第三章抽样与抽样分布

合集下载

抽样与抽样分布

抽样与抽样分布

抽样与抽样分布在统计学中,抽样是一种常用的数据收集方法,通过从总体中选择一部分样本来进行研究和分析。

抽样的目的是通过样本来推断总体的特征和性质。

在进行抽样时,我们需要了解抽样的方法和抽样分布的概念。

一、抽样方法1. 无偏抽样无偏抽样是指所有样本有相同被选中的机会。

这样可以确保样本的代表性,从而减小样本估计值和总体真值之间的误差。

常见的无偏抽样方法包括简单随机抽样、系统抽样和分层抽样等。

2. 有偏抽样有偏抽样是指样本的选择并不具有相等的机会。

这样可能导致样本的代表性不足,从而产生较大的估计误差。

有时,有偏抽样也可以用于特定的研究目的,但需要明确地说明和分析偏差带来的影响。

二、抽样分布1. 抽样分布的概念抽样分布是指统计量在各个可能样本上的取值分布。

统计量可以是样本均值、样本方差等。

抽样分布的性质对于进行统计推断和假设检验非常重要。

2. 样本均值的抽样分布样本均值的抽样分布在中心极限定理的条件下近似服从正态分布。

中心极限定理指出,当样本容量足够大时,无论总体分布如何,样本均值的抽样分布都会接近正态分布。

3. 样本比例的抽样分布样本比例的抽样分布在满足一些条件的情况下也近似服从正态分布。

这些条件包括样本容量足够大、总体比例接近0.5以及样本与总体之间的独立性等。

4. 样本方差的抽样分布样本方差的抽样分布不服从正态分布。

通常情况下,样本方差的抽样分布呈右偏态,即偏度大于0。

为了得到样本方差的抽样分布,可以使用抽样分布的近似分布,如卡方分布。

三、应用案例抽样与抽样分布的方法和理论在实际统计学中有广泛的应用。

以下是一些常见的应用案例:1. 调查研究在进行调查研究时,我们经常需要从总体中选择一部分样本进行问卷调查或面访。

通过利用抽样与抽样分布的方法,我们可以将样本的调查结果推广到总体中,从而得到总体的特征和性质。

2. 假设检验假设检验是统计学中常用的推断方法之一。

通过比较样本统计量与假设的总体参数值,我们可以判断假设的合理性。

统计学-抽样分布与抽样方法

统计学-抽样分布与抽样方法
重复抽样的特点: ①在重复抽样的过程中,被抽取的总体单位总数始终
保持不变,每一次抽样中各总体单位被抽到的机会 都相同,每次抽样结果相互独立。 ②每一总体单位都有被重复抽取的可能。
5.2 抽样调查的方法
一、两种抽样方式(续):
(2)不重复抽样 ——也称不放回抽样,指被抽到的单位不再放回总
体,每次仅在余下的总体单位中抽取下一个样本的 抽样方法。 特点: ①任一总体单位都不会被重复抽到; ②每次抽样结果都受到以前各次抽取结果的影响,因 此各次抽取结果是不独立的; ③可以一次抽取所需要的样本单位数。 ❖ 在实际应用中通常采用的都是不重复抽样方法。
总体
群1
群2
…… 群k
个体1 个体2 个体3 个体4 个体5 个体6
5.2 抽样调查的方法
3.整群抽样
❖特点:
▪ 抽样时只需群的抽样框,可简化工作量 ▪ 调查的地点相对集中,节省调查费用,方便
调查的实施 ▪ 当群中的元素差异性大时,整群抽样得到的
结果比较好。在理想状态下,每一群是整个 总体小范围内的代表。如对人口普查资料进 行复查,就采用整群抽样的方式。
5.1 抽样调查的概念、特点和作用
五、全及总体和抽样总体 ❖全及总体,简称总体,是指所要认识对象的全
体,是许多同质性单位的集合。通常用大写字 母N来表示(容量)。 ❖抽样总体,简称样本,是从全及总体中随机抽 取出来,代表全及总体部分单位的集合。通常 用小写字母n来表示(容量) 。
▪ 样本容量(Sample size):样本中所含个体的数量。分为 大样本(>30)、小样本(<30)。
▪ 样本个数:又称为样本可能数目。是指从一个总体中可以 抽取的样本个数。
5.2 抽样调查的方法

统计学之抽样与抽样分布

统计学之抽样与抽样分布

的抽样分布
统计推断的过程
• 总体均值
m=?
• 从总体中抽取 • 样本容量为 n 的样本
• 用 作为m 的点估计
• 计算样本平均值
的抽样分布
的抽样分布是指所有可能的样本平均值 的概率分 布
的期望值
E( ) = = 总体平均值
的抽样分布
的标准差

