三角函数模型的简单应用教案
三角函数模型的简单应用教案北师大版
![三角函数模型的简单应用教案北师大版](https://img.taocdn.com/s3/m/ee702246b6360b4c2e3f5727a5e9856a5612268e.png)
作业反馈:
1. 及时批改意见和评分。
2. 指出存在的问题:在批改作业时,教师应指出学生在作业中存在的问题,如计算错误、概念不清、逻辑推理不严密等,并给出具体的改进建议。
- 通过拓展学习,拓宽学生的知识视野和思维方式。
- 通过反思总结,帮助学生发现自己的不足并提出改进建议,促进自我提升。
教学资源拓展
1. 拓展资源
- 数学杂志和期刊:推荐学生阅读一些与三角函数模型相关的数学杂志和期刊,如《数学通报》、《数学进展》等,以了解最新的研究进展和应用实例。
- 在线数学论坛和社区:鼓励学生参与在线数学论坛和社区,如数学吧、知乎数学板块等,与其他学习者和专业人士交流问题和经验。
(2)实际问题与三角函数模型的联系。
学生可能难以将实际问题与三角函数模型建立联系,无法从实际问题中抽象出三角函数模型。
(3)三角函数模型在实际问题中的应用方法。
学生可能对如何运用三角函数模型解决实际问题感到困惑,无法正确选择和使用三角函数模型。
(4)三角函数模型的推理和论证。
学生可能对如何运用三角函数模型进行推理和论证感到困难,无法逻辑清晰地阐述推理过程。
- 学习三角函数的历史和发展:介绍三角函数的历史背景和发展过程,让学生了解三角函数的重要性和影响,培养他们对数学的兴趣和好奇心。
- 探索三角函数的性质和图像:引导学生深入研究三角函数的性质和图像,如周期性、奇偶性、单调性等,通过实践活动和数学软件工具进行探索和验证。
- 参与数学研究和交流:鼓励学生积极参与数学研究和交流活动,如参加数学研究小组、参与数学研讨会等,与他人分享自己的研究成果和思考。
〖2021年整理〗《三角函数模型的简单应用》优秀教案
![〖2021年整理〗《三角函数模型的简单应用》优秀教案](https://img.taocdn.com/s3/m/05e1e7a8a8956bec0875e306.png)
三角形函数模型的简单应用一、教学目标 (一)核心素养通过这节课学习,了解并掌握三角函数模型应用基本步骤,会利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型 (二)学习目标1.了解并掌握三角函数模型应用基本步骤.2.利用收集到的数据作出散点图,根据散点图进行函数拟合,建立三角函数模型,掌握利用三角函数模型解决实际问题的方法.3.感悟“数形结合”、“函数与方程”的数学思想,并能理解应用“数形结合”、“函数与方程”思想解决有关具有周期运动规律的实际问题. (三)学习重点1.运用三角函数模型,解决一些具有周期性变化规律的实际问题2.从实际问题中发现周期变化的规律,并将所发现的规律抽象为恰当的三角函数模型. (四)学习难点分析、整理、提取和利用信息,将实际问题抽象转化成三角函数模型,并综合运用相关知识解决实际问题. 二、教学设计 (一)课前设计 1.预习任务(1)三角函数可以作为描述现实世界中 周期 现象的一种数学模型 (2)=|in |是以 π 为周期的波浪形曲线 2.预习自测 (1)函数=in (2-3π)的最小正周期为 π (二)(2)已知某地一天从4~16时的温度变化曲线近似满足函数=10in (8π-45π)2021∈4,16],则该地区这一段时间内的最大温差为 2021课堂设计 1知识回顾(1)参数A (A ﹥0),ω(ω﹥0),φ对函数图象的影响(2)函数=A in (ωφ)的图象(3)=A in (ωφ),∈[0,∞+)(A ﹥0,ω﹥0)中各量的物理意义 2问题探究例1 如图,某地一天从6—14时的温度变化曲线近似满足函数=in ωφb1求这一天6—14时的最大温差;2写出这段曲线的函数解析式 【知识点】正弦函数的图像与性质 【数学思想】数形结合的数学思想 【解题过程】解:1由图可知,这段时间的最大温差是20212从图中可以看出,从6—14时的图象是函数=A in ωφb 的半个周期的图象,∴A =2130-10=10,b =213010=202121·ωπ2=14-6,∴ω=8π将=6,=10代入上式,解得φ=43π综上,所求解析式为=10in8π43π2021∈6,14]【思路点拨】本例是研究温度随时间呈周期性变化的问题,引导学生观察给出的模型函数并思考要解决的问题,让学生体会不同的函数模型在解决具体问题时的不同作用提醒学生注意本题中所给出的一段图象实际上只取6—14即可,此段恰好为半个周期本题所求出的函数模型只能近似刻画这天某个时段的温度变化情况,因此应当特别注意自变量的变化范围同类训练 如下图表示的是电流I 与时间t 的函数关系()⎪⎭⎫ ⎝⎛<>+=2,0sin πϕωϕωt A I 在一个周期内的图象1根据图象写出()ϕω+=t A I sin 的解析式; 2为了使()ϕω+=t A I sin 中的t 在任意一段1001的时间内电流I 能同时取得最大值和最小值,那么正整数ω的最小值为多少【知识点】正弦函数的图像与性质 【数学思想】数形结合【解题过程】解:1由图知A =300,第一个零点为-3001,0,第二个零点为1501,0, ∴πϕωϕω=+⋅=+⎪⎭⎫ ⎝⎛-⋅1501,03001解得3,100πϕπω==,∴⎪⎭⎫ ⎝⎛+=3100sin 300ππt I 2依题意有T ≤1001,即ωπ2≤1001,∴πω200≥故629min =ω 【思路点拨】观察图像带入零点和最值点是求解解析式的常用办法例2 如图,设地球表面某地正午太阳高度角为θ,δ为此时太阳直射纬度,φ为该地的纬度值,那么这三个量之间的关系是θ=90°-|φ-δ|当地夏半年δ取正值,冬半年δ取负值如果在北京地区纬度数约为北纬40°的一幢高为0h 的楼房北面盖一新楼,要使新楼一层正午的太阳全年不被前面的楼房遮挡,两楼的距离不应小于多少【知识点】正切函数 【数学思想】数形结合【解题过程】太阳高度角的定义:设地球表面某地纬度值为φ,正午太阳高度角为θ,此时太阳直射纬度为δ,那么这三个量之间的关系是θ=90°-|φ-δ|当地夏半年δ取正值,冬半年δ取负值由地理知识可知,南、北回归线之间的地带可被太阳直射到,由画图易知太阳高度角θ、楼高h 0与此时楼房在地面的投影长h 之间有如下关系:h 0=h tanθ由地理知识可知,在北京地区,太阳直射北回归线时物体的影子最短,直射南回归线时物体的影子最长因此,为了使新楼一层正午的太阳全年不被遮挡,应当考虑太阳直射南回归线时的情况解:如图,A 