生物统计习题及答案-2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生物统计与试验设计——作业二
彭继光 3090100060 植物保护
1. If a random variable X follows the normal distribution N(2, 25), let random variable Y =
X;2
5 ,z =*
2X −X
+,
1) what’s the expectation and variance of random variable Y ,what’s the distribution this random variable follows? E(Y)=E(
X;25
)=
E(X);25
=
2;25=0;
Var(Y)=Var(
X;25
)=Var(X
5)= 1
25σ2(X )=25
25=1;
This random variable Y follows standard normal distribution Y~N(0,1)
2)deduce(推断) the expectation and variance of random vector z ,what ’s distribution it follows ?
E(z )=E *2X
−X +=[E(2X)E(−X)]=[2E(X)−E(X)]=*4−2
+
Var(z )=Var *2X
−X
+=Var(z) = E{[z -E(z )][z -E(z )]T }
=E ,[*2X −X +-*4−2+][*2X
−X +-*4−2
+]T-= E {*2X −4−X +2+*2X −4−X +2+T }
= E ,*2X −4−X +2
+[2X −4−X +2]-
= E [4(X −2)2−2(X −2)2−2(X −2)2(X −2)2]=[4E(X −2)2−2E(X −2)2
−2E(X −2)2E(X −2)2]
T =
X;μσ
~N(0,1) X =σ∙T +μ=5T+2 E(T)=0
E(X −2)2=E(5T +2−2)2=E(5T)2=25E(T 2)=25∫t 2:∞
;∞φ(t 2)dt =25∫t :∞
;∞√
2π
;t
2/2
dt =25
∴Var(z )= *4×25−2×25−2×2525+=*100−50
−5025+
∴z ~MVN (*4−2+,*100−50
−5025
+)
2. To study on the relationship between the lean meat (瘦肉量y) with eye muscle area (眼肌面积x 1)、leg meat (腿肉量x 2 )、waist meat (腰肉量x 3 ), a sample of 25 pigs was sampled, and trait investigation was conduced. The model y i =b 0+b 1x i1+b 2x i2+b 3x i3+e i was analyzed for the the multiple variable linear regression of lean meat on eye muscle meat, leg meat, waist meat. Suppose SSR =2
3.865,R 2=0.842,
b̂0(SE)= 0.857 (1.384),b̂1(SE)=0.0187(0.0296),b̂2(SE)=2.073(0.270),b̂3(SE)=1.938
(0.513).
1) Please write out SAS statements for the step of procedure if the data set has been established;
date lean;
input eye leg waist @@;
card;
……
……
……
;
proc reg;
model lean= eye leg waist;
run;
2) Calculate the total sum of squares SSTO, residual sum squares SSE and adjusted determinant coefficient for the model R a2;
R2=SSR
SSTO SSTO=SSR
R2
=23.865
0.842
=28.343
SSTO=SSR+SSE SSE=SSTO-SSR=28.343-23.865=4.478
MSE=SSE/(n-p-1)= 4.478/(25-3-1)=0.213
MSTO=SSTO/(n-1)= 28.343/24=1.181
R a2=1−MSE/MSTO=1-0.213/1.181=0.820
3) Conduct statistical test on the linear relationship of lean meat on eye muscle meat, leg meat, waist meat, and give out appropriate statistical inference(统计推断);
y i=0.857+0.0187x i1+2.073x i2+1.938x i3+e i
原假设H0:b1=b2=b3=0
备择假设H1:上式不成立
F∗=MSR
MSE =23.865
0.213
=112.042
F(0.05;p,n-p-1)=F(0.05;3,21)=3.07
∴F∗>F(0.05;3,21) 否定原假设,接受备择假设。
方差分析表明,F检验达到极显著水平。因而瘦肉量y与眼肌面积x1、腿肉量x2、腰肉量x3存在回归关系。大约82%的瘦肉量是由这三个产量构成因素决定的。
4) Conduct statistical test on the significance of each regression parameter, according to the results of statistical test, is it necessary to modify(修改) the model? why ?
上面第二题检验只是否定了所有自变量的回归参数均为零的假设H0:b1=b2=b3=0,但这并不能进一步判断认为每个自变量的回归参数均不为零。下面对每个自变量用t检验: