第1课时:分式的概念
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【学习课题】第1课时 分式的概念
【学习目标】1、能判断一个代数式是否为分式
2、能说出一个分式有意义的条件
3、会求分式值为零时,字母的取值
【学习重点】会求分式有意义时,字母的取值范围
【学习难点】求分式值为零时,字母的取值
【学习过程】
一、学习准备: 1、用六种运算符号连接数或表示数的字母的式子叫 。
2、在加、减、乘、除运算中,只有除数不能为 。
二、新知探究
1、 完成下面的填空:
1)
小明家离学校路程有2000米,他以每分钟V 米的速度步行上学需要 分钟。 2)
王亮为家里买回a 千克苹果用去15元钱,苹果单价为 。 3) 甲每小时做x 个零件,乙每小时比甲少做5个零件,则乙做100个零件需要 小时。
上述代数式的共同特征是 ;
它们与整式的区别是 。
一般的,整式A 除以整式B ,可以写成____的形式。如果B 中含有____,式子
B A 就叫____,其中A 叫___ _,B 叫__ __。
即时练习:下列哪些代数式是整式,哪些代数式是分式? 错误!未找到引用源。a b 2,错误!未找到引用源。2a+b,错误!未找到引用源。-x 32,错误!未找到引用源。32x ,错误!未找到引用源。πa ,错误!未找到引用源。x -32,错误!未找到引用源。5x -y z
整式有: ;分式有:
三、挖掘教材
1、在整式中,由于字母表示的数只作加法,减法,乘法,乘方运算,所以字母的取值可以是____;而在分式中,含字母表达的数作为除数,因为除数为零时,式子没有意义。因此,分式的____取值不能为____。
3、分式的值为零所需要的条件为___________ _。
例1:已知:分式
432+-x x 1)
当x 取何值时,分式没有意义? 2) 当x 取何值时,分式有意义?
解: 错误!未找到引用源。当________时,分式没有意义。
由3x+4=0,得x=____,∴当x=_____时,分式没有意义。
错误!未找到引用源。当x ≠______时,______不等于0,此时分式有意义。
即时练习:
1、 当x 取什么值时,下列分式有意义?
(1)x 1 ;(2)x 2 ;(3)32-x x ;(4)2
1+-x x ; (4)
12-x x ;(5)152+x x 。 2、 当x 取什么值时,下列分式无意义?
(1)12+x x ;(2)4
12-x 。 例2:当x 取何值时,分式3
92+-x x 的值为0? 解:,由⎩⎨⎧=-≠+090
32x x ,得x=_____,∴x=_____时,分式的值为0。
即时练习:
3、 当x 取什么值时,下列分式的值为零?
(1)x
x 12- ;(2)1212+-x x ;(3)33++x x 。 反思小结:
1、能判断一个代数式是否为分式
2、能说出一个分式有意义的条件
3、会求分式值为零时,字母的取值
【达标检测】
1、下列各式中,哪些是整式?哪些是分式? (1)a b 2 ;(2)2a+b ;(3)x x -+-41 ;(4)xy 21 。
2、
11+x 有意义,则x_______。3、如果)2)(1(1---x x x 有意义,则x_______。 4、如果6
5-+x x 的值为0,则x=____。5、当x______时,分式32122+--x x x 的值为0。 【资源链接】
1、今天学习的分式与分数有什么共同点?
2、分式与整式有什么区别?分式与整式中,字母取值范围有什么区别?
3、若3
6 x 的值为正整数,求x 的值。