09第九章_力矩分配法

合集下载

结构力学-力矩分配法

结构力学-力矩分配法
• 作用与结点上的外力偶荷载,约束力矩, 也假定顺时针转动为正号,而杆端弯矩 作用于结点上时逆时针转动为正号。

3、转动刚度S:
• 表示杆端对转动的抵抗能力。 在数值上= 仅使杆端发生单位转动时需在杆端施加 的力矩。AB 杆A 端的转动刚度SAB与AB 杆的线刚度 i(材料的性质、横截面 的形 状和尺寸、杆长)及远端支承有关,而 与近端支承无关。当远端是不同支承时, 等截面杆的转动刚度如下:
转动刚度
在确定杆端转动刚度时:近端看位移(是否为单位位移)
远端看支承(远端支承不同,转动刚度不同)。
下列那种情况的杆端弯矩MAB=SAB
MAB
MAB
θ MAB
1
√ ① ②
1
MAB
1
③④
1
Δ
转动刚度SAB=4i是( )
A
i
B
A
i
√ √ B ①

A
i
B

A
i
4i>SAB>3i
√B ②
A
i⑤ B
i
返回
二、基本运算
AA1155kkNN↓↓↓↓44↓↓i00↓↓=kk↓↓1NN↓↓↓↓//mm↓↓↓↓ DD
MA 10
80
mAB
M=15 i=2
mAD mAC CC
MM图图((kkNN..mm))
22mm
22mm
44mm
A
C
D
AD
AC
CA
DA
3/9
2/9
- 80
15
10
-10 返回
- 65
10
- 10
三、多结点力矩分配法
⑶为了取消结点C的刚臂,放松结点C,在结点C加上 (-(MC+ M传)),如图d,为了使BCD部分只有一个角位 移,结点B再锁住,按基本运算进行力矩分配和传递。结 点C处于暂时的平衡。

力矩分配法

力矩分配法

C
41.3 C 133.1 D M图(kN· m)
1 CB 0.667 1 1 2 CD 0.333
20kN/m A EI=1 6m 92.6 B EI=2 4m
100kN C 4m EI=1 6m D
43.6
A 21.9 B 133.1 51.8 A 56.4
M图
2M/7 3M/7
q
例题 i
l
4/7 3/7 固端弯矩 分配、传递 杆端弯矩 2ql2/56 2ql2/56 ← 4ql2/56 ← 4ql2/56 -ql2/8 3ql2/56 -4ql2/56 4ql2/56 M图 4ql2/56 → → 0 0
l
i
例1. 用力矩分配法作图示连续梁的弯矩图。
①求固端弯矩;
②将汇交于结点的固端弯矩之和按分配系数分配给每一个杆端。
③各杆按各自的传递系数向远端传递。
④将固端弯矩和分配(或传递的弯矩)相加,得杆端最后弯矩。
M
例题
ii
4/7 3/7
ii
固端弯矩 分配、传递 杆端弯矩 2M/7 2M/7 ←
-M 4M/7 3M/7 4M/7 3M/7 4M/7 → 0 0
S i
S 0
练习
i
k
Sik=4iik
k
i
k
Sik=3iik Sik=0
i
Sik=4iik
k
i
k
i
Sik=4iik
i
k
Sik=4iik
q
Mik=-ql2/12
i l k
Mki=ql2/12
(2)分配系数(按位移法推导) 写出杆端弯矩: M AB=S AB A 4i AB A M AC=S AC A i AC A M AD=S AD A 3i AD A 由 M A=0 得: M M AB M AC M AD

