高考数学复习资料整理大全(精华版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学基础知识归类——分享给2019年高三(理科)考生(精华版)
高考数学复习资料整理大全(精华版)
一.集合与简易逻辑
1.注意区分集合中元素的形式.如:{|lg }x y x =—函数的定义域;{|lg }y y x =—函数的值域; {(,)|lg }x y y x =—函数图象上的点集.
2.集合的性质: ①任何一个集合A 是它本身的子集,记为A A ⊆. ②空集是任何集合的子集,记为A ∅⊆.
③空集是任何非空集合的真子集;注意:条件为A B ⊆,在讨论的时候不要遗忘了A =∅的情况 如:}012|{2
=--=x ax x A ,如果A R +
=∅,求
a
的取值.(答:0a ≤)
④()U
U
U
C A B C A C B =,()U
U
U
C A B C A C B =;A B C A B C =()(); A B C A B C =()().
⑤A B A A B B =⇔=U
U
A B C B C A ⇔⊆⇔⊆U
A C
B ⇔=∅U
C A B R ⇔=. ⑥A B 元素的个数:()()card A B cardA cardB card A B =+-.
⑦含n 个元素的集合的子集个数为2n ;真子集(非空子集)个数为21n -;非空真子集个数为22n
-. 3.补集思想常运用于解决否定型或正面较复杂的有关问题。
如:已知函数12)2(24)(2
2+----=p p x p x x f 在区间]1,1[-上至少存在一个实数c ,使 0)(>c f ,求实数p 的取值范围.(答:32
(3,)-)
4.原命题: p q ⇒;逆命题: q p ⇒;否命题: p q ⌝⇒⌝;逆否命题: q p ⌝⇒⌝;互为逆否的两
个命题是等价的.如:“βαsin sin ≠”是“βα≠”的 条件.(答:充分非必要条件) 5.若p q ⇒且q p ≠>,则p 是q 的充分非必要条件(或q 是p 的必要非充分条件).
6.注意命题p q ⇒的否定与它的否命题的区别: 命题p q ⇒的否定是p q ⇒⌝;否命题是p q ⌝⇒⌝. 命题“p 或q ”的否定是“p ⌝且q ⌝”;“p 且q ”的否定是“p ⌝或q ⌝”. 如:“若a 和b 都是偶数,则b a +是偶数”的否命题是“若a 和b 不都是偶数,则b a +是奇数” 否定是“若a 和b 都是偶数,则b a +是奇数”.
7.常见结论的否定形式
A A 同元素在
B 中可以有相同的象;集合B 中的元素不一定有原象(即象集B ⊆).
②一一映射f :A B →: ⑴“一对一”的对应;⑵A 中不同元素的象必不同,B 中元素都有原象. 2.函数f : A B →是特殊的映射.特殊在定义域A 和值域B 都是非空数集!据此可知函数图像与x 轴 的垂线至多有一个公共点,但与y 轴垂线的公共点可能没有,也可能有任意个.
3.函数的三要素:定义域,值域,对应法则.研究函数的问题一定要注意定义域优先的原则.
4.求定义域:使函数解析式有意义(如:分母0≠;偶次根式被开方数非负;对数真数0>,底数0> 且1≠;零指数幂的底数0≠);实际问题有意义;若()f x 定义域为[,]a b ,复合函数[()]f g x 定义 域由()a g x b ≤≤解出;若[()]f g x 定义域为[,]a b ,则()f x 定义域相当于[,]x a b ∈时()g x 的值域.
5.求值域常用方法: ①配方法(二次函数类);②逆求法(反函数法);③换元法(特别注意新元的范围).
④三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域; ⑤不等式法⑥单调性法;⑦数形结合:根据函数的几何意义,利用数形结合的方法来求值域; ⑧判别式法(慎用):⑨导数法(一般适用于高次多项式函数).
6.求函数解析式的常用方法:⑴待定系数法(已知所求函数的类型); ⑵代换(配凑)法; ⑶方程的思想----对已知等式进行赋值,从而得到关于()f x 及另外一个函数的方程组。
7.函数的奇偶性和单调性
⑴函数有奇偶性的必要条件是其定义域是关于原点对称的,确定奇偶性方法有定义法、图像法等;
⑵若()f x 是偶函数,那么()()(||)f x f x f x =-=;定义域含零的奇函数必过原点((0)0f =); ⑶判断函数奇偶性可用定义的等价形式:()()0f x f x ±-=或()()
1(()0)f x f x f x -=±≠;
⑷复合函数的奇偶性特点是:“内偶则偶,内奇同外”.
注意:若判断较为复杂解析式函数的奇偶性,应先化简再判断;既奇又偶的函数有无数个
(如()0f x =定义域关于原点对称即可).
⑸奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;
⑹确定函数单调性的方法有定义法、导数法、图像法和特值法(用于小题)等. ⑺复合函数单调性由“同增异减”判定. (提醒:求单调区间时注意定义域)
如:函数12
2
log (2)y x x =-+的单调递增区间是_____________.(答:(1,2))
8.函数图象的几种常见变换⑴平移变换:左右平移---------“左加右减”(注意是针对x 而言); 上下平移----“上加下减”(注意是针对()f x 而言).⑵翻折变换:()|()|f x f x →;()(||)f x f x →. ⑶对称变换:①证明函数图像的对称性,即证图像上任意点关于对称中心(轴)的对称点仍在图像上.
②证明图像1
C 与2
C 的对称性,即证1
C 上任意点关于对称中心(轴)的对称点仍在2
C 上,反之亦然.
③函数()y f x =与()y f x =-的图像关于直线0x =(y 轴)对称;函数()y f x =与函数 ()y f x =-的图像关于直线0y =(x 轴)对称;
④若函数()y f x =对x R ∈时,()()f a x f a x +=-或()(2)f x f a x =-恒成立,则()y f x =图像关 于直线x a =对称;
⑤若()y f x =对x R ∈时,()()f a x f b x +=-恒成立,则()y f x =图像关于直线2
a b x +=对称; ⑥函数()y f a x =+,()y f b x =-的图像关于直线2
b a x -=对称(由a x b x +=-确定); ⑦函数()y f x a =-与()y f b x =-的图像关于直线2
a b x +=对称; ⑧函数()y f x =,()y A f x =-的图像关于直线2
A y =对称(由()()
2
f x A f x y +-=确定);
⑨函数()y f x =与()y f x =--的图像关于原点成中心对称;函数()y f x =,()y n f m x =-- 的图像关于点22
(,)m n
对称;
⑩函数()y f x =与函数1
()y f x -=的图像关于直线y x =对称;曲线1
C :(,)0f x y =,关于 y x a =+,y x a =-+的对称曲线2
C 的方程为(,)0f y a x a -+=(或(,)0f y a x a -+-+=;