有限总体
无限总体
• 当 n/N < .05时,可以将一个有限总体看作是无限
统计学之抽样与抽样分 布
2020年4月29日星期三
Chapter 7
抽样和抽样分布
本章主要内容
简单随机抽样 点估计 抽样分布 样本平均值 的抽样分布 样本比例 的抽样分布 抽样方法
•n = 100
•n = 30
统计推断
统计推断的目的是利用样本的信息推断总体的信息 总体是指感兴趣的所有元素的集合 样本是总体的一个子集 通过样本统计量对总体参数进行估计 只要抽样方法恰当,通过样本统计量可以对总体参数 进行很好的估计
也就是说,样本平均值在总体平均值+/-10分范围内的 概率为0.5036
•面积 = 2(.2518) = .5036
• 的抽样分布
•980 •990•1000
的抽样分布
的抽样分布是指所有可能的样本比例 的概率分布 的期望值
p = 总体比例
的抽样分布
的标准差 有限总体
无限总体
• 也称为样本比例的标准误
总体

称为有限总体校正因子.
• 也称为样本均值的标准误
的抽样分布
中心极限定理:只要样本容量足够大 (n > 30),不管总 体服从什么分布,样本平均值 都可以认为近似服从 正态分布。

统计学 第三章抽样与抽样分布

统计学 第三章抽样与抽样分布

=10
= 50 X
总体分布
n= 4
x 5
n =16
x 2.5
x 50
X
抽样分布
从非正态总体中抽样
结论:
从非正态中体中抽样,所形成 的抽样分布最终也是趋近于正态分 布的。只是样本容量需要更大些。
总结:中心极限定理
设从均值为,方差为 2的一个任意总体中抽 取容量为n的样本,当n充分大时(超过30),样本 均值的抽样分布近似服从均值为μ、方差为σ2/n的
总体
样本
参数
统计量
总体与样本的指标表示法
总体参数
样本统计量
(Parameter) (Sample Statistic)
容量 平均数 比例 方差 标准差
N
n
X
x
p
2
s2
s
小练习
某药品制造商感兴趣的是用该公司开发的某 种新药能控制高血压人群血压的比例。进行了一 项包含5000个高血压病人个体的研究。他发现用 这种药后80%的个体,他们的高血压能够被控制。 假定这5000个个体在高血压人群中具有代表性的 话,回答下列问题: 1、总体是什么? 2、样本是什么? 3、识别所关心的参数 4、识别此统计量并给出它的值 5、我们知道这个参数的值么?
正态分布
一个任意分 布的总体
x
n
当样本容量足够 大时(n 30) , 样本均值的抽样 分布逐渐趋于正 态分布
x
X
总体分布
正态分布
非正态分布
大样本 小样本 大样本 小样本
正态分布
正态分布
非正态分布
三 中心极限定理的应用
中心极限定理(Central Limit theorem) 不论总体服从何种分布,从中抽取

第三章 抽样分布

第三章 抽样分布

集合体,具有可变性。
7
2、抽样
从总体中抽取有限个个体对总体进行观测 的过程叫做抽样。
在相同的条件下对总体 X 进行 n 次重复的、 独立的观测,将n次观测结果按试验的次序 记为 X1,X 2, ,X n,这样得到的 X1,X 2, ,X n 称为来自总体 X 的一个简单随机样本, n 称 为这个样本的容量。
第三章 抽样分布
学生姓名 小张 小刘 小李 小王 小赵 小黄
身高 X1 X2 X3 X4 X5 X6
小谭
小杜 小蔡 小唐 小高 小许 小卢 小吴 小郑
X7
X8 X9 X10 X11 X12 X13 X14 X15
2
12000名
求全校学生的平均身高
测量每一名学生的身高 ?
根据部分学生身高估计 全体学生身高
21
抽样时,可以作若干次抽取,若第一次抽样时,抽 到小王、小赵、小刘等100名学生,他们的身高可依 次表示为: x ,x , ,x ,则:
1 2 100
g(x1,x2, ,x100 ) x
x
n 1
100
i
100
称为统计量g(X1,X 2, ,X100 )的观测值
22
二、几种常用的抽样分布
3
学生姓名 小张 小王
身高 X1 X4
小赵
小蔡
X5
X9
样本
小唐
小吴
X10
X14
x1
4
学生姓名
小刘 小李
身高
X2 X3
小蔡
小许
X9
X12
样本
小卢
小郑
X13
X15
x2
5
C
6 12000

第三章抽样和抽样分布

第三章抽样和抽样分布
第三章抽样和抽样分布
Probability Sample
• Probability Sample • A probability sample is a sample chosen
by chance. We must know what samples are possible and what chance, or probability, each possible sample has.
第三章抽样和抽样分布
统计应用
“抓阄”征兵计划
➢ 然而结果是,有73个较小的号码被分配给了前半
年的日子,同时有110个较小的号码被分配给了后 半年的日子。换句话说,如果你生于后半年的某 一天,那么,你因为被分配给一个较小号码而去 服兵役的机会要大于生于前半年的人
➢ 在这种情况下,两个数字之间只应该有随机误差,
convenience sampling chooses the individuals
easiest to reach. Here is an example
of convenience sampling.
Both voluntary response samples and
convenience samples produce samples that are almost guaranteed not to represent the entire
被分配的号码较大的人也许永远轮不上到军队服役
➢ 这种抓阄看起来对决定应该被征召入伍是一个相当不错
的方法。然而,在抓阄的第二天,当所有的日子和它们 对应的号码公布以后,统计学家们开始研究这些数据。 经过观察和计算,统计学家们发现了一些规律。例如, 我们本应期望应该有差不多一半的较小的号码(1到183) 被分配给前半年的日子,即从1月份到6月份;另外一半 较小的号码被分配给后半年的日子,从7月到12月份。 由于抓阄的随机性,前半年中可能不会分到正好一半较 小的号码,但是应当接近一半

第三章抽样与抽样分布

第三章抽样与抽样分布

1、抽样分布:

全部可能样本统计量的频率分布叫
做抽样分布。
2、样本均值的抽样分布:

全部可能样本的平均数的概率分
布。
3、样本成数(比例)的抽样分布:

全部可能样本的成数的概率分布。
抽样分布
(sampling distribution)
4、抽样分布的特征值
•统计量:即样本指标

x

xi
每个单位被抽中的概率是已知的,或是可以计 算出来的
当用样本对总体目标量进行估计时,要考虑到 每个样本单位被抽中的概率
3-9
抽样框与抽样单位
抽样框:为便于抽样工作的组织,在抽样前在可 能条件下编制的用来进行抽样的记录或表明总体所有 抽样单元的框架。抽样框可以是一份清单(名单抽样 框)、一张地图(区域抽样框),它是设计和实施随 即抽样所必备的基础条件。
合格品(或不合格品) 与全部产品总数之比
2. 总体比率可表示为
N1 或
N
3. 样本比率可表示为
4. p n1 或 n
3-35
1 N0
N
1 p n0 n
样本比率(成数)的抽样分布的形成 抽样
比率 N1 / N
比率 p n1 / n
所有可能的样本的比率( p1, p2 , pn )所形成 的分布,称为样本比率(成数)的抽样分布。
n
ˆ P

ni
n
S
2

n
1 1
(
xi


x)2
3-21
样本均值的抽样分布
全部可能样本的平均数的概率分布
注意: • 1)在重复选取容量为n的样本时,由样

数理统计第3章 随机抽样与抽样分布

数理统计第3章 随机抽样与抽样分布

E ( X i ) = E ( X ) = µ , D( X i ) = D( X ) = σ 2 , i = 1,2,L , n
1 n 1 n 所以 E ( X ) = E ( ∑ X i ) = ∑ E ( X i ) = µ , n i =1 n i =1
1 1 . D ( X ) = D( ∑ X i ) = 2 ∑ D( X i ) = n n i =1 n i =1
11
它反映了总体 二、样本数字特征 均值的信息 它反映了总体 1 n 样本均值 X = ∑Xi 方差的信息 n i=1 1 n 1 n 2 2 2 2 样本方差 S = ∑( Xi − X) = n −1 ∑Xi − nX n −1 i=1 i =1
推导: 推导:
( Xi − X)2 = ∑( Xi2 − 2Xi X + X 2 ) ∑
因此, 应视为一组随机变量, 因此,抽样值 ( x1 , x2 ,L, xn ) 应视为一组随机变量,我们把 的一个样本 子样), 样本( ),其中 称为该样本的容量 容量。 它称为总体 X 的一个样本(或子样),其中 n 称为该样本的容量。
7
二、简单随机抽样
由于抽样的目的是为了对总体的分布进行统 计推断, 计推断,为了使抽取的样本能很好地反映总体的 信息,必须考虑抽样方法 信息,必须考虑抽样方法. 最常用的一种抽样方法叫作“ 最常用的一种抽样方法叫作“简单随机抽 它要求抽取的样本满足下面两点: 样”,它要求抽取的样本满足下面两点: 1. 代表性: X1,X2,…,Xn中每一个与所考察的总体 代表性: 有相同的分布. 有相同的分布 2. 独立性: X1,X2,…,Xn是相互独立的随机变量 独立性: 是相互独立的随机变量. 由简单随机抽样得到的样本称为简单随机样本 简单随机样本, 由简单随机抽样得到的样本称为简单随机样本, 今后如不加声明,均指简单随机样本。 今后如不加声明,均指简单随机样本。

《统计学原理》与MATLAB编程第三章 抽样和抽样分布

《统计学原理》与MATLAB编程第三章 抽样和抽样分布

第一节排列与组合排列:perms(x) x为向量,求x的全排列。

如:a=perms([2 3 7 ])a=7 3 27 2 33 7 23 2 72 3 72 7 3size(a,1) 回车ans =6有6种排列在EXCEL中,用FACT返回n!,用FACTDOUBLE返回n!!,即返回参数半阶乘。

PERMUT(n,k)=P n k组合(1)Syntax:C = nchoosek(n,k)其中n和k是一个非负整数。

该命令只有对n<15时有用。

函数描述: 从 n 个元素中一次选 k 个元素的所有组合数 C(注意,C是一个数值)。

C = n!/((n–k)! k!)如:C = nchoosek(10,3) 回车C =120C = nchoosek(v,k)其中v是一个长度为n的向量,k小于等于n。

