴向位移增大原因及处理 一、汽轮机轴向位移增大的原因 1)负荷或蒸汽流量突变; 2)叶片严重结垢; 3)叶片断裂; 4)主、再热蒸汽温度和压力急剧下降; 5)轴封磨损严重,漏汽量增加; 6)发电机转子串动; 7)系统周波变化幅度大; 8)凝汽器真空下降; 9)汽轮机发生水冲击; 10)推力轴承磨损或断油。 二、汽轮机轴向位移增大的处理 1)当轴向位移增大时,应严密监视推力轴承的进、出口油温、推力瓦金属温度、胀差及机组振动情况; 2)当轴向位移增大至报警值时,应报告值长、运行经理,要求降低机组负荷; 3)若主、再热蒸汽参数异常,应恢复正常; 4)若系统周波变化大、发电机转子串动,应与PLN调度联系,以便尽快恢复正常; 5)当轴向位移达-1.0mm或+1.2mm时保护动作机组自动停机。否则手动打闸紧急停机; 6)轴向位移增大虽未达跳机值,但机组有明显的摩擦声及振动增加或轴承回油温度明显升高应紧急停机; 7)若轴向位移增大而停机后,必须立即检查推力轴承金属温度及轴承进、回油温度,并手动盘车检查无卡涩,方可投入连续盘车,否则进行定期盘车。必须经检查推力轴承、汽轮机通流部分无损坏后方可重新启动。 三、汽机轴向位移测量失灵的运行对策 1)严密监视推力轴承的进、出口油温、推力瓦金属温度,当有超过两块推力瓦金属温度均异常升高,应立即汇报值长,按规程要求采取相应的措施。 2)当判定汽机轴向位移确实增大时,应按上述汽轮机轴向位移增大的处理措施进行处理。

浅谈汽轮机的热膨胀和胀差

浅谈汽轮机的热膨胀和胀差 一、轴向位移和胀差的概念 轴位移指的是轴的位移量而胀差则指的是轴相对于汽缸的相对膨胀量,一般轴向位移变化时其数值较小。轴向位移为正值时,大轴向发电机方向移,若此时汽缸膨胀远小于轴的膨胀,胀差不一定向正值方向变化;如果机组参数不变,负荷稳定,胀差与轴向位移不发生变化。机组启停过程中及蒸汽参数变化时,胀差将会发生变化,由于负荷的变化而轴向位移也一定发生变化。运行中轴向位移变化,必然引起胀差的变化。 汽轮机的转子膨胀大于汽缸膨胀的胀差值称为正胀差,当汽缸膨胀大于转子膨胀时的胀差值称为负胀差。 胀差数值是很重要的运行参数,若胀差超限,则热工保护动作使主机脱扣,避免动静部分发生碰撞,损坏设备。启动时,一般应用加热装置来控制汽缸的膨胀量,而转子主要依靠汽轮机的进汽温度和流量以及轴封汽的汽温和流量来控制转子的膨胀量。启动时胀差一般向正方向发展。汽轮机在停用时,随着负荷、转速的降低,转子冷却比汽缸快,所以胀差一般向负方向发展,特别是滑参数停机时尤其严重,必须采用汽加热装置向汽缸夹层和法兰通以冷却蒸汽,以免胀差保护动作。 汽轮发电机中,由于蒸汽在动叶中做功,以及隔板汽封间隙中的漏汽等原因,使动叶前后的蒸汽压力有一个压降。这个压降使汽轮机转子顺着蒸汽流动方向形成一个轴向的推力,从而产生轴向位移。如

果轴向位移大于汽轮机动静部分的最小间隙就会使汽轮机静、转子相碰而损坏。轴向位移增大,会使推力瓦温度开高,乌金烧毁,机组还会出现剧烈振动,故必须紧急停机,否则将带来严重后果。 差胀保护是指汽轮机转子和汽缺之间的相对膨胀差。在机组启、停过程中,由于转子相对汽缸来说很小,热容量小,温度变化快,膨胀速度快。若不采取措施加以控制升温速度,将使机组转子与汽缸摩擦造成损坏。故运行中差胀不能超过允许值。 汽轮机转子停止转动后,负胀差有可能会更加发展,因此应当维持一定温度的轴封蒸汽,以免造成恶果。 二、轴向位移和胀差产生的原因(影响机组胀差的因素) 使胀差向正值增大的主要因素简述如下: 1)启动时暖机时间太短,升速太快或升负荷太快。 2)汽缸夹层、法兰加热装置的加热汽温太低或流量较低,引起汽加热的作用较弱。 3)滑销系统或轴承台板的滑动性能差,易卡涩,汽缸胀不出。4)轴封汽温度过高或轴封供汽量过大,引起轴颈过份伸长。 5)机组启动时,进汽压力、温度、流量等参数过高。 6)推力轴承工作面、非工作面受力增大并磨损,轴向位移增大。7)汽缸保温层的保温效果不佳或保温层脱落,在严禁季节里,汽机房室温太低或有穿堂冷风。 8)双层缸的夹层中流入冷汽(或冷水)。 9)胀差指示器零点不准或触点磨损,引起数字偏差。