09渐进法与近似法

09渐进法与近似法
E BC杆件看作:一端固定一端滑动单元。
i
C
A
B
其中:
AB

i 3i i
0.25
AD AB BA
0.75 0.25 0.2
BE
0.6
C BC CB
0.2
BC
i 3iii
0.2
FBgC
2FPL16kN 2
9.6
-8.0 -8.0 -4.8 4.8 3.2 -3.2
-16.0 -16.0
对图示有侧移刚架,则不能直接应用无剪力分配法。 因竖柱AB、CD既不是两端无线位移杆件,也不是剪力静 定杆件,不符合无剪力分配法的应用条件。
FP B
D
E
A
C
§9-4 无剪力分配法
例1:用力矩分配法计算图示刚架。Fra bibliotek4kN
i
A
i
4kN
i B
D 图示刚架有侧移杆件的剪力是静定的, 因此可以采用无剪力分配法计算,即把AB
2)支座沉降而非载荷因素问题时,将其视为“广义载 荷”求固端弯矩(可根据转角位移方程或单跨超静 定梁的杆端内力表求得)。
3)对于对称结构,取半结构计算。 4)对于多结点问题,为了使计算收敛速度加快,通常
宜从不平衡力矩值较大的结点开始计算(放松)。
§9-4 无剪力分配法
1、概述 1)两类刚架的区别
在位移法中,刚架被分为无侧移刚架与有侧移 刚架两类,它们的区别在位移法的基本未知量。 无侧移刚架——基本未知量只含结点角位移;
对其它层杆件的影响很小。 为了简化计算,由此作如下假设: 1)在竖向荷载作用下,忽略刚架的侧移; 2)作用在梁上的荷载只对本层梁及上下层的柱子有影响。
§9-5 近似法

09第九章_力矩分配法

09第九章_力矩分配法

09第九章_力矩分配法第九章力矩分配法本章的问题:A.力矩分配法的适用条件是什么?B.什么叫固端弯矩?约束力矩如何计算?C.什么是转动刚度、分配系数和传递系数?D.什么是不平衡力矩?如何分配?E.力矩分配法的计算步骤如何?F.对于多结点的连续梁和无侧移的刚架是如何分配和传递弯矩的?力矩分配法是位移法的渐近法。

适用于连续梁和无结点线位移的刚架。

§ 9-1力矩分配法的基本概念力矩分配法的理论基础是位移法,属于位移法的渐近方法。

适用范围:是连续梁和无结点线位移的刚架。

针对本方法,下面介绍有关力矩分配法的几个相关概念。

1、名词解释(1)转动刚度转动刚度表示杆端对转动的抵抗能力。

杆端的转动刚度以S表示,它在数值上等于使杆端产生单位转角时需要施加的力矩。

图9-1给出了等截面杆件在A端的转动刚度S AB的数值。

关于S AB 应当(1)在S AB(2)S AB在图9-1中,由图9-1远端固定:远端简支:远端滑动:远端自由:i图9-1各种结构的转动刚度(2)分配系数图9-2所示三杆AB 、AD 、AC 在刚结点A 连接在一起。

远端B 、C 、D 端分别为固定端,滑动支座,铰支座。

假设有外荷载M 作用在A 端,使结点A 产生转角θA ,然后达到平衡。

试求杆端弯矩 M AB 、 M AC 、 M AD 。

由转动刚度的定义可知:M AB = S AB θA = 4i AB θA M AC = S AC θA = i AC θA M AD= S AD θA = 3i AD aθM A θ=式中将A θ即:杆AB的转动刚度与交于A点的各杆的转动刚度之和的比值。

注意:同一结点各杆分配系数之和应等于零。

即Σμ=μAB+μAC+μAD=1总之:作用于结点A的力偶荷载M,按各杆端的分配系数分配于各杆的A端。

(3)传递系数在图9-2中,力偶荷载M作用于结点A,使各杆近端产生弯矩,同时也使各杆远端产生弯矩。

由位移法的刚度方程可得杆端弯矩的具体数值如下:M AB = 4i ABθA M B A = 2i ABθAM AC = i ACθA M CA =-i ACθAM AD =3i ADθA M DA = 0由上式可看出,远端弯矩和近端弯矩的比值称为传递系数用C AB表示。

力矩分配法ppt课件

力矩分配法ppt课件

Z1 MA'
D
A
Z1
Z1
C Aj

M jA M Aj
B
M BA 2iAB Z1 MCA 0 M DA iADZ1
M BA M AB
CAB

1 2
M CA M AC
C AC
0
M DA M AC

C
AC
1
MAC
MA' A
MAD
在等截面杆件中,弯矩传递系数 C 随远端的MAB支承情况而 不同。三种基本等截面直杆的传递系数如下:
一、单结点连续梁的力矩分配法
⑶放松刚臂,计算刚臂转动
A
Z1时结点的反力矩R11。
3m
M B A 4iZ1 SBAZ1
M B C 3iZ1 SBCZ1 R11 M B A M B C 0
A
基本体系
R11 (M B A M B C ) (SBA SBC )Z1
17
第7章 力 矩 分 配 法
§7.2 力 矩 分 配 法 的 基 本 原 理
⑵计算固端弯矩
20kN/m
100kN
M
F AB
ql 2
12
30 42
12
60.0kN m
A EI=1 B EI=2
92.6
C EI=1 D
M
F BA

60.0kN

m
M
F BC


Fl 8

1008 8
远端固定
C Aj
1 2
远端滑动 C Aj 1
远端铰支 CAj 0
7
第7章
力矩分配法

《力矩分配法 》课件

《力矩分配法 》课件

05
力矩分配法的未来发展与展 望
力矩分配法在新型结构中的应用
新型材料结构
随着新型材料的不断涌现,力矩分配法在复合材料、智能材料等新型结构中的应 用将更加广泛,为复杂结构的分析和设计提供有力支持。
新型连接方式
针对新型连接方式如焊接、胶接等,力矩分配法将进一步完善其理论体系,以适 应不同连接方式的特性,提高结构的安全性和可靠性。
通过将结构划分为若干个独立的杆件或单元,并假定每个杆件的一端为固定端 ,另一端为自由端,然后根据力的平衡条件和变形协调条件,逐个求解各杆件 的内力和变形。
适用范围与限制
适用范围
适用于分析具有连续梁和刚架结构形 式的问题,如桥梁、房屋、塔架等。
限制
对于具有复杂结构形式或非线性性质 的问题,力矩分配法可能无法得到准 确的结果,需要采用其他数值方法或 实验方法进行分析。
根据杆件长度和截面特性,将杆件力 矩分配至杆件两端。
分配过程中要考虑杆件的弯曲变形和 剪切变形。
计算杆件内力
根据杆件力矩和截面特性,计算杆件的内力(弯矩和剪力) 。
内力的计算要考虑材料的力学性能,如弹性模量、泊松比等 。
03
力矩分配法的应用实例
桥梁工程中的应用
1 2
3
桥梁设计
力矩分配法可以用于计算桥梁的弯矩、剪力和轴力等,为桥 梁设计提供依据。
与其他方法的比较
与有限元法比较
力矩分配法适用于分析具有连续梁和刚架结构形式的问题,计算过程相对简单,但无法处理复杂的结 构形式和非线性问题。有限元法则可以处理各种复杂的结构形式和非线性问题,但计算过程相对复杂 。
与实验方法比较
实验方法可以获得较为准确的结果,但需要耗费大量的人力和物力资源,且实验过程可能存在风险。 力矩分配法虽然可能存在一定的误差,但可以在一定程度上替代实验方法,节省资源和时间。

渐近法有力矩分配法

渐近法有力矩分配法

附加刚臂,即相当于在B结点作用一个反向的不平衡力矩(-MB),求 出各杆端的分配弯矩及传递弯矩MC,叠加各杆端弯矩即得原连续 梁各杆端的最后弯矩。连续梁的M、FS图及支座反力则不难求出。 用力矩分配法作题时,不必绘图9-3(b)、(c)所示图,而是按一定的格 式进行计算,即可十分清晰地说明整个计算过程,举例如下。
§9-2 力矩分配法的基本原理
力矩分配法对连续梁和无结点线位移刚架的计算特别方 便,下面先介绍几个常用的名词。 1.转动刚度(也称为劲度系数)S
(a)
SAB=4i
A A=1
l 远端固定SAB=4i
(d)
A=1
A
MAB=4i=SAB
MAB=2i
B
MAB=2i
B
(b)
SAB=3i
A A=1
MAB=0
4.力矩分配法的基本原理 以图9-3(a)为例进行说明:
(1)设想在B结点加上一个刚臂阻止B结点转动如图9-3(b)所示。 此时只有AB跨受荷载作用产生变形,相应的杆端弯矩MFAB、 MFAB即 为固端弯矩、,附加刚臂的反力矩可取B结点为隔离体而得:
ΣMB=0
,M B

MF, BA
MB是汇交于B结点各杆端固端弯矩代数和,

A
S AD M S



AD M

A

式中AB、AC、 AD称为分配系数,就相当于把结点力矩M按各杆转
动刚度的大小比例分配给各杆的近端,所得的近端弯矩称为分配弯 矩,用M表示。其中汇交于A结点各杆端分配系数之和为1,即
1 。
Aj
AB
AC
AD
远端杆端弯矩MBA=MAB/2、MCA=-MAC、MDA=0,是由分配弯矩乘 传递系数而得,即为传递弯矩。

第九章力矩分配法原理

第九章力矩分配法原理

∑MAg = -45
MABg
M=15
- 50
50
- 80
10 1/2 20 10 15
A MADg
- 40
70 10 - 65
70 65
-1
-10
40 100
- 10 C
B
A
D
10
80
M图(kN ·m)
C
§9-2 多结点的力矩分配
力矩分配法计算多结点结构,只要逐次放松每一个结点,应用单结 点力矩分配法的基本运算,就可逐步地渐近地求出杆端弯矩。
2、传递系数C: 当杆件的近端发生转动时,其远端弯矩与近端弯矩的比值:
C M远 M近
∴远端弯矩可表达为: M BA CAM B AB
等截面直杆的传递系数
CAB=1/2 SBA=2i
A
i
B
CAB=0
SBA=0
A
i
B
CAB= -1 SBA=-i
A
i
B
i
§9-1 力矩分配法的基本概念
等截面直杆的转动刚度和传递系数如下表:
§9-1 力矩分配法的基本概念
2、单结点结构在跨中荷载作用下的力矩分配法
1)锁住结点,求固端弯矩及 结点不平衡力矩
200kN
20kN/m
↓↓↓↓↓↓↓↓↓↓↓
M AB g
结2点00不 6平衡1力50kN 矩要8反号分配.
m μ
A
3i
3m
M BA g
20结0点 6不平15衡0k力N矩 m
=8固端弯矩之和
A

⑤A
i
B
i
B
i
B
i 4i>SAB>3i

力矩分配法的基本原理

力矩分配法的基本原理

A
MAB
=3i 1
。则劲度系数与杆件的远端支承
EI
SAB=MAB=3i
情况有关,由转角位移方程知 远端固定时: SAB= 4i 远端铰支时: SAB= 3i
A
MAB
=i 1
A
EI
SAB=MAB=i
EI
远端滑动支撑时: SAB= i 远端自由时: SAB= 0
MAB =0
SAB=MAB=0
B
MBA
B
B B MBA
图(a)所示刚架用位移法计算时,只有一个未知量即结点转角
Z1,其典型方程为
r11Z1+R1P=0
绘出MP图(图b), 可求得自由项为
R1P=
R1P是结点固定时附加刚臂上的反力矩,可称为刚臂反力矩,它等
于结点1的杆端固端弯矩的代数和
,即各固端弯矩所不平衡的
差值,称为结点上的不平衡力矩。
绘出结构的 图(见图c),计算系数为:
力矩分配法为克罗斯(H.Cross)于1930年提出,这一方法对连
续梁和无结点线位移刚架的计算尤为方便。
1.劲度系数、传递系数
1
⑴劲度系数(转动刚度)Sij
A
EI
定义如下:当杆件AB的A端转 MAB 动单位角时,A端(又称近端)的弯 =4i 1
L SAB=MAB=4i
矩MAB称为该杆端的劲度系数,用 SAB表示。它标志着该杆端抵抗转 动能力的大小,故又称为转动刚度
例 9—1 试用力矩分配法作刚架的弯矩图。
解:
30kN/m
(1)计算各杆端分配系数
50kN
60 55.5 67.2 32.2
AB=
AB=0.445 AC=0.333

结构力学 课件 力矩分配法

结构力学 课件 力矩分配法

SAB
1
2 传递系数C
传递系数: 一单跨超静定梁的一端(A端)单位转角时,发生于远 端(B端)的弯矩与近端(A端)的弯矩之比。
如: 当远端(B端)固定,C AB
M
BA
SAB
1 2 S AB
MBA
A B
图(a)
1
C 当远端(B端)铰支 , AB
M
SAB
A
B
BA
0
SAB
A
1
图(b)
S AB
(1)设想在结点B增加一个附加刚臂,得到位 移法基本结构。阻止其转动如图(g)所示。 查表容易得到各单跨超静定梁的杆 端弯矩。则附加刚臂的约束力矩由 结点B的平衡条件得
M
B
Fp
A
q
B C
图(f)
MB
A
Fp
B
q
C
图(g)
M
F BA
M
F BC
MB MBAF -MB
A B C
附加刚臂的约束力矩MB 是原结构 上所没有的,它反映了基本结构汇 交于B结点的各杆B端弯矩所不能平 衡的差额。我们称之为B结点的不 平衡力矩。
MBCF
图(h)
(2)原结构在结点B本来没有转动约束,即不存在不平衡力矩MB ,因 此,为了与实际情况相符,必须消除人为引入的附加刚臂,即使MB 0,这就相当于在 MB的基础上再施加上一个(- MB )如图(h)所示。
此时梁将产生新的杆端弯矩M´BA 、 M´BC (分配弯矩),在远端将产生新 的杆端弯矩M´AB 、 M´CB 、(传递弯 矩)。 (3)原结构在荷载的作用下的实际杆端弯 矩应为图(g) 和图(h)两种情况的叠加。 下面举例说明力矩分配法的解题过 程。

9力矩分配法

9力矩分配法

CB 1
CD 0
③传递系数
1 CCB 2
CBC 0
第9章 力矩分配法
§9-3 对称结构的计算
取一半结构进行计算,注意杆件截半后,线刚度增倍。 例9-3-1 求矩形衬砌在上部土压力作用下的弯矩图。
q
A EI1 F
B
EI2
K
l2
C
解:设梁的线刚度为i1=EI1/l1 柱的线刚度为i2=EI2/l2
⑸最后一轮循环最后一个结点分配后只向其他结点传递。
第9章 力矩分配法
⑹不能同时放松相邻结点(因定不出其转动刚度和传递系数), 但可以同时放松所有不相邻的结点,以加快收敛速度。
A
B
C
D
E
B、D同时分配后向C传递,C分配后再同时向B、D传递,如此循 环。
A
B
C
D
E
F
B、D同时分配后同时向C、E传递,C、E同时分配后再同时向B、 D传递,如此循环。
A
B
15.86 3m 3m
C M (kNm) 6m
结点
A
B
C
解:① 不平衡力矩
m
g AB
Pl 8
20 6 8
15
m
g BA
Pl 8
15
mBgC
ql2 8
9
mBg
m
g BA
mBgC
6
杆端
AB
BA BC CB ②分配系数
分配系数
4/7 3/7
固端弯矩 -15
15
-9 0
平衡
分配传递 -1.72 -3.43 -2.57 0
第9章 力矩分配法
§9-1 力矩分配法的基本概念

第9章 力矩分配法

第9章 力矩分配法

§9.3
多结点的力矩分配法
【例9-2】 用力矩分配法计算图9.6(a)所示两结点多跨超静定梁,
画出梁的弯矩图。
【解】(1)固定结点。固 定结点B和C,计算各杆的固 端弯矩。 (2)计算B、C结点上的不 平衡力矩。 (3)计算分配系数。分别 计算相交于结点B和结点C的 各杆杆端的分配系数。 (4)放松结点,计算分配 弯矩和传递弯矩,填入计算 表中,如图9.6(b)所示。 (5)停止分配、传递计算 后,将杆端所有固端弯矩、 分配弯矩、传递弯矩(即表 中同一列的弯矩值)代数相
2. 在静定结构中,除了荷载作用以外,其他因素如支座移动、温 度改变、制造误差等,都不会引起内力。在超静定结构中,任何上述
§9.4
超静定结构的特性
3. 静定结构在任一约束遭到破坏后,即丧失几何不变性,因而就不 再承受荷载。而超静定结构由于具有多余约束,在多余约束遭到破坏 后,仍能保持其几何不变性,因而还具有一定的承载能力。
4. 局部荷载作用对超静定结构比对静定结构影响的范围大。 例如图9-8a)所示连续梁,当中跨受荷载作用时,两边跨不仅发生 弯曲变形,且产生内力。而图9-8b)所示多跨静定梁,受同样荷载作 用时,两边跨只随着转动,但不产生内力。因此,超静定结构比静定 结构的内力分布要均匀些。
小结 力矩分配法是建立在位移法基础上的一种数值逼近法,不 需要求解未知量。对于单结点结构,计算结果是精确结果; 对于两个及以上结点的结构,力矩分配法是一种近似计算方 法,但其误差是收敛的,即是可以循环计算直至误差在允许 范围内。 力矩分配法计算过程中需要注意以下两点: 1. 在运用力矩分配法解题的过程中,变形过程被想象成两 个阶段:第一阶段是固定结点,加载,得到的分配法求杆端 弯矩,并作M图。
分配系数 固端(A)