函数描述: 从向量 v 中一次选其中 k 个元素的所有组合 C (注意:C是一个矩阵,行数为n!/((n–k)! k!)列数为 k )Examples:A=2:2:10 回车A = 2 4 6 8 10nchoosek(A,4) 回车2 4 6 82 4 6 102 4 8 102 6 8 104 6 8 10 (2)combntns从给定集合中列出所有可能的元素的组合,和nchoosek(v,k)的用法一样。

Syntaxcombos = combntns(set,subset)combos = combntns(1:5,3)combos =1 2 31 2 41 2 51 3 41 3 51 4 52 3 42 3 52 4 53 4 5size(combos,1)ans =10第二节随机数的生成2.1均匀分布的随机数据的产生函数 rand功能生成元素均匀分布于(0,1)上的向量与矩阵。

用法 Y = rand(n) %返回n*n阶的方阵Y,其元素均匀分布于区间(0,1)。

若n不是一标量,在显示一出错信息。

抽样检验-第三章概率、概率分布与抽样分布2 精品

抽样检验-第三章概率、概率分布与抽样分布2 精品
概率抽样也叫随机抽样,是指按照随机原则 抽取样本。
概率抽样最基本的组织方式有:简单随机抽 样、分层抽样、系统抽样和整群抽样。
特点
能有效避免主观选样带来的倾向性误差(系统偏 差),使得样本资料能够用于估计和推断总体的 数量特征,而且使这种估计和推断得以建立在概 率论和数理统计的科学理论之上,可以计算和控 制抽样误差,能够说明估计结果的可靠程度。
优点: 抽样时只需群的抽样框,可简化工作量;
调查的地点相对集中,节省调查费用,方 便调查的实施;
当群为总体的一个缩影时,抽样估计误差 小,否则误差较大。
五、多阶段抽样
又称多级抽样。前 4种抽样方法均为一次性直接从总体 中抽出样本,称为单阶段抽样。
多阶段抽样则是将抽样过程分为几个阶段,结合使用上 述方法中的两种或数种。例如,先用整群抽样法从北京 市某中等学校中抽出样本学校,再用整群抽样法从样本 学校抽选样本班级,最后用系统或纯随机抽样从样本班 级的学生中抽出样本学生。
灯泡的使用寿命可以看做是一个随机变量X,如 果能知道X的分布函数F(x),那么F(1000)就是次品率。 但对每只灯泡测试寿命是行不通的。
我们往往会从总体中随机抽取一部分个体,比如 100只灯泡,进行测试,求得分布函数,次品率,并 由此对总体进行推断。
3.4 抽样分布
一、抽样分布的概念
总体与样本
一、简单随机抽样 (simple random sampling)
从总体N个单位中随机地抽取n个单位作为样 本,使得总体中每一个元素都有相同的机会 (概率)被抽中;
抽取元素的具体方法有重复抽样和不重复抽样; 常用方法:抽签法。
特点
简单、直观,在抽样框完整时,可直接从 中抽取样本;
用样本统计量对目标量进行估计比较方便。 局限性