汽轮机差胀过大的原因分析及改进措施

汽轮机差胀过大的原因分析及改进措施 摘要: 从相对膨胀产生的理论出发, 针对焦作韩电发电有限公司1 号机的实际情况, 分启动和运行 2 个过程, 对汽轮机相对 膨胀值大的原因进行了分析, 并介绍了所采取的相应控制 措施或注意事项, 以及在实际生产中起到的作用作出了举 例证明。 关键词: 相对膨胀; 滑销; 温升率 1前言 我公司1 号汽轮机型号是C C50-8.83/4。22/1。57, 系哈尔宾汽轮机厂生产的双缸、单轴、双抽汽凝汽式汽轮机, 进汽温度535℃, 额定进汽量为224t, 中压额定抽汽量为30吨, 最大抽汽量为60吨。低压抽汽量为50吨,最大抽汽量为50吨。该机组投运后, 相对膨胀值及机组转动产生的噪声明显偏大, 特别是在启动过程中, 相对膨胀值超过规定值, 影响开机升速和升负荷时间, 是制约顺利开机的主要因素。投运初期, 开机时间在10h以上, 开机时间明显偏长。 2控制相对膨胀的重要性 金属物件在受热后, 向各个方向膨胀, 高温高压汽轮机从冷态启动到带额定负荷运行, 金属温度的变化很大400~500℃。因此, 汽缸及汽轮机各部件的轴向、垂直、水平各个方向的尺寸都会因受

热明显增大。汽轮机各部件膨胀量不同, 使得各部件的相对位置发生变化, 其变化量超过汽轮机动静部分的允许间隙后, 动静部件将会发生磨擦, 导致汽轮机损坏, 甚至报废等严重后果。为了控制汽轮机的动静部分不摩擦, 汽缸的轴向膨胀和汽缸与转子的相对膨胀就成为开机过程中重要的控制指标。汽轮机在启动暖机过程, 转子以推力轴承机头,1号瓦处为死点向后膨胀, 汽缸以后轴承座中点2 号瓦处为死点向前膨胀, 二者的膨胀差值即为相对膨胀习惯称为胀差。当转子膨胀值大于汽缸膨胀值时, 相对膨胀为正值, 该值过大时可造成动叶片出口处与下级喷嘴摩擦。当转子膨胀值小于汽缸膨胀值时, 相对膨胀为负值, 该值过大时可造成动叶片进口处与喷嘴摩擦。因此, 汽轮机的相对膨胀值的控制相当重要。1号汽轮机的相对膨胀测量装置安装在2 号瓦附近, 即汽缸死点处。 3 1 号汽轮机的相对膨胀大的原因 3. 1理论分析 金属受热膨胀值有如下关系: ΔL=Lσ(t i-t0) (1) 式中ΔL 为金属的绝对膨胀值; L 为金属的长度; σ为该金属的线膨胀系数; t i为金属材料的平均温度; t o为冷态温度, 通常取20℃。

汽轮机发生水冲击原因分析及事故处理

汽轮机发生水冲击原因分析及事故处理(1) 北极星电力网技术频道作者: 2012-12-10 10:07:19 (阅501次) 所属频道: 火力发电关键词: 汽轮机水冲击 汽轮机发生水冲击危害:进入汽轮机的蒸汽必须保持足够的过热度:(当湿蒸汽中的水全部汽化即成为饱和蒸汽,此时蒸汽温度仍为沸点温度。如果对于饱和蒸汽继续加热,使蒸汽温度升高并超过沸点温度,此时得到的蒸汽称为过热蒸汽,过热度指的是蒸汽温度高于对应压力下的饱和温度的程度。)正常运行中蒸汽应保持在额定参数允许范围内。如果蒸汽带水进入汽轮机,将使推力急剧增大,将转子向后推移,导致推力瓦烧损和动静碰磨。同时汽轮机运行中汽缸、转子、阀门等都处于高温状态,低温蒸汽或水突然进入汽轮机的某一部位,将造成部件急剧收缩,除本身金属产生大的热应力影响寿命外,局部收缩变形可能导致动静碰磨、大轴弯曲、部件裂纹、接合面变形泄漏等等。近年来汽轮机进水事故时有发生,有的甚至造成设备损坏。 现象: 1.主蒸汽温度和汽缸温度急剧下降,汽缸上、下壁温差升高(发生水冲击此现象最为明显和直观,我曾经在运行中遇到过汽包满水事故,最为直接的现象就是主汽温度快速下降,此时机侧能做的就是快速降负荷,并开启机侧的疏水门优先开启主汽管道和高压内缸等疏水,及时联系锅炉调整,同时对机组的本体画面加强监视,如本体个参数发生异常现象无法挽回,必要时打闸停机并破坏真空处理。) 2.主汽门、调速汽门门杆法兰,汽缸结合面,轴封处冒白汽或溅出水滴(此现象说明已经是发生严重水冲击必须立即打闸停机加强放水,并根据情况采取连续盘车或定期盘车。)。 3.蒸汽管道有强烈的水冲击声和振动。(此现象较为严重) 4.机组声音异常,机组振动增加。 5.轴向位移增大:定义:又叫串轴,就是沿着轴的方向上的位移。总位移可能不在这一个轴线上,我们可以将位移按平行、垂直轴两个方向正交分解,在平行轴方向上的位移就是轴向位移。轴向位移反映的是汽轮机转动部分和静止部分的相对位置,轴向位移变化,也是静子和转子轴向相对位置发生了变化。全冷状态下一般以转子推力盘紧贴推力瓦为零为.向发电机为正,反之为负,汽轮机转子沿轴向向后移动的距离就叫轴向位移。发生水冲击(蒸汽带水):水珠冲击叶片使轴向推力增大,同时水珠在汽轮机内流动速度慢,堵塞蒸汽通路,在叶轮前后造成很大压力差,说的通俗一点就是说水比起蒸汽来走的太慢,而力量又很大,不能像蒸汽一样从动叶片之间钻过去,而是打在了叶片上,就像水枪冲击其他东西似的,所以轴向推力才会加大,推力瓦块温度升高(轴向推力过大会使推力轴承超载,而推力瓦主要是起平衡轴向推力的作用,所以会导致瓦块温度升高而乌金烧毁),胀差(汽轮机转子与汽缸