、B 、C 分别为太阳直射北回归线、赤道、南回归线时楼顶在地面上的投影点要使新楼一层正午的太阳全年不被前面的楼房遮挡,应取太阳直射南回归线的情况考虑,此时的太阳直射纬度-23°26′依题意两楼的间距应不小于MC 根据太阳高度角的定义,有∠C =90°-|40°--23°26′|=26°34′, 所以MC =tanC h 0=34'26tan h 0≈ 即在盖楼时,为使后楼不被前楼遮挡,要留出相当于楼高两倍的间距【思路点拨】引导学生思考楼高与楼在地面上投影长之间的关系,带领学生分析问题,提示学生从复杂的背景中抽取基本的数学关系,调动相关学科知识来帮助解决问题,最终将实际问题抽象为与三角函数有关的简单函数模型,再根据所得的函数模型解决问题同类训练 某市的纬度是北纬23°,小王想在某住宅小区买房,该小区的楼高7层,每层3米,楼与楼之间相距15米要使所买楼层在一年四季正午太阳不被前面的楼房遮挡,他应选择哪几层的房?【知识点】正切函数 【数学思想】数形结合【解题过程】解:北楼被南楼遮挡的高度为 h =15tan [90°-23°23°26′]=15tan43°34′≈, 由于每层楼高为3米,根据以上数据, 所以他应选3层以上【思路点拨】结合图像恰当的选择三角函数解决实际问题例 3 货船进出港时间问题:海水受日月的引力,在一定的时候发生涨落的现象叫潮一般地,早潮叫潮,晚潮叫汐在通常情况下,船在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋下面是某港口在某季节每天的时间与水深关系表:时刻 0:003:006:009:0012:0015:0018:0021:0024:00水深/米1选用一个函数来近似描述这个港口的水深与时间的函数关系,给出整点时的水深的近似数值精确到2一条货船的吃水深度船底与水面的距离为4米,安全条例规定至少要有米的安全间隙船底与洋底的距离,该船何时能进入港口在港口能呆多久3若某船的吃水深度为4米,安全间隙为米,该船在2:00开始卸货,吃水深度以每小时米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域活动1:引导学生观察上述问题表格中的数据,发现规律并进一步引导学生作出散点图引导学生根据散点的位置排列,思考并建立相应的函数模型刻画其中的规律活动2:根据学生所求得的函数模型,指导学生利用计算器进行计算求解根据题意,一天中有两个时间段可以进港问题1:你所求出的进港时间是否符合时间情况?如果不符合,应怎样修改?问题2:第3问中,应保持港口的水深不小于船的安全水深,那么如何刻画船的安全水深呢? 问题3:根据问题的实际意义,货船的安全水深正好等于港口的水深时停止卸货行吗?为什么?正确结论是什么?【知识点】正弦函数的图像与性质 【数学思想】数形结合 【解题过程】解:1以时间为横坐标,水深为纵坐标,在直角坐标系中画出散点图根据图象,可以考虑用函数=Ainωφh 刻画水深与时间之间的对应关系从数据和图象可以得出: A =,h =5,T =12,φ=0, 由T =ωπ2=12,得ω=6π所以这个港口的水深与时间的关系可用=6π5近似描述 由上述关系式易得港口在整点时水深的近似值:时刻 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 水深 时刻 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20210 21:00 22:00 23:00 水深2货船需要的安全水深为4=米,所以当≥时就可以进港 令6π5=,in6π=MODE MODE由计算器可得 2SHIFT in -1=357 92≈ 4如图,在区间[0,12]内,函数=6π5的图象与直线=有两个交点A 、B ,因此6π≈ 4,或π-6π≈ 4 解得A x ≈ 8,B x ≈ 2由函数的周期性易得:C x ≈12 8= 8,D x ≈12 2= 2因此,货船可以在0时30分左右进港,早晨5时30分左右出港;或在中午12时30分左右进港,下午17时30分左右出港每次可以在港口停留5小时左右(3)设在时刻货船的安全水深为,那么=在同一坐标系内作出这两个函数的图象,可以看到在6—7时之间两个函数图象有一个交点通过计算也可以得到这个结果在6时的水深约为5米,此时货船的安全水深约为米;时的水深约为米,此时货船的安全水深约为米;7时的水深约为米,而货船的安全水深约为4米因此为了安全,货船最好在时之前停止卸货,将船驶向较深的水域【思路点拨】引导学生思考,怎样把此问题翻译成函数模型引导学生将实际问题的意义转化为数学解释,同时提醒学生注意题目需留意的定量与变量,如:货船的安全水深、港口的水深同时在变,停止卸货的时间应当在安全水深接近于港口水深的时候让学生进一步体验“数形结合”思想和“函数与方程”思想在解决数学问题中的作用结论:在货船的安全水深正好等于港口的水深时停止卸货将船驶向较深水域是不行的,因为这样不能保证货船有足够的时间发动螺旋桨同类训练 设()y f t =是某港口水的深度关于时间t 时的函数,其中024t ≤≤,下表是该港口某一天从0至24时记录的时间t 与水深的关系t 0 3 6 9 12 15 18 21 2412经长期观察,函数()y f t =的图象可以近似地看成函数sin()y k A t ωϕ=++的图象 根据上述数据,函数()y f t =的解析式为( )A .123sin,[0,24]6ty t π=+∈ B .123sin(),[0,24]6ty t ππ=++∈C .123sin ,[0,24]12t y t π=+∈D .123sin(),[0,24]122t y t ππ=++∈【知识点】三角函数的图像与性质 【数学思想】数形结合【解题过程】由表可得,最大值为15,相邻两个最大值之间间隔12,故周期T =12,故6122ππ=,故6πω=,答案选A【思路点拨】观察表格,求出相邻两个波峰之间的横向距离,即周期 【答案】A3. 