抽样与抽样分布

抽样与抽样分布

抽样与抽样分布抽样是统计学中一种重要的数据收集方法,通过从总体中选择一部分样本来代表整体,可以更方便、更经济地进行数据分析和推断。

而抽样分布则是与抽样密切相关的概念,指的是样本统计量的概率分布。

本文将从抽样的定义和目的、抽样方法和抽样分布的性质等方面进行探讨。

一、抽样的定义和目的抽样是统计学中利用一定的方法和技术从总体中选取一部分个体作为样本,以了解总体特征或者对总体进行推断的过程。

抽样的目的在于通过对样本的观测和研究来推断总体的特征,而无需对整个总体进行调查。

抽样可以减少调查或实验的成本、节约时间,并且在一定程度上能够保证结果的可靠性和精确度。

二、抽样方法1. 简单随机抽样:简单随机抽样是指从总体中随机选择样本,使每一个样本都有相同的概率被选中。

简单随机抽样通常需要使用随机数表、随机数发生器或者抽签等方法来实现。

2. 系统抽样:系统抽样是按照一定的规则和系统性地从总体中选择样本,例如每隔一个固定的间隔选取一个样本。

系统抽样的优点在于操作简单,但是如果总体中存在某种周期性或者规律性的分布,可能会导致抽样结果的偏差。

3. 整群抽样:整群抽样是将总体根据某些特征进行分类,然后从每个分类中随机选择一定数量的群体作为样本。

整群抽样适用于总体中存在明显的群体结构的情况,可以提高样本的代表性。

4. 分层抽样:分层抽样是按照某种特征将总体分为若干层,然后从每一层中随机选择一定数量的样本。

分层抽样可以更好地体现总体的结构和差异,提高样本的代表性和准确性。

三、抽样分布的性质抽样分布是样本统计量的概率分布,其具有以下几个重要性质:1. 无偏性:如果样本统计量的期望值等于总体参数的真值,那么称该统计量是无偏的。

即样本统计量是对总体参数的无偏估计。

无偏性是抽样分布的重要性质,保证了样本统计量的可靠性和准确性。

2. 一致性:当样本数量趋向无穷大时,样本统计量的值趋向于总体参数的真值。

即样本统计量在大样本情况下能够接近总体参数,具有一致性。

金融统计学课后答案

金融统计学课后答案

金融统计学课后答案统计学概述统计学是一门研究收集、分析、解释和呈现数据的学科。

在金融领域,统计学作为一种重要的分析工具,可帮助金融从业人员进行市场研究、风险评估和投资决策。

以下是金融统计学课后练习的答案。

第一章:数据和概率1.数据可以分为定量数据和定性数据。

定量数据是可以以数量或数字表示的数据,例如收入、股价等。

定性数据是指不能以数字来表示的数据,例如性别、产品类别等。

2.描述性统计学是指对数据进行总结和解释的统计方法,例如均值、中位数和标准差等。

推论统计学是通过对样本数据进行分析来对总体进行推断的统计方法,例如假设检验、置信区间等。

3.概率是一种度量事件发生可能性的方法。

概率可以用来预测事件的发生概率,并用于风险管理和投资决策中。

概率的范围是从0到1,表示事件发生的可能性。

概率为0表示事件不可能发生,概率为1表示事件一定会发生。

4.随机变量是一个具有随机性的变量,可以取不同的值。

离散随机变量只能取有限个或可数个值,连续随机变量可以取无限个值。

例如,抛硬币的结果可以表示为离散随机变量,股票价格可以表示为连续随机变量。

5.概率质量函数(Probability Mass Function, PMF)是离散随机变量的概率分布函数,用于描述每个可能值发生的概率。

概率密度函数(Probability Density Function, PDF)是连续随机变量的概率分布函数,描述了随机变量取某个值的概率密度。

6.期望是随机变量取值的加权平均值,表示了随机变量的平均值。

方差衡量随机变量取值的离散程度,是每个取值与均值之间差的平均值。

标准差是方差的平方根。

7.正态分布是一种常见的连续概率分布,具有钟形曲线形状。

正态分布由两个参数完全描述,即均值和标准差。

正态分布的均值决定了钟形曲线的中心位置,标准差决定了曲线的宽度。

许多自然现象和金融数据都近似于正态分布。

8.离散型随机变量的期望由每个可能值的取值及其对应的概率相乘再求和得到;连续型随机变量的期望由每个取值及其对应的概率密度相乘再积分得到。

统计学之抽样与抽样分布

统计学之抽样与抽样分布
a. n/N > 30 b. N/n < 0.05 c. n/N < 0.05 d. n/N > 0.05
正确答案: d. n/N > 0.05
8. 从一个均匀分布的总体中抽取一个样本容量为45的样本, 从什么分布?
a. 指数分布 b. 正态分布 c. 均匀分布 d. 无法判断
正确答案: b. 正态分布
考察所有900个申请者
• 考试成绩
• 总体平均成绩
xi 990
900
• 总体标准差
(xi )2 80 900
考察所有900个申请者
• 无相同工作经验的申请者比例
• 总体比例
p 648 .72 900
使用随机数表随机选择30个申请者作为样本进行研 究,从书上随机数表第三列开始
统计学之抽样与抽样分 布
2021年7月19日星期一
Chapter 7
抽样和抽样分布
本章主要内容
简单随机抽样 点估计 抽样分布
样本平均值x 的抽样分布 样本比例 p 的抽样分布
抽样方法
n = 100
n = 30
统计推断
统计推断的目的是利用样本的信息推断总体的信息 总体是指感兴趣的所有元素的集合 样本是总体的一个子集 通过样本统计量对总体参数进行估计 只要抽样方法恰当,通过样本统计量可以对总体参 数进行很好的估计
点估计
• x 作为 的点估计值 x xi 29,910 997
30 30
• s 作为 的点估计值
s
(xi x )2 163,996 75.2
29
29
• p 作为p 的点估计值
p 20 30 .68
值得注意的是,不同的随机数会导致不同的抽样,也就会 数的不同的点估计值

抽样与抽样分布

抽样与抽样分布

N (1.0 2.5) 2 (4.0 2.5) 2 2 0.625 16 n
比较及结论:1. 样本均值的均值(数学期望) 等于总体均值 2. 样本均值的方差等于总体方差的1/n
样本均值的分布与总体分布的比较 (例题分析)
总体分布
.3 P(X)
抽样分布
.3 .2 .1 0
样本均值的抽样分布
(例题分析)
【例】设一个总体,含有4个元素(个体) ,即总体单位 数N=4。4 个个体分别为x1=1、x2=2、x3=3 、x4=4 。总 体的均值、方差及分布如下 总体分布
.3
均值和方差

x
i 1
N
i
.2 .1 0
1 2 3 4
N
N i 1
2.5
2
2 ( x ) i
抽样中的泰坦尼克事件
在1936年美国总统选举前一份颇有名气的 杂志的工作人员做了一次民意调查, 调查兰 顿(当时任堪萨斯州州长)和罗斯福(当时总 统)中谁将担任下一界总统, 为了了解公众意 向, 调查者通过电话簿和车辆登记簿上的名 单给一大批人发了调查表, 通过分析回收的 调查表, 发现兰顿非常受欢迎,于是此杂志预 测兰顿将在选举中获胜.
系统抽样(systematic sampling)
将总体各单位按某种顺序排列,并按某种规则确 定一个随机起点,然后,每隔一定的间隔抽取一 个单位,直至抽取n个单位形成一个样本。
整群抽样(cluster sampling)
在总体中以群(或组)为单位,将简单或系统抽 样方式,抽取若干群(或)组,然后对所有抽中 的各群(或各组)中的全部单位一一进行调查。
1. t 分布是对称分布,均值为0。 2. 样本容量大于或等于30时, t 分布接近于标准正态分布,这时可 用标准正态分布来代替t 分布。 3. t 分布是一个分布族,不同自由度对应不同的 t 分布。 4. 与标准正态分布相比,t 分布的中心部分较低,两个尾部较高。 5. 变量t 的取值范围在 与 之间。

第三章_抽样与抽样分布2014分析

第三章_抽样与抽样分布2014分析
国政府制定了一个“抓阄”的征兵计划。该计划打 算把 1 到 366 的号码随机地分配给一年中每一天,然 后由军事部门按分配的号码顺序把生日与之对应的 年轻人分批征召入伍。这种方法的目的是为了给大 家相等的机会卷入这场不受欢迎的战争中,因此被 征召的可能性应该是随机的 在第一年的征兵计划中,号码1被分配给了9月14日, 分配方法是随机抽取一个大容器中的366个写上了日 子的乒乓球。结果所有年满18岁且生于9月14日的合 格青年将作为第一批被征召入伍。生日被分配为号 码2的青年则在第二批被征召入伍,以此类推
判断抽样 滚雪球抽样
湖北大学商学院 chen qianli
非概率抽样与概率抽样
• 统计推断是根据一部分单位构成的样本来
推断总体特征的统计方法,尽管样本的大 小很重要,但决定统计推断最关键的因素 是样本的代表性,即能否及在多大程度上 代表总体。 • 非概率抽样是指人为地选择一部分单位作 为样本的方法,尽管有时并不是那么明显。 如方便抽样和自愿样本。
湖北大学商学院 chen qianli
统计应用
“抓阄”征兵计划
然而结果是,有 73 个较小的号码被分配给了前半

年的日子,同时有110个较小的号码被分配给了后 半年的日子。换句话说,如果你生于后半年的某 一天,那么,你因为被分配给一个较小号码而去 服兵役的机会要大于生于前半年的人 在这种情况下,两个数字之间只应该有随机误差, 而73和110之间的差别超出了随机性所能解释的范 围。这种非随机性是由于乒乓球在被抽取之前没 有被充分搅拌造成的。在第二年,主管这件事的 部门在抓阄之前去咨询了统计学家 (这可能使生于 后半年的人感觉稍微舒服些)
2. 优点:操作简便,可提高估计的精度 3. 缺点:对估计量方差的估计比较困难

抽样和抽样分布培训课件(PPT 49张)

抽样和抽样分布培训课件(PPT 49张)

0.07 0.5279 0.5675 0.6064 0.6443 0.6808 0.7157 0.7486 0.7794 0.8078 0.8340 0.8577 0.8790 0.8980 0.9147 0.9292 0.9418 0.9525 0.9616 0.9693 0.9756 0.9808 0.9850 0.9884 0.9911 0.9932 0.9949 0.9962 0.9972 0.9979 0.9985 0.9989
7
自有限总体的抽样
• 无放回抽样:一个元素一旦选入样本,就从总体中剔除, 不能再次被选入。 • 放回抽样:一个元素一旦选入样本,仍被放回总体中。
先前被选入的元素可能再次被选,并且在样本中可出现
多次(多于一次)。
8
自无限总体的抽样
• 无限总体经常被定义为一个持续进行的过程,总体的元 素由在相同条件下过程无限运行下去产生的每一项构成。 在这种情况下,对总体内所有项排列是不可能的。
14
点估计
样本均值 51814.00美元 样本标准差
3347.72美元
样本比率 0.63
点估计的 统计过程
15
由30名管理人员组成的简单随机样本的点估计值
16
由30名管理人员组成的500个简单随机样本的点估计值
17
由30名管理人员组成的500个简单随机样本的抽样分布
• 抽样分布:样本统计量所有可能值构成的概率分布。
0.04 0.5160 0.5557 0.5948 0.6331 0.6700 0.7054 0.7389 0.7704 0.7995 0.8264 0.8508 0.8729 0.8925 0.9099 0.9251 0.9382 0.9495 0.9591 0.9671 0.9738 0.9793 0.9838 0.9875 0.9904 0.9927 0.9945 0.9959 0.9969 0.9977 0.9984 0.9988