汽轮机汽缸、胀差、汽缸的死点、怎么控制胀差

汽轮机在启停和运行工况下——胀差讲义 周国强 关键词:汽轮机汽缸、胀差、汽缸的死点、怎么控制胀差、可谓汽轮机的泊桑效应。 汽轮机在启停和工况变化时,转子和汽缸分别以各自的死点为基准膨胀或收缩。由于汽缸质量大,而接触蒸汽的面积小。转子的质量小而接触蒸汽的面积大,因而各自的受热面不一样,使得汽缸和转子之间热膨胀的数值各不一样,其二者之间的差值称为相对膨胀,即转子和汽缸的胀差。 一般来说,冷态开机过程中是胀差是正值,稳定状态下胀差接近于零,降负荷和停机惰走时胀差向负向发展,单缸机组尤其明显。 但是对于多缸机组,即中间再热机组,其胀差较单缸机组更为复杂。 汽轮机转子与汽缸的相对膨胀,称为胀差。 1 习惯上规定 1.1 转子膨胀大于汽缸膨胀时的胀差值为正胀差; 1.2 汽缸膨胀大于转子膨胀时的胀差值为负胀差; 1.3 根据汽缸分类又可分为:高差、中差、低I差、低II差。 1.4 胀差数值是很重要的运行参数,若胀差超限,则热工保护动作使主机脱扣。 1.5 汽缸是向后膨胀而转子是向前膨胀的。 释:单缸汽轮机的汽缸膨胀,它的死点是在低压缸排气口的中心线,即从低压缸向机头方向膨胀。转子的膨胀是以机头推力瓦为死点,向发电机方向膨胀。也就是说,汽缸的膨胀方向和转子的膨胀方向是反向的。 2 使胀差向正值增大的主要原因有 2.1 启动时暖机时间太短,升速太快或升负荷太快; 2.2 汽缸夹层、法兰加热装置的加热汽温太低或流量较低,引起汽加热的作用较弱; 2.3 滑销系统或轴承台板的滑动性能差,易卡涩; 2.4 轴封汽温度过高或轴封供汽量过大,引起轴颈过份伸长; 2.5 机组启动时,进汽压力、温度、流量等参数过高; 2.6 推力轴承磨损,轴向位移增大; 2.7汽缸保温层的保温效果不佳或保温层脱落,在严禁季节里,汽机房室温太低或有穿 堂冷风;

汽轮机的胀差控制

汽轮机的胀差控制 电厂汽轮机2009-07-13 17:10:51 阅读459 评论0 字号:大中小订阅 汽轮机在启停过程中,转子与汽缸的热交换条件不同。因此,造成它们在轴向的膨胀也不一致,即出现相对膨胀。汽轮机转子与汽缸的相对膨胀通常也称为胀差。胀差的大小表明了汽轮机轴向动静间隙的 变化情况。 习惯上规定转子膨胀大于汽缸膨胀时的胀差值为正胀差,汽缸膨胀大于转子膨胀时的胀差值为负胀差。胀差数值是很重要的运行参数,若胀差超限,则热工保护动作使主机脱扣。转子的相对胀差过大,会使动、静轴向间隙消失而产生摩擦,造成转子弯曲,引起机组振动,甚至出现重大事故。 一、分析胀差时,需考虑的因素: 1]轴封供汽温度和供汽时间的影响:在汽轮机冲转前向轴封供汽时,由于冷态启动时轴封供汽温度高于转子温度,转子局部受热而伸长,出现正胀差,可能出现轴封摩擦现象。在热态启动时,为防止轴封供汽后出现负值,轴封供汽应选用高温汽源,并且一定要先向轴封供汽,后抽真空。应尽量缩短冲转前轴封 供汽时间。 2]真空的影响:在升速暖机的过程中,真空变化会引起涨差值改变。当真空降低时,为了保持机组转速不变,必须增加进汽量,摩擦鼓风损失增大,使高压转子受热膨胀,其涨差值随之增加。当真空提高时,则反之。使高压转子胀差减少。但真空高低对中、低压缸通流部分的胀差影响与高压转子相反。 3]进汽参数影响:当进汽参数发生变化时,首先对转子受热状态发生影响,而对汽缸的影响要滞后一段时间,这样也会引起胀差变化,而且参数变化速度越快,影响越大。因此,在汽轮机启停过程中,控制蒸汽温度和流量变化速度,就可以达到控制差胀的目的。 4]汽缸和法兰加热的影响:汽缸水平法兰在升速过程中温度比汽缸要低,阻碍汽缸膨胀,引起胀差 增加。 5]转速影响:泊桑效应也就是汽轮机的轴在转速增加的时候,受到离心力的作用,而变粗,变短.转速减 小的时候,而变细,变长 6]滑销系统影响:在运行中,必须加强对汽缸绝对膨胀的监视,防止左右侧膨胀不均以及卡涩造成的 动静部分摩擦事故。 7]汽缸保温和疏水的影响:汽缸保温不好,会造成汽缸温度分布不均且偏低,从而影响汽缸的充分膨胀,使汽机膨胀差增大;疏水不畅可能造成下缸温度偏低,影响汽缸膨胀,并容易引起汽缸变形,从而导 致相对差胀的改变。 二、正胀差过大的原因: 1]暖机时间不够,升速过快。 2]加负荷速度过快。 三、负胀差过大的原因: 1]减负荷速度太快或由满负荷突然甩到零。 2]空负荷或低负荷运行时间太长

汽轮机故障案例分析[上汽]

目录 1.阀门支架 (3) 2.延伸轴及调速体晃动大 (4) 3.低压缸差胀大 (5) 4.K值变化 (6) 5.转子弯曲 (7) 6.调节级热电偶套管断裂 (8) 7.再热进汽管道焊接 (9) 8.压力密封环的安装方向 (10) 9.大修时高中压外缸无法顶开 (11) 10.铸焊件气孔、裂纹常规处理 (12) 11.低压缸隔热罩脱落 (13) 12.汽缸中分面间隙 (14) 13.喷油电磁阀问题 (16) 14.盘车突然损坏 (16) 15.轴联轴器盖板的正确安装 (19) 16.叶片的腐蚀 (20) 17.调门阀碟上紧定螺钉脱落 (22) 18.弹簧座注油孔 (23) 19.中压主汽门轴端漏汽接管(即油动遮断阀蒸汽接管)问题 (23) 20.中压主汽门门杆漏汽 (25) 21.阀杆连接 (26) 22.中压主汽门、中压调节汽阀打不开问题分析: (27) 23.高中压缸上下半温差 (28) 24.盘车脱扣 (31)

1.阀门支架 案例描述:在机组启动过程中,再热主汽温度达到450°C时,发现再热主汽门弹簧支架存在严重偏差,此图以机组右侧靠近前轴承箱的支架作为示例。 根据我厂图纸安装位置要求,热态阀门支撑位置应由管道设计者对锅炉与汽缸之间的主蒸汽管道及再热蒸汽管道进行挠性分析计算后得到,冷态情况下连接杆的位置应根据计算结果作一定偏置,保证支架在运行状态下垂直偏差在±4°以内。现场机组启动过程中发现在再热主汽温度达到450°C时,此连接杆向调阀端偏移了75mm,向左侧偏移了40mm,处于图中的fc位置,偏移量超出预订范围,存在安全隐患,因此现场对此问题进行了专题讨论。分析原因主要是当初设计院与我方设计部门在设计此处时,对此机组的热态偏移量计算出现问题,造成我方在设计图纸上并未对此处的弹簧支架进行预偏。 处理方案:现场与安装单位以及业主协调,认为可以在热态的情况将弹簧支架整体进行平移,

关于汽轮机胀差大处理方案的建议

关于汽轮机胀差大处理方案的建议针对目前#1机启动过程中高压缸胀差大,需中断启动暖机的异常现象,我项目部组织有关人员通过#1机几次启动过程的数据和现象,几次启动过程中工况变化,查阅厂家、设计单位相关资料,对造成启动过程中高压缸胀差大的原因进行了分析,供业主及有关单位参考 一、选取7月9 日与9月19 日#1机两次启动机组高压缸膨胀、高压缸胀差、低压缸胀差变情况对照见下表: 通过上表数据对照可以明显看出,后一次启动过程中高压缸膨胀明显变小,高压外缸未得到充分加热。 二、高压缸胀差大前后系统变化 1、高压缸胀差大前主蒸汽母管疏水通过临时管道直接排至主厂房外,第一次高压缸胀差大前主蒸汽母管疏水按设计要求恢复至高压

扩容器,高压缸胀差大后即9月19 日启动前主蒸汽母管疏水除甲乙自动主汽门前两路外,其余改至锅炉大气扩容器。 2、汽轮机本体及抽汽管道疏水电动门更换型号; 三、高压缸外缸加热原理分析 1、由高压缸纵剖图(见附图)可以看出,高压缸 2、3级喷嘴,4、5、6级喷嘴,7、8级喷嘴,9、10级喷嘴,11、12级喷嘴,1 3、14级喷嘴安装在六个隔板套上,这些隔板套构成高压缸的内缸,高压缸外缸的加热主要依靠内外缸夹层蒸汽来进行,而夹层蒸汽流量、温度由疏水、疏汽量决定。 2、各阶段调节级、一、二段抽汽压力变化 由上表可以看出,在机组并网前内外缸夹层蒸汽压力较低,外缸加热蒸汽只能通过疏水管径提高。 四、高压缸胀差大原因分析 1、主蒸汽管道疏水与高压缸前段疏水同进高压扩容器一根疏水 母管,因排挤造成高压缸前段疏水、疏汽量减少。 2、新更换的高压缸前、中段疏水电动门通流量小。 3、高压缸前、中段疏水管道堵塞,通流量受限。 4、各段抽汽逆止门前疏水逐级自流且安装有节流孔板,疏水、

某超临界机组整套启动期间发生的主要问题及处理方法

某超临界机组整套启动期间发生的主要问题 及处理方法 01 机组冷态启动时,主蒸汽参数不匹配,主要表现是:主、再热蒸汽温度高于启动参数达50℃,而主汽压力达不到厂家规定值,锅炉的这种特性在同类型机组中普遍存在。主要原因是由于启动期间,减温水无法投入,并且,随时间的延长温升越高。 解决方法:采取开大高旁,增大蒸汽。 02 主机低压缸变形,碰磨引起轴振大,主机进行机械超速试验,动作转速(机头)3319rpm,当汽机转速下降至3287rpm时,振动急剧上升,3瓦水平振动:237微米,3瓦垂直振动:332微米;4瓦水平振动:237微米,4瓦垂直振动:312微米,紧急停机,揭#1低压缸进行检查,确定是碰磨引起轴振大,共处理20天。#1低压缸在处理后开机升负荷过程中再次发生碰磨,主机振动值上涨很快,5瓦水平振动最高188um,6瓦垂直振动最203um,7瓦垂直振动最高206um1小时后恢复正常。在后来的开机及带负荷过程中再未发生此类情况。 03 361阀卡涩、管道振动问题,361阀为锅炉储水罐水位控制阀,共两个,调试期间,361 阀A阀共发生两次卡涩,均发生在停机过程中,阀门在自动强开后就无法关闭,其主要原因是汽水中含杂质和厂家未设计行程限位,而且361阀快开时容易引起管道振动并导致动静部分卡死。 解决方法:调试期间更换阀门备件。 04 在制粉系统初始运行期间,煤斗堵煤严重,主要原因是煤差、煤湿,新煤斗内壁不够光滑,通过调整燃煤掺烧、现场敲打,到168运行期间,煤斗堵煤现象减少。 解决方法:在煤斗上增加捅煤孔及振打、疏通装置。 05