课堂总结 知识梳理三角函数模型应用的基本方法及一般步骤:①审题:观察收集到的数据,寻找规律,发现数据间的数量关系;②建模:根据已知数据绘制散点图,建立三角函数式、三角不等式或三角方程等; ③求解:根据题意求出某点的三角函数值;④检验:检验所求解是否符合实际意义,通过比较,选择恰当的函数模型拟合数据; ⑤还原:将所得结论转译回实际问题 重难点归纳建立数学模型的关键,先根据题意设出代表函数,再利用数据求出待定系数,然后写出具体的三角函数式. (三)课后作业基础型 自主突破,B ,C 是△ABC 的三个内角,且in A >in B >in C ,则 >B >C2πC >2π【知识点】根据三角函数判断三角形各角大小 【数学思想】三角函数图象的应用【解题过程】∵in A >in B >in C ,又 三角形内角和为180°,∴由函数=in ,),(π0∈图象可得A >B >C 【思路点拨】由于三角形内角和为180°,所以讨论函数为=in ,),(π0∈ 【答案】A2.2021年8月,在北京召开国际数学家大会,大会会标如图所示,它是由四个相同的直角三角形、与中间的小正方形拼成的大正方形.若直角三角形中较小的锐角为θ,大正方形的面积为1,小正方形的面积为251,则in θco θ= .【知识点】在实际问题中建立三角函数模型.【数学思想】主要考查求解三角函数,关键是理解题意并正确利用勾股定理【解题过程】解:由题意,大正方形的边长为1,小正方形的边长为51设θ所对的直角边为,则由勾股定理得:15122=⎪⎭⎫ ⎝⎛++x x∴=53,∴in θ=53,co θ=54∴in θco θ=57【思路点拨】根据正方形的面积=边长2,可知大正方形及小正方形的边长,根据图形,大正方形的边长即是直角三角形的斜边,小正方形的边长即是直角三角形两个直角边的差,从而可求相应三角函数的值. 【答案】57能力型 师生共研的函数关系,I =A in ωφω>0,|φ|<2π在一个周期内的图象1根据图象写出I =A in ωφ的解析式; 2为了使I =A in ωφ中的t 在任意一段1001的时间内电流I 能同时取得最大值和最小值,那么正整数ω的最小值为多少【知识点】在实际问题中建立三角函数模型. 【数学思想】三角函数模型的构建【解题过程】1由图知A =300,第一个零点为-3001,0,第二个零点为1501,0, ∴ω·-3001φ=0,ω·1501φ=π解得ω=100π,φ=3π∴I =300in100πt 3π2依题意有T ≤1001,即ωπ2≤1001,∴ω≥=629 【思路点拨】根据图象可求得相应三角函数,根据题意利用所得三角函数求出电流I 及ω 【答案】1I =300in100πt 3π;2629 探究型 多维突破(米)是时间t (0≤t ≤24,单位:小时)的函数,下表是水深数据:t (小时) 0 3 6 9 12 15 18 21 24 (米)根据上述数据描成的曲线如图所示,经拟合,该曲线可近似地看成正弦函数=A in ωtb 的图象. (1)试根据数据表和曲线,求出=A in ωtb 的表达式;(2)一般情况下,船舶航行时船底与海底的距离不小于米是安全的,如果某船的吃水度(船底与水面的距离)为7米,那么该船在什么时间段能够安全进港?若该船欲当天安全离港,它在港内停留的时间最多不能超过多长时间?(忽略离港所用的时间)【知识点】在实际问题中建立三角函数模型. 【数学思想】三角函数模型的构建,解三角不等式 【解题过程】解:(1)根据数据可得,Ah =13,-Ah =7, ∴A =3,h =10, T =15﹣3=12,∴ω=T π2=6π, ∴=3in (6πφ)10将点(3,13)代入可得π=0 ∴函数的表达式为=3in6πt 10(0≤t ≤24) (2)由题意,水深≥7,即3in6πt 10≥(0≤t ≤24), ∴3in 6πt ≥,∴6πt ∈[2π6π,2π65π],=0,1, ∴t ∈[1,5]或t ∈[13,17];所以,该船在1:00至5:00或13:00至17:00能安全进港. 若欲于当天安全离港,它在港内停留的时间最多不能超过16小时.【思路点拨】(1)根据数据,Ah =13,-Ah =7,可得A =3,h =10,由T =15﹣3=12,可求ω=6π,将点(3,13)代入可得φ=0,从而可求函数的表达式;(2)由题意,水深≥7,即3in6πt 10≥(0≤t ≤24),从而可求t ∈[1,5]或t ∈[13,17] 【答案】(1)=3in 6πt 10(0≤t ≤24);(2)1:00至5:00或13:00至17:00;在港内停留的时间最多不能超过16小时自助餐1甲、乙两人从直径为2r 的圆形水池的一条直径的两端同时按逆时针方向沿池做圆周运动,已知甲速是乙速的两倍,乙绕池一周为止,若以θ表示乙在某时刻旋转角的弧度数, 表示甲、乙两人的直线距离,则=f θ的图象大致是【知识点】三角函数模型的应用【数学思想】根据题目要求选择恰当的三角函数模型【解题过程】根据题意可知θ=π时,两人相遇,排除B ,D ;两人的直线距离不可为负,排除A .【思路点拨】由题意知θ=π时,两人相遇,两人的直线距离不可为负【答案】C安培随时间t 秒变化的函数I =Ain ωt φ的图象如图所示,则当t =1207秒时的电流强度【知识点】三角函数模型的应用【数学思想】函数=A in (ωφ),∈[0,∞+)(A ﹥0,ω﹥0)中各量的物理意义【解题过程】根据题意可知A =10,1001300130042=-=T ,可知501=T ,从而得π100=ω;当3001=t 时,10=I ,从而可得φ=6π;于是可得I =10in (10π6π)故当t =1207时,I =0 【思路点拨】由题意知θ=π时,两人相遇,两人的直线距离不可为负【答案】A3一个大风车的半径为8米,12分钟旋转一周,它的最低点离地面2米,求风车翼片的一个端点离地面距离h 米与时间t 分钟之间的函数关系式【知识点】三角函数模型的应用【数学思想】根据题目要求建立恰当的三角函数模型【解题过程】以最低点的切线为轴,最低点为原点,t , t 则ht = t 2,又设P 的初始位置在最低点,即0=0,在Rt △O 1PQ 中,∠OO 1P =θ,co θ=8()8y t -,∴t = -8co θ8, 而212π=t θ,∴θ=6t π,∴t = -8co 6t π8, ∴h t = -8co 6t π10【思路点拨】根据题意建立合适的直角坐标系,利用给定的几何关系和三角函数构建角度和长度的关系,列出函数表达式,化简即可得出结果【答案】h t =-8co 6t π10。
《三角函数模型的简单应用》教学设计
![《三角函数模型的简单应用》教学设计](https://img.taocdn.com/s3/m/4e11b695ad51f01dc281f1c1.png)
【师】大家发现,水深变化并不市杂乱无章,而是呈现一种周期性变化规律,为了更加直观明了地观察出这种周期性变化规律,我们需要做什么工作呢?