第三章 抽样分布

第三章 抽样分布

F分布特征及查表方法:
F分布的上侧和下侧分位点见下图。 根据df1值和df2值及α值可在附表7中查出。如F4,20,0.01=4.431 附表7给出的是上侧分位数,要求下侧分位数需将df1和df2位置 对调再求倒数。 如F4,20,0.99=1/F20,4,0.01=1/14.0=0.0714 有些自由度下的 F 值附表 7 没有给出,可用线性内插方法求出。 F12,17,0.05=F12,15,0.05+(F12,20,0.05-F12,15,0.05)/(20-15)×(17-15)=2.396
(x x )
1 2
12
n1
n2
标准化(
u
( x 1 x 2 ) ( 1 2 )
12
n1

2 2
)后的变量服从
n2
标准的正态分布,这样可以推断在标准差已
知时,两个样本平均数的差异是否显著。
二、总体标准差未知但相等时,两个样本平均数和与差 的分布---t分布
例1:查df=9,α=0.05的χ 2值 例2:设随机变量k服从分布χ 2(5),求λ的值使其满足 P{k≤λ}=0.05
4.2 从两个正态分布总体中抽取的样本统计量的分布
假定有两个正态总体,分别具有(μ1,σ1)和(μ2,σ2)。 从第一个总体中随机抽取含量为 n1 的样本,并独立地从第二 个总体中抽取含量为 n2的样本。求出x1,s1和x2,s2。下面我们 研究x1±x2的分布。
X 0.1 1 2 F 0.1 即, P 0.5 0.997 0.5 0.5 n n n
解:P {∣ X -μ∣<0.1}= 0.997
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7
四、整群抽样
(cluster sampling)
1. 先将总体划分为若干个群,然后再以群作为 调查单位从中抽取部分群,然后对中选群中 的所有单位全部实施调查。
2. 特点
抽样时只需群的抽样框,可简化工作量
调查的地点相对集中,节省调查费用,方便调 查的实施
当群为总体的一个缩影时,抽样估计误差小, 否则误差较大。
一个任意分 布的总体
x
n
当样本容量足够 大时(n 30) , 样本均值的抽样 分布逐渐趋于正 态分布
2021/2/22
x
x
20
中心极限定理
(central limit theorem)
x 的分布趋 于正态分布 的过程
2021/2/22
21
3、样本均值抽样分布的数学特征
(数学期望与方差)
1. 样本均值的数学期望
2. 抽取元素的具体方法有重复抽样和不重复抽样 3. 特点
简单、直观,在抽样框完整时,可直接从中抽取样本 用样本统计量对目标量进行估计比较方便 4. 局限性 当N很大时,不易构造抽样框 抽出的单位很分散,给实施调查增加了困难 没有利用其他辅助信息以提高估计的效率
2021/2/22
5
二、分层抽样
2.

