介孔材料

合集下载

纳米介孔材料

纳米介孔材料

纳米介孔材料
纳米介孔材料是一种具有极小孔径的材料,通常在纳米级别(1至100纳米)范围内。

这种材料具有非常高的比表面积和丰富的孔隙结构,因此在吸附、催化、分离等领域具有广泛的应用前景。

首先,纳米介孔材料在吸附方面具有独特的优势。

由于其极高的比表面积,纳米介孔材料能够充分暴露其表面活性位点,从而提高吸附效率。

例如,在环境治理中,纳米介孔材料可以被用于去除水中的重金属离子、有机污染物等,其高效的吸附性能使其成为一种非常理想的吸附剂。

其次,纳米介孔材料在催化领域也有着重要的应用。

由于其丰富的孔隙结构和可调控的孔径大小,纳米介孔材料能够提供更多的活性位点,并且能够限制反应物子的扩散,从而提高催化反应的效率。

在能源转化、有机合成等领域,纳米介孔材料的催化性能已经得到了广泛的研究和应用。

此外,纳米介孔材料还在分离领域展现出了巨大的潜力。

由于其孔径可调控的特点,纳米介孔材料能够实现对不同大小分子的选择性分离。

在生物医药、化工等领域,纳米介孔材料的分离性能被广泛应用于药物分离纯化、气体分离、液相色谱等方面。

总的来说,纳米介孔材料以其独特的结构和优异的性能,在吸附、催化、分离等领域展现出了巨大的应用潜力。

随着纳米技术的不断发展和进步,相信纳米介孔材料将会在更多领域展现出其重要的作用,为人类社会的发展和进步做出更大的贡献。

介孔材料名词解释

介孔材料名词解释

介孔材料名词解释
介孔材料是一种孔径在2-50纳米之间的材料,具有高比表面积和孔容量,通常用于催化剂、吸附剂、分离膜等领域。

介孔材料在化学、物理、生物学等领域都有广泛的应用。

介孔材料可以分为有机介孔材料、无机介孔材料和混合介孔材料三类。

有机介孔材料主要由有机高分子自组装形成,具有较好的可控性和可调性。

无机介孔材料主要由无机化合物(如硅酸盐、铝酸盐等)自组装形成,具有良好的热稳定性和机械强度。

混合介孔材料是由有机和无机材料通过共混合成的材料。

介孔材料的特点是孔径大小适中,具有很大的比表面积和孔容量,可以大幅度增加反应物接触面积,提高反应效率和选择性。

此外,介孔材料还具有高度可控性和可调性,可以根据需求调控孔径大小和孔壁结构,以实现更好的性能表现。

介孔材料的应用范围非常广泛,例如在催化剂领域中,介孔材料可以作为载体或活性组分,用于催化反应,提高反应效率和选择性;在吸附剂领域中,介孔材料可以用于气体或液体的吸附和分离;在分离膜领域中,介孔材料可以用于制备高选择性的分离膜,用于分离气体或液体混合物。

[课件]介孔材料简介PPT

[课件]介孔材料简介PPT

介孔材料的特点


具有规则的孔道结构 孔径分布窄,且在2~50 nm之间可以调节 经过优化合成条件或后处理,可具有很好的 热稳定性和一定的水热稳定性 颗粒具有规则外形,且可在微米尺度内保持 高度的孔道有序性
介孔材料的合成方法


溶胶-凝胶法 水热合成法 微波辐射合成法 相转变法 沉淀法
在医疗方面,介孔材料吸附药剂分子后在药物缓释与靶向释放方面
也有重要应用。
介孔材料的应用
选择性催化
介孔壁对反应物分子有强的相互作用,不同基质和介孔孔径以及介孔阵列对 不同的反应物特别是分子结构差异较大的物质有不同的相互作用和选择性催 化作用。利用不同化学组成的物质制备介孔材料将在选择性定位催化,特别 是高效转化方面具有广泛用途。
微波辐射合成法


晶化阶段用微波辐射合成了介孔材料MCM-41 全微波辐射法,即晶化和脱模均在微波作用下合成出 MCM-41 微波辐射加热不同于传统的加热方式,它是在电磁场 作用下,通过偶极子极化使体系中的极性分子急剧扭 转、摩擦产生热量来实现,具有内外加热、升温速度 快、高效节能、环保卫生等优点。利用全微波辐射法 合成MCM-41介孔分子筛,整个过程用时不到5 h。和 水热法相比,合成时间大大缩短,同时利用微波技术, 高效节能,操作便利,环境污染少。
介孔材料的表征手段
介孔材料表征手段自成一整套体系:
固 态 结 构
小角X射线衍射
x射线晶体衍射
大角X射线衍射
小角X射线衍射:确定是否有wormlike孔结构
大角X射线衍射:确定试样是晶态物质还是不定型物质
介孔材料的表征手段



红外光谱:确定物质的各种基团,确定是否有 骨架结构 示差扫描量热法(DSC)和热重(TG)曲线来研究 在加热过程中所发生化学反应,晶型转变及煅 烧温度等 SEM、TEM是来研究物质的形貌和粒径大小 吸附法来研究介孔材料的比表面和孔径分布

介孔材料的应用

介孔材料的应用

介孔材料的应用
介孔材料广泛应用于化学、材料科学、能源、环境等领域。

以下列举几个常见的应用:
1. 催化剂载体:介孔材料可用于载体,提高催化剂的效率和稳定性。

2. 生物医药:介孔材料可用于药物传输、基因传递和组织工程等领域,以改善药物的生物利用度和治疗效果。

3. 水处理:介孔材料可用于水净化,通过吸附和过滤的方式去除水中的污染物。

4. 能源储存:介孔材料可用于锂离子电池、超级电容器和液态天然气储存等领域,提高相关器件的能量密度和循环寿命。

5. 环境保护:介孔材料可用于 VOCs(有机挥发性化合物)的吸附和催化氧化等领域,以减少大气污染和有害气体的排放。

介孔材料

介孔材料

A
B
介孔材料的两种合成路线:A)软模板法 B)硬模板法
软模板法
• 软模板法是指表面活性剂分子与无机或有机分子之间通过非共价键(如: 情剑、静电作用力、范德华力等)自发形成热力学稳定且结构有序的超 分子结构的过程,超分子通常在10-1000nm之间 • 相对于传统的由上而下(Top-down)的微制造技术,软模板法在制造纳 米材料方面采取自下而上(bottom-up)的策略。
介孔材料
林存龙
多孔材料的分类
• 根据国际纯粹与应用化学协会(IUPAC)定义
微孔材料
介孔材料
大孔材料
孔径小于2nm
孔径在2-50nm之间 无机硅胶、介孔分子筛 (如MCM-41等)
孔径大于50nm
气凝胶、多孔玻璃、 活性炭
重要事件
• 1992年美国Mobil公司的科学家kresge,Beck等人在Nature上发表 了表面活性剂模板法通过有机-无机组分在溶液中的自发组装作用, 成功合成出孔径在1.5-10nm范围内可变的新型M41S系列氧化硅高 度有序的介孔材料,包括二维六方相的MCM-41,立方相双连续 孔道的MCM-48及一维层状结构的MCM-50三种类型,从而将沸石 分子筛的规则孔径从微孔范围拓展到介孔领域。
环境科学领域
• 介孔材料具有开放性的孔道结构,窄的孔径分布及很高的比表面 积和孔容,可以作为良好的环境净化材料。 • 例如活性炭是吸附废水中有机污染物最有效的吸附剂,但其再回 收利用率低。所以介孔材料成为人们研究的焦点。
苗小郁等. 介孔材料在环境科学中的应用进展[J].
利用介孔孔道合成纳米材料
介孔材料用于吸附与分离
介孔材料的应用
• 有序介孔材料自诞生起就得到了国际物理学、化学与材料界的高 的重视,并迅速成为跨学科研究的热点之一。

介孔材料

介孔材料


氮气吸附等温线
TEM
孔径
固体核磁
红外
热重-差热分析
MCM-41 Mobile Crystalline Material 六方结构
SBA-15
MCF 介孔氧化硅泡沫
MCM-22
Santa Barbara USA
二维六方结构
三维孔道结构
MWW拓扑结构
孔道与孔道之间被 球形孔道,球形孔 孔墙所隔离,有利 之间通过窗口连接 于阻止金属物种聚 更大的孔径、结实 (9-22 nm),高 集,可用于制备纳 的骨架结构和更高 的热稳定性和水热 的水热稳定性 米金属线或稳定金 稳定性介孔氧 化硅材 料的合 成
介孔碳 基材料 的合成
其它 组成介 孔材料 的合成
介孔碳 材料
介孔金 属氧化 物
介孔金 属硫化 物
介孔氮 化物
介孔材料的表征方法:
• • • • • XRD(X-ray diffraction ) 用于区分介孔材料的 ( 结晶相和非结晶相以及物相鉴定 TEM(Transmission electron microscopy ) 可以直 ( 接测出孔道中心之间的距离,配合XRD确定晶 系和对称性 低温N 吸附( 低温 2吸附(Low-temperature nitrogen adsorption) 研究多孔物质孔径结构(表面积、孔隙结构等) 的最常用手段 IR(Infrared Spectroscopy ) 用介孔材料骨架原 ( 子基团的特征振动谱带来鉴定骨架原子的类型 以及官能团变化等信息 热重-差热分析 热重 差热分析 (Thermogravimetric Analysis Differential Thermal Analysis TGA、DTA ) TG是 式样受热分解发生质量变化。DTA测介孔材料 晶格破坏温度 固体核磁共振( 固体核磁共振(Nuclear Magnetic Resonance Imaging NMR ) 用于获取介孔材料的结构、化学组成, 催化行为等各方面信息

介孔材料制备方法

介孔材料制备方法

介孔材料是具有高度有序的孔道结构和大比表面积的材料,广泛应用于催化、吸附、分离等领域。

以下是一种常见的介孔材料制备方法:
1.模板法(Template Method):
●选择合适的模板剂,如表面活性剂、聚合物或胶体颗粒。

●将模板剂与溶剂和适当的硅源混合,并形成凝胶或溶胶状态。

●在适当的条件下进行热处理或化学处理,使凝胶或溶胶发生凝胶化、溶胶凝聚或自
组装,生成介孔结构。

●最后,通过高温煅烧或其他处理方法去除模板剂,得到具有介孔结构的材料。

2.水热法(Hydrothermal Method):
●将适当的硅源和溶剂混合,形成溶胶状态。

●在高温高压的水热条件下进行反应,通过水热作用促使硅源在溶液中形成介孔结构。

●冷却后,收集和洗涤产物,经过干燥和煅烧等步骤,得到最终的介孔材料。

3.氧化物模板法(Oxide Template Method):
●制备具有有序孔道结构的氧化物颗粒,如二氧化硅或氧化铝。

●将这些氧化物颗粒与硅源等混合,并形成凝胶状或溶胶状。

●在适当的条件下进行热处理或化学处理,使凝胶或溶胶发生凝胶化、溶胶凝聚或自
组装,生成介孔结构。

●最后,通过酸洗或其他方法去除氧化物模板颗粒,得到含有介孔结构的材料。

以上是常见的介孔材料制备方法之一,不同的方法适用于不同的材料和应用需求。

在实际制备过程中,可以根据具体情况进行调整和改进。

介孔材料PPT课件

介孔材料PPT课件
6
• Mobil公司的科学家们于20世纪80年代末 发现了有序介孔材料,早在1990年初就开 始申请一系列专利,在他们最初的几个美国 专利被标准之后(为公司确保其可能的商业 价值),1992年下半年,在Nature上发表 了他们著名的论文《液晶机理合成有序的介 孔分子筛》
7
1992年Mobil公司的科学家首次报道合成了M41S系列介孔分子筛。 它们具有规整 有序的孔道结构,比表面积大,孔径在1.5~10nm之间可调。这一报道立即引起国 际学术界的重视,从此掀起介孔材料研究的热潮。近年有序介孔材料的研究归纳如 下:
介孔孔径均一可调
比表面积大
颗粒形貌丰富 内表面易于修饰
特性
骨架结构稳定, 易于掺杂其他组 分
水、热稳定性较好
5
介孔材料发现的历史
• 美国专利第3556725号。此专利早于1969年2 月申请,1971年1月批准。
• 1990年,日本早稲田大学黒田一幸教授。最初 的目的是制备层柱状分子筛,使用不同链长的 烷基三甲基铵将水硅钠石的层撑开(65℃反应 一周),结果发现在于有机铵交换的过程中, 氧化硅层聚合生成三维具有“微孔”的氧化硅 骨架,表面积约为900m2/g。MCM-41发表 后,重复,几乎没有差别。 他们与一个可以堪 称为伟大的发明(或发现)失之交臂。
有序介孔硅材料的合成过程示意图
24
介孔材料合成的基本特征
• 有机-无机液晶相(介观结构)的生成是 利用具有双亲性质(含有亲水和疏水基团)的 表面活性剂有机分子与可聚合无机单体分 子或齐聚物(无机源) 自组织生成有机物与无 机物的液晶织态结构相。
• 介孔材料的生成是利用高温热处理或其他 物理化学方法脱除有机模板剂(表面活性 剂),所留下的空间即构成介孔孔道。