【】需要画图。
【师】非常好,下面大家拿出一张白纸,以时间为横坐标,以水深为纵坐标建立平面直角坐标系,将上面表格中的数据对应点描在平面直角坐标系中去。
(学生活动,求解解析式
【生】从数据和图像可以得出:7.52.522.5, 5, 12, 02A h T πϕω
-======
【师】这样一来我们就得到了一个近似刻画水深与时间关系的三角函数模型,为了保证所选函数的精确性,通常还需要一个检验过程(因为时间关系,老师事先已经帮大家检验过了,这里就不检验,同学们可以下去检验下有了这个模型,我们要制定一张一天24内整时刻的水深表,就是件非常容易的事情了.
(学生活动:作图
【师】(电脑呈现作图结果大家可以发现如果我们用平滑的曲线将上面所描各点连起来,得到的图象形状,可以用哪个函数来刻画呢?
【生】跟三角函数模型sin( y A wx h ϕ=++很象。(师板书2.5sin 55.50.3(2 6x
x π+≥--
【师】下面你们能把刚才同学所给的这个函数模型给求出来吗?
问题探究1:如图所示,下面是某港口在某季节每天的时间与水深关系表:
时刻水深/米时刻水深/米时刻水深/米
3:00 7.5 12:00 5.0 21:00 2.5
【师】请同学们仔细观察表格中的数据,你能够从中得到一些什么信息?
【生】(思考中发现水深的最大值是7.5米,最小值是2.5米。
【师】水的深度变化有什么特点吗?
2024-2025学年高一数学必修第一册(配湘教版)教学课件5.5三角函数模型的简单应用
![2024-2025学年高一数学必修第一册(配湘教版)教学课件5.5三角函数模型的简单应用](https://img.taocdn.com/s3/m/7e3a02835122aaea998fcc22bcd126fff7055db8.png)
解得
π
φ=2kπ-12 ,k∈Z.
π
π
由- <φ< ,
2
2
所以
π
φ=- .
12
所以
π
f(x)=2sin(2x-12 ),故选
C.
规律方法
给出y=Asin(ωx+φ)的图象的一部分,确定A,ω,φ的方法
(1)逐一定参法:先通过图象确定A和ω,再选取“第一零点”(即“五点法”作图
中的第一个点)的数据代入“ωx+φ=0”(要注意正确判断哪一点是“第一零
应用三角函数模型解决问题,首先要把实际问题抽象为数学问题,通过分析
它的变化趋势,确定它的周期,从而建立起适当的三角函数模型,解决问题
的一般程序如下:
(1)审题,先审清楚题目条件、要求、理解数学关系.
(2)建模,分析题目特性,选择适当的三角函数模型.
(3)求解,对所建立的三角函数模型进行分析研究得到数学结论.
2π
又||=12,取
则有
又
π
ω=6 ,
π
h=Asin6 t,
π
h(3)=Asin2 =A=-6,
故所求解析式为
π
h=-6sin6 t.
重难探究·能力素养速提升
探究点一 由y=Asin(ωx+φ)的图象确定其解析式(或参数值)
【例 1】 函数
π
π
f(x)=Asin(ωx+φ)(A>0,ω>0,-2 <φ<2 )的部分图象如图所示,
A.x轴上
B.最低点
C.最高点
D.不确定
解析 相邻的最大值与最小值之间间隔半个周期,故乙移至最高点.
1 2 3 4 5
1.5三角函数的应用(教案)(教案)
![1.5三角函数的应用(教案)(教案)](https://img.taocdn.com/s3/m/112c44e3f021dd36a32d7375a417866fb84ac034.png)
3.增强学生的直观想象与数据分析能力:通过对三角函数图像的观察与分析,让学生在实际问题中运用三角函数知识,培养他们的直观想象与数据分析素养。
三、教学难点与重点
-理解三角函数图像与性质的关系:学生在理解三角函数图像与性质之间的关系时可能会感到困惑。
-突破方法:利用动态图像、互动软件等教学工具,帮助学生直观地理解函数图像与性质之间的关系。
-建立和求解三角函数模型:学生在建立模型和求解过程中可能会遇到各种问题,如参数的选择、公式的应用等。
-突破方法:通过小组合作、讨论交流等方式,让学生在尝试解决问题的过程中,逐步掌握建立和求解三角函数模型的方法。
4.教学过程中,我发现有些学生对三角函数的应用仍然局限于课堂上的例子,缺乏将知识拓展到其他领域的能力。为了提高学生的知识迁移能力,我计划在后续的教学中加入更多不同领域的实际问题,让他们学会运用三角函数知识解决问题。
5.总结回顾环节,学生对今天所学内容的掌握程度较高,但仍有个别学生在某些知识点上存在疑惑。在课后,我会及时关注这些学生的疑问,并给予个别辅导,确保他们能够跟上教学进度。
3.三角函数模型的建立:结合实际问题,建立三角函数模型,如气温变化、物体振动等,并运用所学的三角函数知识进行求解。
本节课旨在让学生掌握三角函数在实际问题中的应用,提高他们解决实际问题的能力,同时深化对三角函数图像与性质的理解。
二、核心素养目标
本节课的核心素养目标主要包括以下三个方面:
1.培养学生的数学抽象能力:通过三角函数在实际问题中的应用,让学生学会从实际问题中抽象出数学模型,提高数学抽象素养。
高中课件 三角函数模型的简单应用
![高中课件 三角函数模型的简单应用](https://img.taocdn.com/s3/m/b2c26a72fe00bed5b9f3f90f76c66137ee064fd0.png)
1.通过对三角函数模型的简单应用的学习, 初步学会由图象求解析式的方法; 2.体验实际问题抽象为三角函数模型问题的 过程; 3.体会三角函数是描述周期变化现象的重要 函数模型.