启动过程中,凝结水、给水系统滤网经常堵塞,导致启动初期,清理凝泵入口滤网、水泵入口滤网工作很频繁,特别是高、低加投运初始期间。 解决方法:由于该部分管道是无法进行酸洗的,目前还没有更好的办法解决,只有安装调试过程中把好关。 06 汽动给水泵问题,主要表现是给水泵振动大、漏汽,给水泵振动大原因是由于汽机厂与给水泵厂在联轴器的配套图纸上出现错误,两者在键槽的加工上不一致,经过多次进行加平衡块试验,给水泵水平方向上振动运行中稳定在50微米。两台给水泵168期间均出现不同程度的漏汽,位置为中抽端盖抽头腔室焊接处,调试期间,将#32汽泵停运,进行补焊,但运行一段时间后,仍漏汽。 解决方法:由厂家负责在机组停运后进行处理。 07 机组在启动过程中,低压负胀差大,当转速从2000rpm往上升时,低压胀差负方向变化明显,变化最大可达5mm,转速至2600,出现了低压缸负胀差到-1mm,胀差大保护跳机,在后来的开机过程中,都发生过不同程度的涨差大现象。 解决方法:鉴于机组这种特性,在机组2000rpm时,进行较长时间的暖机,等低压胀差达到较大正值时,才开始升速。 08 空预器运行中发生碰磨,调试期间,#31空预器在首次升负荷至100MW时,空预器电流由17A上升至29A,就地有明显的摩擦声,后停炉检查发现径向密封片磨损且部分脱落。 解决方法:经冷态、热态调整间隙,问题得以解决。 09 EH油漏油问题,调试过程中 EH油发生三次泄漏,原因为高、中压调门伺服阀O型密封圈质量差导致EH油泄漏。 解决方法:经厂家核实,更换伺服阀O型密封圈后,EH油再未发生漏油问题。 10 省煤器入口流量低引起MFT。在试运期间,曾多次发生多次省煤器入口流量低保护动作引起MFT,主要原因有两种情况,一是由于设计储水箱水容积非常小,抗扰动能力差,再加上调试初期运行人员经验不足,对储水箱水位控制缺乏经验,造成储水箱水位低引起炉水循环泵跳闸,进而使得省煤器入口流量低保护动;二是在两台汽泵

汽轮机胀差轴向位移的产生原因及其防控措施

汽轮机胀差,轴向位移的产生原因及其防控措施1轴向位移和胀差的概念 轴位移指的是轴的位移量,而胀差则指的是轴相对于汽缸的相对膨胀量,一般轴向位移变化时其数值较小。轴向位移为正值时,大轴向发电机方向移,若此时汽缸膨胀远小于轴的膨胀,胀差不一定向正值方向变化;如果机组参数不变,负荷稳定,胀差与轴向位移不发生变化。机组启停过程中及蒸汽参数变化时,胀差将会发生变化,由于负荷的变化而轴向位移也一定发生变化。运行中轴向位移变化,必然引起胀差的变化。 汽轮机的转子膨胀大于汽缸膨胀的胀差值称为正胀差,当汽缸膨胀大于转子膨胀时的胀差值称为负胀差。 根据汽缸分类又可分为高差、中差、低I差、低II差。 胀差数值是很重要的运行参数,若胀差超限,则热工保护动作使主机脱扣,避免动静部分发生碰撞,损坏设备。 启动时,一般应用加热装置来控制汽缸的膨胀量,而转子主要依靠汽轮机的进汽温度和流量以及轴封汽的汽温和流量来控制转子的膨胀量。启动时胀差一般向正方向发展。汽轮机在停用时,随着负荷、转速的降低,转子冷却比汽缸快,所以胀差一般向负方向发展,特别是滑参数停机时尤其严重,必须采用汽加热装置向汽缸夹层和法兰通以冷却蒸汽,以免胀差保护动作。 汽轮发电机中,由于蒸汽在动叶中做功,以及隔板汽封间隙中的漏汽等原因,使动叶前后的蒸汽压力有一个压降。这个压降使汽轮机转子顺着蒸汽流动方向形成一个轴向的推力,从而产生轴向位移。如果轴向位移大于汽轮机动静部分的最

小间隙就会使汽轮机静、转子相碰而损坏。轴向位移增大,会使推力瓦温度开高,乌金烧毁,机组还会出现剧烈振动,故必须紧急停机,否则将带来严重后果。差胀保护是指汽轮机转子和汽缺之间的相对膨胀差。在机组启、停过程中,由于转子相对汽缸来说很小,热容量小,温度变化快,膨胀速度快。若不采取措施加以控制升温速度,将使机组转子与汽缸摩擦造成损坏。故运行中差胀不能超过允许值。 汽轮机转子停止转动后,负胀差有可能会更加发展,因此应当维持一定温度的轴封蒸汽,以免造成恶果。 2轴向位移和胀差的影响因素 使胀差向正值增大的主要因素简述如下: 1)启动时暖机时间太短,升速太快或升负荷太快。 2)汽缸夹层、法兰加热装置的加热汽温太低或流量较低,引起汽加热的作用较弱。 3)滑销系统或轴承台板的滑动性能差,易卡涩,汽缸胀不出。 4)轴封汽温度过高或轴封供汽量过大,引起轴颈过份伸长。 5)机组启动时,进汽压力、温度、流量等参数过高。 6)推力轴承工作面、非工作面受力增大并磨损,轴向位移增大。 7)汽缸保温层的保温效果不佳或保温层脱落,在严禁季节里,汽机房室温太低或有穿堂冷风。 8)双层缸的夹层中流入冷汽(或冷水)。