9力矩分配法

9力矩分配法

21.4
6.1
-9.2 -12.2 -6.1
1.8
6.1
1.8 3.5 2.6
… … ...
14
q 12kN / m
A
EI
1 EI
10m
10m
2 EI
10m
BA
q 12kN / m
1
B 2
q 12kN / m
A
M
u 1
ql2 / 8
1
ql2 / 12
M
u 2
2

B MF 0
28.6
100
-28.6 -57.1 -42.9
分0

21.4
6.1
传 递
0.429 0.571 0.571 0.429 150 -100 100 0 0 -28.6 -57.1 -42.9 0 -9.2 -12.2 -6.1 1.8 3.5 2.6 0 -0.8 -1.0
-9.2 -12.2 -6.1
1.8
6.1
SAB 4i
AiB SAB 3i
对等直杆,SAB只与B端的
支撑条件有关。
A端一般称为近端(本端),
AiB
B端一般称为远端(它端)。
SAB i
4
M
d BA

SBA B
M
d BC

SBC B
M
u B

M
d BA

M
d BC
0
B

S BA
1 SBC

(
M
u B
)
M
d BA

S BA SBA SBC
q 12kN / m B

第九章 力矩分配法

第九章  力矩分配法

BC ( M B ) M BC
例1. 用力矩分配法作图示连续梁 (1)B点加约束 的弯矩图。 167.2 M图(kN· m) 200 6 115.7 F 200kN 150 kN m MAB = 20kN/m 8 90 300 F= 150 kN m M BA EI EI C B A 2 20 6 90kN m MBCF= 3m 6m 3m 8 MB= MBAF+ MBCF= 60 kN m 200kN 60 20kN/m (2)放松结点B,即加-60进行分配 C 设i =EI/l B A 计算转动刚度: -150 150 -90 SBA=4i SBC=3i + -60 4i 0.571 0.429 BA 0.571 分配系数: 4i 3i C A -17.2 -34.3 B -25.7 0 0.571 A -150
Hale Waihona Puke 第9章 力矩分配法【例9-6】设图示连续梁支座A顺时针转动了0.01rad,支座B、C分别下沉了
ΔB =3cm和ΔC =1.8cm,试作出M图,并求D端的角位移θD。已知 EI=2×104kN· m2。
A =0.01rad
B A EI
B
C EI =3cm 4m EI
C =1.8cm
D
4m 3.47 A
分 配 与 传 递
-5.72
+2.86 +2.86 -0.41 +0.21 +0.20 -81.93 +81.93
-11.43 -8.57
4i 0.625 4i 3 0.8i DE BA 0.375
2、计算固端弯矩
F M DE 2kN m F M DC 5.62kN m F M CD 9.38kN m

第9章 力矩分配法

第9章 力矩分配法

2ql
11 32
l
A
l
l
结点 杆端
B B1
A A1
1 1A 1B 1C 1/2 3/8 1/8
C C1



2ql
ql 2 / 4
MF 0 所得的结果是 分配 0 传递 近似解吗? M 0 q
-1/4 1/4 1/8
0
0
3 64
3 64
3 3 9 3 16 32 64 64
11 32 1 16 1 3 64 64
练习
20 kN / m 40 kN .m
求不平衡力矩
A
EI
B
EI
C
6m
20 kN / m
4m
40 kN .m
60
A
60
B
40 kN .m
u MB
C
M 60 40 100kN.m
u B
作图示梁的弯矩图(利用传递系数的概念)
20kN.m A
EI
60
40kN.m
10 kN
B
EI
C
6m
4m
练习:作弯矩图
1.固定结点,计算固端弯矩 f M AB ql2 / 12 100kN.m f M BA 100kN.m
q 12kN / m
A
EI
B
EI
C
M M 0 分配系数: 4i 4 BA 0.571 4i 3i 7 3i 3 BC 0.429 4i 3i 7 2.放松结点 不平衡力矩:M B 100kN.m 分配弯矩:
… … ...
A
q 12kN / m
EI
1

矿产

矿产

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

相关文档
最新文档