X~N(,2)
,则
zX~N(0,1)
3. 令 Y z2 ,则 Y 服从自由度为1的2分布,即 Y ~ 2(1)
4.
5. 当总体 X~N(,2) ,从中抽取容量为n的样本,则
n
(xi x)2
i1
2
~ 2(n1)
2021/2/22
29
2分布
(性质和特点)
1. 分布的变量值始终为正
2. 分布的形状取决于其自由度n的大小,通常为不对 称的正偏分布,但随着自由度的增大逐渐趋于对称
总体分布
.3 .2 .1 0
1
2021/2/22
234
均值和方差
N
xi
i1 2.5
N
Nቤተ መጻሕፍቲ ባይዱ
(xi )2
2 i1
N
1.25
15
样本均值的抽样分布
(例题分析)
现从总体中抽取n=2的简单随机样本,在重复抽 样条件下,共有42=16个样本。所有样本的结果为
所有可能的n = 2 的样本(共16个)
第一个
(stratified sampling)
1. 将总体单位按某种特征或某种规则划分为不 同的层,然后从不同的层中独立、随机地抽 取样本
2. 优点
保证样本的结构与总体的结构比较相近,从而 提高估计的精度
组织实施调查方便
既可以对总体参数进行估计,也可以对各层的 目标量进行估计
2021/2/22
6
三、系统抽样
计算卡方值 2 = (n-1)s2/σ2
计算出所有的 2值
不同容量样本的抽样分布
n=1 n=4 n=10 n=20
2
31
课堂作业
1、从一个标准差为5的总体中抽出一个容量为 40的样本,样本均值为25,样本均值的数 学期望是多少?标准差是多少?分布是什么?
2、从π=0.4的总体中,抽取一个容量为100 的样本,问p的数学期望是多少?P的标准差 是多少?P的分布是什么?
2021/2/22
8
4.2 三种不同性质的分布
1、总体分布(population distribution) 总体中各元素的观测值形成的相对频数分布。 总体分布通常是不知道的。 总体参数:均值、比例、方差等。
2021/2/22
9
2、样本分布(sample distribution)
•从总体中抽取一个容量为n的样本,有这n个 观测值形成的相对频数分布。
学期望为μ,方差为σ2/n。即x~N(μ,σ2/n)
=10
n= 4
x 5
n =16
x 2.5
= 50 X
总体分布
x 50
x
抽样分布
2021/2/22
19
中心极限定理
(central limit theorem)
中心极限定理:设从均值为,方差为 2的一个任意总
体中抽取容量为n的样本,当n充分大时,样本均值的抽 样分布近似服从均值为μ、方差为σ2/n的正态分布
总体比例可表示为 N0 或1N1
N
N
样本比例可表示为 pn0 或1pn1
n
n
2021/2/22
25
1、样本比例的抽样分布
• 在重复选取容量为n的样本时,由样本比例 的所有可能取值形成的相对频数分布
• 一种理论概率分布 • 当样本容量很大时,样本比例的抽样分布可
用正态分布近似 • 推断总体比例的理论基础
E(x)
2. 样本均值的方差
重复抽样
2 x
2
n
不重复抽样
x2
2
n
Nn N1
2021/2/22
22
样本均值的抽样分布
(数学期望与方差)
n
x
xi i1
1.01.5 4.02.5
M
16
n
(xi x)2
2 i1 x
M
(1.02.5)2
(4.02.5)2
2
0.625
16
n
M为样本数
比较及结论:1. 样本均值的均值(数学期望) 等于总体均值
一、样本均值的抽样分布
1. 在重复选取容量为n的样本时,由样本均值 的所有可能取值形成的相对频数分布
2. 一种理论概率分布
3. 推断总体均值的理论基础
2021/2/22
14
1、样本均值的抽样分布
(例题分析)
【例】设一个总体,含有4个元素(个体) ,即总体单位 数N=4。4 个个体分别为x1=1,x2=2,x3=3,x4=4 。总 体的均值、方差及分布如下
(n 1) s 2
2
的抽样分布服从自由度为 (n -1) 的2分布,即
(n1)s2 ~2(n1) 2
2021/2/22
28
2分布
(2 distribution)
1. 由阿贝(Abbe) 于1863年首先给出,后来由海尔墨特
(Hermert)和卡·皮尔逊(K·Pearson) 分别于1875年和
1900年推导出来
总体分布
.3
.2
.1 0
1
234
= 2.5
σ2 =1.25
2021/2/22
.3 P ( x )
抽样分布
.2
.1
0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 x
x 2.5
x2 0.625
18
2、样本均值的抽样分布 与中心极限定理
当总体服从正态分布N(μ,σ2)时,来自该总体的所有 容量为n的样本的均值x也服从正态分布,x 的数
(systematic sampling)
1. 将总体中的各单位按一定顺序排列,在规定 的范围内随机地抽取一个单位作为初始单位, 然后按事先规定好的规则确定其他样本单位
先从数字1到k之间随机抽取一个数字r作为初始 单位,以后依次取r+k,r+2k…等单位
2. 优点:操作简便,可提高估计的精度
2021/2/22
第二个观察值
观察值
1
2
3
4
1
1,1
1,2
1,3
1,4
2
2,1
2,2
2,3
2,4
3
3,1
3,2
3,3
3,4
4
4,1
4,2
4,3
4,4
2021/2/22
16
样本均值的抽样分布
(例题分析)
计算出各样本的均值,如下表。并给出样本均 值的抽样分布
16个样本的均值(x)
第一个
第二个观察值
观察值 1 2 3 4
2021/2/22
32
谢谢观赏
2021/2/22
33
2021/2/22
26
2、样本比例的数学特征
(数学期望与方差)
• 样本比例的数学期望
E(p)
• 样本比例的方差
重复抽样
p2
(1)
n
不重复抽样
2 p
(1)Nn
n N1
2021/2/22
27
三、样本方差的抽样分布
• 在重复选取容量为n的样本时,由样本方差的 所有可能取值形成的相对频数分布
• 对于来自正态总体的简单随机样本,则比值
第三章抽样与抽样分布
2021/2/22
1
第 3 章 抽样与抽样分布
4.1 常用的抽样方法 4.2 三种不同性质的分布 4.3 一个总体参数推断时样本统计量的抽样
分布
是学习参数估计、假设检验和方差分析的基础
2021/2/22
2
4.1 常用的抽样方法
一、简单随机抽样 二、分层抽样 三、系统抽样 四、整群抽样
3. 期望为E(2)=n,方差为D(2)=2n(n为自由度)
4. 可加性:若U和V为两个独立的服从2分布的随机 变量,U~2(n1),V~2(n2),则U+V这一随机变 量服从自由度为n1+n2的2分布
2021/2/22
30
总体
2021/2/22
2分布
(图示)
选择容量为n 的 简单随机样本 计算样本方差s2
•样本统计量:样本均值,样本比例,样本方 差等
2021/2/22
10
3、抽样分布(sampling distribution)
某个样本统计量的抽样分布,在理论上说就是在 重复选取容量为n的样本时,由该统计量的的所有 可能取值形成的相对频数分布。 •是一种理论分布。 •随机变量是样本统计量 •结果来自容量相同的所有可能样本 •提供了样本统计量长远而稳定的信息,是进行推 断的理论基础,也是抽样推断科学性的重要依据
相关文档
最新文档