某厂汽轮机高中压缸负胀差大原因分析及处理 摘要:本文通过对某厂

某厂汽轮机高中压缸负胀差大原因分析及处理摘要:本文通过对某厂汽轮机高中压缸负胀差大的原因进行分析,结合大修发现的问题,采取相应的处理措施,解决了机组正常运行中高中压缸负胀差偏大的问题,提高了机组的安全性和经济性。 关键词:负胀差原因分析处理 1简介 某厂汽轮机是东方汽轮机厂生产的N300—16.7/537/537—4型亚临界、中间再热、高中压合缸、双缸双排汽、单轴凝汽式汽轮机。2001年3月投产。该机组为两缸两排汽型式,高中压部分采用合缸结构。因而进汽参数较高,为减少汽缸应力,增加机组启停及变负荷的灵活性,高压部分设计为双层缸。低压缸为对称分流式,也采用双层缸结构,为简化汽缸结构和减小热应力,高压和中压阀门都采用落地式,左右两侧对称布置,机组总长18m。 为了平衡转子的轴向力,高压部分设计反向流动,因此高压和中压进汽口都布置在高中压缸中部,是整个机组工作温度最高的部位。新蒸汽通过主蒸汽管进入高压主汽调节阀,再经4根φ273×40mm高压主汽管和装在高中压外缸中部的4个高压进汽管分别从上下方向进入高压通流部分。蒸汽经过1个单列调节级和9个压力级作功后,由高压缸前端下部的2个高压排汽口排出,经两根冷段再热汽管去锅炉再热器,管上各装1个Dg600mm的排汽止回阀。第七级后设一段回热抽汽供#3高加,第10级后(高压排汽)设2段抽汽供#2高加。 再热蒸汽通过两根热段再热蒸汽管进入中压联合汽阀,再经两根φ582×65mm中压主汽管从高中压外缸中部下半两侧进入中压通流部分。中压部分共有6个压力级,第3级后有一个3段抽汽口供#1高加,中压排汽一部分从高中压外缸后端下半的4段抽汽口抽汽供除氧器,大部分从上半正中的一个φ1400mm中压排汽口进入连通管通向低压缸。 低压部分为对称分流双层缸结构,蒸汽由低压缸中部进入通流部分,分别向前后两个方向流动,经2×6个压力级作功后向下排入凝汽器。在1~4级后各设有5~8段抽汽口,分别供4个低压加热器。汽轮机静子通过横键相对于基础各保持两个固定点(绝对死点),一个在中低压轴承箱基架上2号轴承中心线后205mm处,另一个在低压缸左右两侧基础架上低压进汽中心前360mm处。机组在启动时,高中压缸及前轴承箱向前膨胀,低压缸向前后两个方向膨胀。高压内缸

汽轮机起停过程中差胀控制

汽轮机胀差分析 我厂600MW机组汽轮机,形式为亚临界参数、一次中间再热、单轴、四缸、四排汽、凝汽式汽轮机,型号为N600-16.7/538/538。额定功率600MW,最大功率634MW,从机头方向看为顺时针转动。 发电机低压缸II 低压缸I 中压缸高压缸前箱 滑销系统示意图 高、中、低压缸可以自由的在台板座上移动,由定位销定位移动方向。一般横销只有两个,与中心线的纵销定位一个死点。我厂机组死点在#1低压缸的中心。发电机有单独的滑销系统,有两个横销、两个纵销确定中心点。高压转子的推力盘工作面为整个转子的相对死点。我厂机组滑销系统有4个纵销:前轴承箱轴向2个,中轴承箱轴向2个;4个横销:低压缸I两侧中部2个,发电机两侧中部2个;6个立销:低压缸I轴线上2个,低压缸II轴线上2个,发电机轴线上2个;6个角销:前轴承箱2个(有2个用螺栓),中轴承箱4个;8个猫爪:高压缸4个,中压缸4个。 由于转子的质面比比汽缸的质面比小得多,在变工况时,转子变化快,所以产生膨胀不一致现象,这种转子与汽缸的膨胀之差为胀差。另外汽缸与转子的死点不同,内外缸的死点又有差别,所以不同动静部位轴向间隙变化不同。 冷态启动过程中,#1低压缸的后部及#2低压缸向发电机方向膨胀。#1低压缸前部及中压缸、高压缸向机头方向膨胀。转子以推力盘为相对死点,高压转子向前箱方向膨胀,与缸体膨胀方向相同;而中压转子向发电机方向膨胀,对于中压缸的前侧转子与汽缸膨胀方向相反,对于中压缸的后侧膨胀方向相同,对于#1低压

缸前部汽缸与转子膨胀方向相反,对于#1低压缸后半部分和#2低压缸与转子膨胀方向相同。由于汽缸的喷嘴与叶片的间隙比叶片与下一级喷嘴间隙小,所有对于正胀差时最危险的部位为中压缸前部和#1低压缸的前部,对于中压缸胀差只是自身的胀差,比较小。对于#1低压缸前部,相对胀差为中压缸胀差与低压缸胀差的累计,比较大,但低压缸的动静间隙相对较大,仍能满足要求。这也是把相对死点放于中压缸前的原因。对于热态启动时,出现负胀差时,情况相反,最危险的部位为高压调节级。 胀差监测仪表有两个,一个安装在前箱里,测量高压胀差;另一个安装在八号轴承,测量低压胀差。另外,前轴承箱旁边设有汽缸绝对膨胀监测仪。 1 影响汽轮机胀差变化的主要因素 (1)轴封供汽时间和蒸汽温度的形响。汽机的端轴封在转子上占据一定的长度,因此改变轴封汽温和供汽时间将影响转子的膨胀,从而使胀差变化。在机组启动前提升凝汽器真空时需投入轴封供汽,此时轴封段的转子受到加热而膨胀伸长。由于机组启动前送轴封供汽抽真空,对汽缸的膨胀影响很小,此时胀差变化量反映了转子轴封段受热膨胀的伸长量。 (2)转子泊松效应的影响。汽轮机转子转动时,叶片和叶轮产生的离心力作用于大轴上,对大轴产生径向拉力由于转子材料的泊松效应的影响,转子在受径向拉力变粗的同时轴向的长度要缩短。这种轴向变形与转速的平方成正比,与泊松效应参数K值成正比。因此,降速时转子要伸长,升速时转子要缩短。由于低压缸转子的泊松效应参数K值较大,因而受泊松效应影响明显。对于我厂而言,由于波桑效应,高压缸差胀由停机前的0.7mm升至1.0mm,低压缸差胀从停机前的12.9mm增至18.2mm.因此,运行人员在进行机组启停操作之前应该预测泊松效应引起胀差变化对汽轮机安全的影响,防止胀差超限 (3) 高压缸进汽参数变化的影响。汽轮机进汽采用节流调节方式,即高压缸所有进汽调节阀同时开关,来控制蒸汽的流量。汽轮机转速从盘车状态升速至 3 000 r/min所需的进汽量较小,与汽轮机转子、汽缸等金属部件的热交换较微弱。在发电机并网以后,汽轮机进汽量增大,汽机转子相对胀差和汽缸绝对膨胀仪表指示变