在我们现实生活中有很多现象在进行周而复始地变化,用
数学语言可以说这些现象具有周期性1、,物理情而景—我—们所学的三角
①简谐运动
.
(2)货船需要的安全水深为 4+1.5=5.5 (米),所以
当y≥5.5时就可以进港.令
化简得
sin
6
x
2.5 sin
0.2
6
x
5
5.5
由计算器计算可得
6
x
0.2014,或来自6x0.2014
y
6
4
AB
CD
2
O
3 6 9 12 15 18 21 24
x
解得 xA 0.3848, xB 5.6152
1.6三角函数模型的简单应 用
本节课以三角函数各种实践生活中的模型让学生 体验一些具有周期性变化规律的实际问题的数学“建 模”思想,从而培养学生建模、分析问题、数形结合、 抽象概括等能力.
让学生切身感受数学建模的过程,体验数学在解 决实际问题中的价值和作用,从而激发学生的学习兴 趣,培养锲而不舍的钻研精神;培养学生勇于探索、 勤于思考的精神.
分析:根据地理知识,能够被太阳直射到的地区为——
南,北回归线之间的地带.画出图形如下,由画图易知
H
A
B
C
解:如图,A、B、C分别为太阳直射北回归线、赤道、南回 归线时,楼顶在地面上的投影点,要使新楼一层正午的太 阳全年不被前面的楼房遮挡,应取太阳直射南回归线的情 况考虑,此时的太阳直射纬度为-23º26',依题意两楼的间 距应不小于MC.
三角函数模型的简单应用(水车问题)
![三角函数模型的简单应用(水车问题)](https://img.taocdn.com/s3/m/f60ee94c814d2b160b4e767f5acfa1c7aa00826b.png)
三⾓函数模型的简单应⽤(⽔车问题)§9 三⾓函数模型的简单应⽤第⼀课时⼀、教学⽬的1、对⼀些简单的周期现象,能够选择适当的三⾓函数模型,刻画和解决实际问题。
2、通过本节学习,培养学⽣的数学应⽤意识。
⼆、教学重点:体会三⾓函数模型在实际问题中的应⽤。
三、教学难点:⽤三⾓函数描述周期现象的实际问题。
四、教学过程:例:⽔车问题如图,⽔车的直径为3m,其中⼼(即圆⼼O)距⽔⾯1.2m,如果⽔车每4min 逆时针旋转3圈.在⽔车轮边缘上取⼀点P,点P 距⽔⾯的⾼度h(m)与时间(t)有怎样的关系?分析:设⽔车的半径为R ,R=1.5m ;⽔车中⼼到⽔⾯的距离为b ,b=1.2m ;∠QOP=α⽔车旋转⼀圈所需的时间为T ;单位时间(s)旋转的⾓度(rad)为ω过P 点向⽔⾯作垂线,交⽔⾯于M 点,PM 的长度为P 点的⾼度h ;∠QOP=φ;则:h=PM=PN+NM=Rsin(α-φ)+b根据问题的条件确定这个模型中的变量和参数: α,φ,R 和b.⽤ω表⽰单位时间(s)内⽔车转动的⾓度(rad),这样,在时刻t ⽔车转动的⾓度为α= ωt ⽔车旋转⼀圈所需的时间T=ωπ2 ⼜由于⽔车每4min 转3圈,旋转⼀圈所需的时间T=80s所以ω=40πrad/sSin φ=5.12.1⾬季河⽔上涨时,函数解析式中的b 减⼩,旱季河⽔流量减少时,参数b 增⼤. 如果⽔车转速加快,将使周期T 减⼩,如果⽔车转速减慢,将使周期T 增⼤.五、课堂⼩结六、课后作业rad , 295.01.53≈?≈φ所以)(2.1)295.040sin(5.1m t ,h +-=ππ所以。
1..6三角函数模型的简单应用(教、教案)
![1..6三角函数模型的简单应用(教、教案)](https://img.taocdn.com/s3/m/226caddc960590c69ec376a7.png)
1. 6三角函数模型的简单应用一、教材分析本节课是在学习了三角函数图象和性质的前提下来学习三角函数模型的简单应用,进一步突出函数来源于生活应用于生活的思想,让学生体验一些具有周期性变化规律的实际问题的数学“建模”思想,从而培养学生的创新精神和实践能力LwtUpWh8vG二、教学目标1、通过对三角函数模型的简单应用的学习,使学生初步学会由图象求解读式的方法;2、根据解读式作出图象并研究性质;3、体验实际问题抽象为三角函数模型问题的过程,体会三角函数是描述周期变化现象的重要函数模型.4.让学生体验一些具有周期性变化规律的实际问题的数学建模思想,从而培养学生的建模、分析问题、数形结合、抽象概括等能力。
LwtUpWh8vG三、教学重点难点重点:精确模型的应用——由图象求解读式,由解读式研究图象及性质难点:分析、整理、利用信息,从实际问题中抽取基本的数学关系来建立数学模型,并调动相关学科的知识来解决问题.由图象求解读式时的确定。
四、学法分析本节课是在学习了三角函数的性质和图象的基础上来学习三角函数模型的简单应用,学生已经了解了数学建摸的基本思想和方法,应用三角函数的基本知识来解决实际问题对学生来说应该不会很陌生,所以对本节的学习应让学生能够多参与多思考,培养他们的分析解决问题和解决问题的能力,提高应用所学知识的能力。
LwtUpWh8vG在课堂教学中,应该把以教师为中心转向以学生为中心,把学生自身的发展置于教育的中心位置,为学生创设宽容的课堂气氛,帮助学生确定适当的学习目标和达到目标的最佳途径,指导学生形成良好的学习习惯、掌握学习策略和发展原认知能力,激发学生的学习动机,培养学习兴趣,充分调动学生的学习积极性,倡导学生采用自主、合作、探究的方式学习。
LwtUpWh8vG五、教法分析数学是一门培养人的思维、发展人的思维的重要学科,本节课的内容是三角函数的应用,所以应让学生多参与,让其自主探究分析问题,然后由老师启发、总结、提炼,升华为分析和解决问题的能力。
高中数学必修4《三角函数模型的简单应用》教案及教案说明
![高中数学必修4《三角函数模型的简单应用》教案及教案说明](https://img.taocdn.com/s3/m/3c25c460580102020740be1e650e52ea5418ce78.png)