汽轮机高低压缸胀差的安装及调试

汽轮机高低压缸胀差的安装及调试 汽轮机在启、停过程中,由于转子与汽缸的热交换条件不同,使得它们在膨胀或收缩时出现差别。这些差别称为汽轮机转子与汽缸的相对膨胀差,简称胀差。监视胀差是机组启停过程中的一项重要任务。为避免轴向间隙变化到危险程度使动静部分发生摩擦,不仅应对胀差进行严格监视,而且应对各部分胀差对汽轮机正常运行的影响应有足够的认识。下面介绍汽轮机胀差的安装及调试步骤。 1)传感器定零 在汽轮机转子推轴定位以后,根据拟定的测量范围(通常情况下为±2mm),把传感器调整支架旋到合适的位置。安装传感器时,应使传感器头端面与被测面保持平行。测量前置器的输出电压,将零点间隙电压定到-12V(如果测量范围不对称的话,需要根据传感器的灵敏度,零点在量程中的位置,通过计算得出零点间隙电压),锁紧传感器紧固螺母(紧固时要特别注意电压值,稍不注意就会跑掉),传感器就安装好了。 将百分表顶在传感器支架上合适的地方(要能随手轮调节前后移动),根据量程调节百分表,定零。 2)离线采集传感器线性 准备好记录纸,调节手轮,先往正方向转0.5mm,记录下此时前置器的间隙电压值。以此类推,记录下1.0mm、1.5mm、2.0mm 时对应的电压值。

然后回零,检查一下零点间隙电压,差别应该不会超过±0.05v。往负方向旋转0.5mm,记录下-0.5mm、-1.0mm、-1.5mm、-2.0mm时对应的电压值。 如有必要,可以采集更多的点,比如间隔0.2mm或者0.25mm 3)组态及线性化 组态计算机连好模块,把刚才记录的电压值输入组态进行线性化。好做以后,上传组态至模块。 4)测量值比对 与步骤2中的过程相同,此过程需要记录在实际位置,此时组态计算机中对应的显示值。 5)报警和停机保护动作实验 旋转手轮,位移量达到在模块中设定的报警和危险定值时,相应的保护回路要有开关量信号输出。在此过程中还可以作报警迟滞实验,看是否与设定值吻合。 6)检验DCS显示 模块有4-20mA电流和0-10v电压输出,DCS应能实时显示位移量。若DCS不能正常显示,先用万用表测量模块输出是否正常,若电流输出正常则检查DCS的接线,若模块输出不正常,则应检查模块状态。 7)固定支架 把万用表支好,调节手轮使间隙电压值显示为零点电压,然后慢慢锁紧固定支架的锁紧螺母,不要一次锁死。在此过程中会发