高中数学必修4《三角函数模型的简单应用》教案及教案说明教案示例:一、教学目标1.理解三角函数模型的基本概念和性质;2.能够应用三角函数模型解决实际问题;3.培养学生的数学建模能力和问题解决能力。
二、教学内容1.三角函数模型的概念和性质;2.三角函数模型的简单应用。
三、教学重点1.理解三角函数模型的概念和基本性质;2.能够运用三角函数模型解决实际问题。
四、教学方法1.讲授法:通过教师讲授和示范,引导学生理解三角函数模型的概念和特点;2.案例法:通过具体实例,让学生运用三角函数模型解决实际问题,提高问题解决能力;3.合作学习法:通过小组合作学习,培养学生的合作意识和团队精神。
五、教学步骤和内容详细说明步骤一:引入1.导入话题:通过提问和讨论,引导学生思考在现实生活中有哪些问题可以用三角函数模型来解决。
2.引入概念:介绍三角函数模型的概念和基本性质,引导学生理解三角函数模型的意义和应用范围。
步骤二:探究与讲解1.设计实例:给学生一个具体实例,引导他们通过观察和探究,了解三角函数模型的具体应用。
2.讲解三角函数模型的基本概念、公式和性质,帮助学生建立起三角函数模型的基本框架。
步骤三:梳理与总结1.梳理知识:回顾三角函数模型的基本概念和公式,让学生用自己的话总结出三角函数模型的特点和应用方法。
2.综合训练:设计一些综合性的应用题,让学生运用所学知识解决问题,提高解题能力。
步骤四:拓展与延伸1.拓展应用:给学生一些更复杂的实际问题,让他们运用所学知识进行分析和解答,培养他们的建模能力和创新思维。
2.延伸探究:引导学生思考三角函数模型的局限性和应用范围,鼓励他们用不同的方法去解决同一个问题。
六、教学资源和工具1.教材:高中数学必修4教材;2.工具:白板、多媒体投影仪等。
七、教学评价1.提问评价:通过提问方式,检查学生对三角函数模型的理解程度;2.综合评价:通过学生的实际表现和作业完成情况,评价他们运用三角函数模型解决实际问题的能力。
三角函数的应用教案(1 高一上学期数学人教A版(2019)必修第一册
![三角函数的应用教案(1 高一上学期数学人教A版(2019)必修第一册](https://img.taocdn.com/s3/m/2f4fd34c54270722192e453610661ed9ad5155f4.png)
第五章三角函数5.7 三角函数的应用(第2 课时)【教学内容】学习三角函数模型的简单应用,进一步突出函数来源于生活应用于生活的思想,让学生体验一些具有周期性变化规律的实际问题的数学“建模”。
【教学目标】1.了解三角函数是描述周期变化现象的重要函数模型;2.初步学会使用数据分析或图像特征进行一些简单的函数模型求解;3.会使用三角函数模型解决简单的实际问题。
【教学重难点】教学重点:用三角函数模型解决具有周期变化的实际问题.教学难点:对问题实际意义的数学解释,从实际问题中抽象出三角函数模型.【教学过程】一、导入新课思考:生活中有什么事情是周而复始发生的?举例:小结:从上述例子中,可以得知生活中有很多重复出现的现象,我们尝试利用某种函数模型去研究当中的规律,帮助我们做出更加科学的决策。
请问你认为目前我们所学的什么函数模型适用于上述规律呢?函数模型;因为它具有性质。
二、课堂探究例题 1 如图,我国某地一天从 6—14 时的温度变化曲线近似满足函数y =A sin(ωx +ϕ) +b ( A > 0,ω> 0, ϕ<π)(1)求这一天 6—14 时的最大温差;(2)写出这段曲线的函数解析式。
解:(1)由图可知,这段时间的最大温差是20℃(2)由图可以看出,从 6—14 时的图像是函数小结:(1)振幅A=b=如何求函数中的ω和ϕ;(2)所求函数模型只能近似刻画某个区间的变化规律。
例题 2:货船进出港时间问题:海水受日月的引力,在一定的时候发生涨落的现象叫潮.一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋.下面是某港口在某季节某天的时刻与水深关系的预报.(1)选用一个函数来近似描述这一天该港口的水深与时间的函数关系,给出整点时的水深的近似数值(精确到0.001).(2)一条货船的吃水深度(船底与水面的距离)为4 米,安全条例规定至少要有1.5 米的安全间隙(船底与洋底的距离),该船这一天何时能进入港口?在港口能呆多久?(3)若某船的吃水深度为4 米,安全间隙为1.5 米,该船在2:00 开始卸货,吃水深度以每小时0.3 米的速度减少,如果这条船停止卸货后需0.4 小时才能驶到深水域,那么该船在什么时间必须停止卸货,将船驶向较深的水域?问题探究 1:请同学们仔细观察表格中的数据,你能够从中得到一些什么信息?小组合作发现,代表发言。
《三角函数模型的简单应用》的教学设计
![《三角函数模型的简单应用》的教学设计](https://img.taocdn.com/s3/m/1a1a35b40342a8956bec0975f46527d3240ca6d4.png)
《三角函数模型的简单应用》的教学设计教学设计:三角函数模型的简单应用一、教学目标:1.了解三角函数的概念和基本性质;2.掌握三角函数的图像和性质;3.掌握如何利用三角函数模型解决实际问题。
二、教学重点:1.三角函数的概念、基本性质及图像;2.如何应用三角函数模型解决实际问题。
三、教学内容:1.三角函数的概念和性质:正弦、余弦和正切函数的定义及性质;2.三角函数的图像和性质:了解正弦、余弦和正切函数的图像、特点和性质;3.三角函数模型的简单应用:掌握如何利用三角函数模型解决实际问题。
四、教学过程:1.导入(5分钟)教师通过引入一个简单的实际问题,如一个船在河中流动的问题,引导学生发现问题中涉及到角度和距离的关系,从而引出三角函数模型的应用。
2.讲解三角函数的概念和性质(15分钟)教师讲解三角函数的定义及性质,引导学生了解正弦、余弦和正切函数的定义和特点。
3.讲解三角函数的图像和性质(20分钟)教师讲解正弦、余弦和正切函数的图像、特点和性质,帮助学生了解三角函数的变化规律。
4.解决实际问题(30分钟)教师通过几个实际问题的讲解,引导学生掌握如何利用三角函数模型解决实际问题,如计算建筑物的高度、船在河中的速度等。
5.练习与讨论(20分钟)让学生进行相关练习,并进行讨论和解答。
通过互动讨论,加深对三角函数模型的理解。
6.总结与拓展(10分钟)教师对本节课的内容进行总结,并展示一些拓展的问题,激发学生对三角函数的兴趣和好奇心。
五、教学手段:1.多媒体课件:用于展示三角函数的图像和性质;2.实物模型:如玩具船、建筑物模型等,用于辅助学生理解实际问题;3.白板和彩色笔:用于讲解和解题。
六、教学反馈:通过课堂练习和讨论,以及课后作业的批改和讲解,及时检查学生对三角函数模型的掌握情况。
同时鼓励学生多进行实际问题的应用练习,加深对知识的理解和运用能力。
七、教学评价:通过对学生的课堂表现、课后作业和考试成绩等多方面进行评价,全面了解学生对三角函数模型的掌握情况,并根据评价结果进行针对性的改进和提升。
《三角函数模型的简单应用》的教学设计
![《三角函数模型的简单应用》的教学设计](https://img.taocdn.com/s3/m/2f3691842dc58bd63186bceb19e8b8f67c1ceff0.png)
《三角函数模型的简单应用》的教学设计教学设计:《三角函数模型的简单应用》教学目标:1.了解三角函数模型的基本概念和定义;2.掌握三角函数模型在实际问题中的简单应用;3.培养学生的创造思维和解决问题的能力。
教学重点:1.三角函数模型的基本概念和定义;2.三角函数模型在实际问题中的简单应用。
教学难点:1.将实际问题转化为三角函数模型;2.处理和解决实际问题中遇到的不确定因素。
教学准备:1.教学课件PPT;2.教学实例和练习题;3.板书工具。
教学步骤:第一步:导入新知识(10分钟)1.教师通过提问的方式引入新知识,如:“我们知道三角函数是一种与角度相关的函数,它在几何中的基本应用是什么?还有哪些实际应用呢?”2.学生回答后,教师简要介绍三角函数模型的基本概念和定义。
第二步:讲解三角函数模型的基本原理(15分钟)1.教师通过PPT和板书,详细讲解正弦函数、余弦函数和正切函数的定义和性质,以及它们的简单图像表示。
第三步:示范解题(25分钟)1.教师展示一些实际问题,并演示如何将问题转化为三角函数模型,并求解。
2.教师通过步骤分解、解析图像、比例关系等方式,逐步解决问题,并解释每一步的思路和方法。
3.学生在观摩教师示范后,跟随教师一起解答相关问题。
第四步:合作讨论(15分钟)1.学生分成小组,针对给定问题进行合作讨论和解决。
2.学生通过合作讨论,共同找出问题解决的思路和方法,并进行尝试和验证。
3.学生之间可以相互讨论和交流,促进思维的碰撞和问题的解决。
第五步:练习巩固(20分钟)1.教师发布几个练习题,让学生个人独立完成。
2.学生完成练习题后,教师进行点评和解析,指导学生找出解题中的问题和改正方法。
第六步:拓展应用(15分钟)1.教师提出一些较为复杂的实际问题,并引导学生尝试将问题转化为三角函数模型,并进行求解。
2.学生进行小组合作讨论和解决,培养他们的创造思维和解决问题的能力。
第七步:作业布置(5分钟)1.教师布置相关课后作业,要求学生将实际问题转化为三角函数模型,并求解。
三角函数的定义及应用教学教案【优秀4篇】
![三角函数的定义及应用教学教案【优秀4篇】](https://img.taocdn.com/s3/m/964716bdbdeb19e8b8f67c1cfad6195f312be89d.png)
三角函数的定义及应用教学教案【优秀4篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、应急预案、演讲致辞、合同协议、规章制度、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, emergency plans, speeches, contract agreements, rules and regulations, documents, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!三角函数的定义及应用教学教案【优秀4篇】EXcel中经常需要使用到三角函数进行计算,三角函数具体该如何使用呢?它山之石可以攻玉,以下内容是本店铺为您带来的4篇《三角函数的定义及应用教学教案》,如果对您有一些参考与帮助,请分享给最好的朋友。
三角函数模型的简单应用优秀教学设计
![三角函数模型的简单应用优秀教学设计](https://img.taocdn.com/s3/m/a3253f973086bceb19e8b8f67c1cfad6185fe973.png)
三角函数模型的简单应用优秀教学设计教学目标:1.了解三角函数的概念和性质;2.理解三角函数在几何图形中的应用;3.掌握三角函数的计算方法;4.能够应用三角函数解决简单实际问题。
教学内容:1.三角函数的概念和性质:引导学生学习正弦函数、余弦函数、正切函数等的定义和性质,包括定义域、值域、图像特点等。
2.三角函数在几何图形中的应用:通过几何图形的展示,引导学生理解三角函数与角度之间的关系,以及三角函数在几何图形中的具体应用。
3.三角函数的计算方法:通过例题演示,教授学生如何计算给定角度的正弦、余弦、正切等数值。
4.应用三角函数解决简单实际问题:通过实际问题的引入,让学生学会如何应用三角函数解决实际问题,如测量高楼的高度、计算斜坡的角度等。
教学步骤:第一步:导入通过引用一个有趣的生活场景,如打渔的故事,激发学生的学习兴趣,引出三角函数的概念和应用。
第二步:概念讲解介绍正弦函数、余弦函数、正切函数的定义和性质,包括定义域、值域、图像特点等。
通过示意图和实例进行讲解,让学生更加直观地理解三角函数的含义。
第三步:几何图形展示展示一系列几何图形,如正弦曲线、余弦曲线、切线、圆等,引导学生分析图形中的角度和三角函数之间的关系。
让学生通过观察图像,能够发现和总结规律。
第四步:计算方法演示通过例题演示,教授学生如何计算给定角度的正弦、余弦、正切等数值。
通过实际计算过程,帮助学生理解计算方法,并加深记忆。
第五步:应用解决实际问题引入一些简单实际问题,如测量高楼的高度、计算斜坡的角度等,让学生通过应用三角函数解决问题。
通过解决实际问题,帮助学生巩固所学的知识,并培养应用能力。
第六步:练习和巩固组织学生进行练习和巩固,包括选择题、填空题和解答题等形式。
通过练习,加深学生对三角函数的理解和掌握程度。
第七步:总结和拓展通过总结所学的知识和方法,概括三角函数的应用特点和解题技巧。
引导学生思考更多实际问题的解决思路,拓展思维和应用能力。
三角函数模型的简单应用教案(详细的)
![三角函数模型的简单应用教案(详细的)](https://img.taocdn.com/s3/m/35569dd5312b3169a551a40e.png)
三角函数模型的简单应用一、教学目标1、基础知识目标:a通过对三角函数模型的简单应用的学习,使学生初步学会由图象求解析式的方法;b根据解析式作出图象并研究性质;c体验实际问题抽象为三角函数模型问题的过程;d体会三角函数是描述周期变化现象的重要函数模型.2、能力训练目标:让学生体验一些具有周期性变化规律的实际问题的数学“建模”思想,从而培养学生的建模、分析问题、数形结合、抽象概括等能力.3、个性情感目标:让学生切身感受数学建模的过程,体验数学在解决实际问题中的价值和作用,让学生切身感受数学建模的过程,体验数学在解决实际问题中的价值和作用从而激发学生的学习兴趣,培养锲而不舍的钻研精神;培养学生勇于探索、勤于思考的精神。
二、教学重点:精确模型的应用——即由图象求解析式,由解析式研究图象及性质三、教学难点:a、分析、整理、利用信息,从实际问题中抽取基本的数学关系来建立数学模型,并调动相关学科的知识来解决问题.b、由图象求解析式时 的确定。
五、教学设计分析《标准》把发展学生的数学应用意识和创新意识作为其目标之一,在教学中不仅要突出知识的来龙去脉还要为学生创设应用实践的空间,促进学生在学习和实践过程中形成和发展数学应用意识,提高学生的直觉猜想、归纳抽象、数学地提出、分析、解决问题的能力,发展学生的数学应用意识和创新意识,使其上升为一种数学意识,自觉地对客观事物中蕴涵的一些数学模式作出思考和判断。
通过已知三角函数图象求三角函数解析式,构建三角函数模型解决实际问题。
在解答问题的过程中体验到从数学的角度运用学过的数学思想、数学思维、数学方法去观察生活、分析自然现象、解决实际问题的策略, 使学生认识到数学原来就来自身边的现实世界,是认识和解决我们生活和工作中问题的有力武器,同时也获得了进行数学探究的切身体验和能力。
增进了他们对数学的理解和应用数学的信心。
高中数学必修4《三角函数模型的简单应用》教案
![高中数学必修4《三角函数模型的简单应用》教案](https://img.taocdn.com/s3/m/1b1537aab8d528ea81c758f5f61fb7360b4c2bdc.png)
高中数学必修4《三角函数模型的简单应用》教案【教学内容】三角函数模型的简单应用【教学目标】1. 了解正弦函数、余弦函数、正切函数的定义和图象;2. 掌握解决几何问题时应用三角函数模型的方法;3. 培养学生从实际问题中抽象出三角函数模型的能力;4. 培养学生的逻辑思维能力和解决问题的能力。
【教学重点】1. 正弦函数、余弦函数、正切函数的定义和图象;2. 解决几何问题时应用三角函数模型的方法。
【教学难点】学生解决实际问题时抽象出三角函数模型的能力。
【教学方法】1. 讲授法:通过讲解三角函数模型的定义和性质,让学生理解三角函数模型的概念和基本思想;2. 举例法:通过讲解几个综合实例,让学生理解应用三角函数模型解决问题的基本方法;3. 练习法:通过练习题,让学生巩固所学知识。
【教学过程】一、引入让学生观察、思考以下两个图象,引出三角函数模型的概念及相关性质。
例1 例2二、讲解1. 什么是三角函数模型三角函数模型是指用正弦函数、余弦函数、正切函数等描述几何问题及物理问题的模型。
正弦函数、余弦函数、正切函数是一种列函数,用于描述三角形的内角与长度之间的关系。
2. 正弦函数、余弦函数、正切函数的图象(1)正弦函数的图象正弦函数是一个以原点 O 为中心,以 y 轴为对称轴,振幅为 1,周期为2π 的奇函数。
(2)余弦函数的图象余弦函数是一个以原点 O 为中心,以 y 轴为对称轴,振幅为 1,周期为2π 的偶函数。
(3)正切函数的图象正切函数的图象是一个无量纲的周期函数,周期为π,无定义域上的最大值和最小值,其图象相对于 y 轴是奇函数。
三、练习例1 解:构造如下图形,已知 $BC=6$ cm,$m\angleB=30^\circ$,求 $AC$ 和 $AB$ 的长度。
(1)分析题意,选用何种三角函数模型。
设 $\angle ABC=\theta$,则有 $\angle BAC=150^\circ -\theta$,观察正弦函数的定义式,选用正弦函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。