135MW汽轮机组高中、低压缸胀差越限处理预案与防范措施

135MW汽轮机组高中、低压缸胀差越限处理预案与防范措施 作者:佚名文章来源:不详点击数:更新时间:2009-5-17 16:04:36 汽轮机胀差 当汽轮机启动加热或停止运行冷却时以及负荷发生变化时,汽缸和转子都会产生热膨胀或冷却收缩。由于转子受热表面积比汽缸大,且转子的质量比相对应的汽缸小,蒸汽对转子表面的放热系数较大。因此,在相同条件下,转子的温度变化比汽缸快,转子与汽缸之间存在膨胀差,而这差值是指转子相对于汽缸而言,故称为相对膨胀差(即胀差)。 在机组启动加热时,转子的膨胀大于汽缸,其相对膨胀差值称为正胀差。而当汽轮机停止运行时,转子冷却较快,其收缩亦比汽缸收缩快,产生负胀差。 在汽轮机稳定工况下汽缸和转子的温度趋于稳定值,相对胀差也趋于一个定值。在正常情况下,这一定值比较小。但在启动或停止、汽轮机工况发生变化时,由于转子和汽缸温度变化的速度不同,可能产生较大的胀差。这就意味着汽轮机动静部份相对间隙发生了变化,如果相对胀差值超过了规定值,就会使动静间隙消失,发生动静摩擦,可能引起机组振动增大,甚至叶片断裂、大轴弯曲等事故。因此,在汽轮机启动、事故、停止过程中应该严密监视和控制高低压缸胀差在规定的范围内变化。 引起汽轮机胀差发生变化的因素主要是什么呢?汽轮机滑销系统畅通与否。蒸汽压力、温度上升(或者下降)和流量变化速度。这是控制胀差的有效方法,在汽轮机启动或停止过程中,控制蒸汽温度和流量变化速度,就可以达到控制胀差的目的。轴封供汽温度的影响。由于轴封供汽直接与汽轮机大轴接触,故,其温度变化直接影响转子的伸缩。汽缸夹层加热装置的影响。汽缸夹层加热装置能有效地减小汽缸内外壁、汽缸与法兰、法兰与螺栓的温差,加快汽缸的膨胀或收缩,起到控制胀差的目的。凝结器真空的影响。在汽轮机启动过程中,当机组维持一定转速或负荷时,改变凝结器真空则改变了汽缸进汽量,可以在一定范围内调整胀差。汽缸保温和疏水的影响。三腔室至六段抽手动门开度不合理。 下面介绍一种汽轮机运行规程《胀差保护》胀差保护参数 1、高压缸胀差大I值5mm、-2.5mm报警。 2、低压缸胀差大I值+5.5mm、-3mm报警。 3、高压缸胀差大Ⅱ值6mm、-3.3mm跳机(主汽门、调门、抽汽逆止门,高排逆止门、工业抽汽快关门关闭)。 4、低压缸胀差大Ⅱ值7mm、-4mmn跳机(主汽门、调门、抽汽逆止门,高排逆止门、工业抽汽快关门关闭)。 本次1号机启动运行之后,1号机组高中、低压缸胀差值超过本公司运行规程规定值:高中压缸胀差值6.50mm、低压缸胀差值5.52mm。 1号机组冲转前高中压缸胀差值4.20mm左右,当机组负荷带至80MW时,高中压缸胀差值6.50mm。在机组启动初期阶段里,负荷、汽压变化时,高中压缸的胀差值未明显变化。此时初步判断为热控系统显示值故障。但是,1号机组运行几天之后,当机组的负荷、压力发生变化时,高中压缸的胀差值发生明显变化。以6.50mm为基点或升高或下降。当然,至此也不能排除热控系统存在着故障点。既然高中压缸胀差随着机组的负荷、主蒸汽压力变化发生而变化,则必须引起重视。 当1号机组高中压缸胀差未发生变化与发生变化时,检查机组的轴向位移、各轴承x、y轴方向上的振动值、推力瓦块温度均处于正常范围内变化。 根据现场情况,提出下列处理预案,对1号机高中压缸胀差进行调节,目的将1号机高中压缸胀差降至正常范围[注意:下列调整预案必须分时间段进行,不能同时进行调整,这样才

汽轮机的胀差控制

汽轮机的胀差控制 汽轮机在启停过程中,转子与汽缸的热交换条件不同。因此,造成它们在轴向的膨胀也不一致,即出现相对膨胀。汽轮机转子与汽缸的相对膨胀通常也称为胀差。胀差的大小表明了汽轮机轴向消息间隙的变化情况。 习惯上规定转子膨胀大于汽缸膨胀时的胀差值为正胀差,汽缸膨胀大于转子膨胀时的胀差值为负胀差。胀差数值是很重要的运行参数,若胀差超限,则热工保护动作使主机脱扣。转子的相对胀差过大,会使动、静轴向间隙消失而产生摩擦,造成转子弯曲,引起机组振动,甚至出现重大事故。 一、分析胀差时,需考虑的因素: 轴封供汽温度和供汽时间的影响: 在汽轮机冲转前向轴封供汽时,由于冷态启动时轴封供汽温度高于转子温度,转子局部受热而伸长,出现正胀差,可能出现轴封摩擦现象。在热态启动时,为防止轴封供汽后出现负值,轴封供汽应选用高温汽源,并且一定要先向轴封供汽,后抽真空。应尽量缩短冲转前轴封供汽时间。真空的影响: 在升速热机的过程中,真空变化会引起涨差值改变。认真空降低时,为了保持机组转速不变,必须增加进汽量,摩擦鼓风损失增大,使高压转子受热膨胀,其涨差值随之增加。认真空进步时,则反之。使高压转子胀差减少。但真空高低对中、低压缸通流部分的胀差影响与高压转子相反。 进汽参数影响: 当进汽参数发生变化时,首先对转子受热状态发生影响,而对汽缸的影响要滞后一段时间,这样也会引起胀差变化,而且参数变化速度越快,影响越大。因此,在汽轮机启停过程中,控制蒸汽温度和流量变化速度,就可以达到控制差胀的目的。 汽缸和xx加热的影响: 汽缸水平法兰在升速过程中温度比汽缸要低,阻碍汽缸膨胀,引起胀差增加。

转速影响: 泊桑效应也就是汽轮机的轴在转速增加的时候,受到离心力的作用,而变粗,变短.转速减小的时候,而变细,变长滑销系统影响: 在运行中,必须加强对汽缸尽对膨胀的监视,防止左右侧膨胀不均以及卡涩造成的消息部分摩擦事故。 汽缸保xx疏水的影响: 汽缸保温不好,会造成汽缸温度分布不均且偏低,从而影响汽缸的充分膨胀,使汽机膨胀差增大;疏水不畅可能造成下缸温度偏低,影响汽缸膨胀,并轻易引起汽缸变形,从而导致相对差胀的改变。二、正胀差过大的原因: 热机时间不够,升速过快。 加负荷速度过快。 三、负胀差过大的原因: 减负荷速度太快或由xx忽然甩到零。 空负荷或低负荷运行时间太长发生水冲击,或蒸汽温度太低。 停机过程中用轴封蒸汽冷却汽轮机速度太快。 真空急剧下降,排汽缸温度上升,使负胀差增大。 四、冷态启动时,控制涨差方法: 主要是控制机组的正涨差,应采取以下措施: 公道使用汽缸的加热装置,使汽缸与转子的膨胀相应。 缩短冲车前汽封供汽时间,并采用较低温度的汽源。 控制好温升率和升速率,控制好加负荷速度,使机组均匀加热,延长中速热机。

相关文档
最新文档