介孔材料

介孔材料

介孔材料化学系 0801 顾天宇 09介孔材料是指孔径为2.0~50nm的多孔材料,如气凝胶、柱状黏土、M41S材料。

按照化学组成分类,可分为硅基和非硅基两大类。

按照介孔是否有序分类,可分为有序和无序介孔材料。

介孔材料的制备主要有模板法、水热法、溶胶- 凝胶法等几种方法。

模板法: 1)阳离子表面活性剂阳离子表面活性剂作模板剂,在介孔材料制备中的应用较为普遍,常采用三甲基季铵盐(ATMA)为结构导向剂,在水热体系中用合成时,通过改变合成条件可得到不同结构的介孔材料。

如Ch. Danumah等利用十六烷基三甲基氯化铵/十六烷基三甲基氢氧化铵和乳胶粒子作为模板剂,制备出具有中孔和大孔分层孔结构的硅基分子筛。

使用长链烷基季铵盐阳离子表面活性剂合成出的介孔材料比较单一,通常仅限于M41S型类似结构的介孔分子筛,孔径只有2~5 nm,孔壁较薄,提高材料的水热稳定性是其应用开发研究的首要问题。

闫欣等报道,以低聚季铵盐表面活性剂作为模板剂,在中性条件下,合成了结构高度有序的介孔硅铝酸盐材料MCM - 41。

由于低聚表面活性剂的端基电荷密度高、CMC值小、在水中的自组装能力强,因而可以在低温、低表面活性剂浓度下合成有序性较高的介孔材料。

2)阴离子表面活性剂阴离子表面活性剂主要是长链烷基硫酸盐、长链烷基磷酸盐和羧酸盐等,常用于合成具有阳离子聚合过程的无机材料,如金属氧化物介孔分子筛的制备。

V. Luca等采用新的合成法,以价廉的十二烷基硫酸盐为模板剂,合成了具有蠕虫洞孔道的介孔二氧化钛。

该法分两步进行,第一步是十二烷基硫酸钠与TiCl3在水溶液中反应生成十二烷基硫酸钛,第二步是将合成的十二烷基硫酸钛溶于无水乙醇中,加入钛酸异丙酯调节硫酸盐比,最后在一定的湿度和空气流速下可获得介孔二氧化钛。

其热稳定性较差,但经改性后,可在300~400 ℃保持稳定。

3)非离子表面活性剂由于非离子表面活性剂在溶液中呈中性,氢键被认为是介孔相形成的驱动力。

hms介孔材料

hms介孔材料

hms介孔材料
HMS(中空介孔二氧化硅)是一种典型的中空介孔材料,具有蠕虫状结构。

这种材料的内部原子的排布是短程无序,长程有序的,其小角度部分的衍射峰仅仅反映了其孔道的有序性。

其氮气吸脱附曲线为典型的IV型吸附曲线,在$ P / P 0 = 0 . 4 \sim 0 . 6 $部分有非常明显的突跃以及相应的滞后环。

HMS材料在许多领域有着广泛的应用。

首先,在功能材料领域,可以通过在有序介孔材料的孔道内壁上接枝氯丙基三乙氧硅烷,得到功能化的介孔材料CPS—HMS,该功能性介孔分子筛去除水中微量的三氯甲烷等效果显著,去除率高达97%。

其次,在储能材料领域,有序介孔材料具有宽敞的孔道,可以在其孔道中原位制造出含碳或钯等储能材料,增加这些储能材料的易处理性和表面积,使能量缓慢的释放出来,达到传递储能的效果。

此外,HMS材料也可以作为催化及功能材料的优良载体。

将钛、银等金属物种引入HMS介孔材料,有利于实现钛、银金属物种的均匀分散,高效利用稀有或贵金属资源,提高紫外.可见光的利用效率和充分发挥钛氧化物的光催化性能。

以上内容仅供参考,如需获取更多详细信息,建议查阅相关文献或咨询化学领域专业人士。

介孔材料与药物缓释

介孔材料与药物缓释

02
药物缓释技术简介
药物缓释原理及优势
药物缓释原理
通过控制药物释放速率,使药物在体内保持恒定浓度,减少副作用,提高疗效。
药物缓释优势
能够延长药物作用时间,减少服药次数,提高患者依从性;降低药物峰谷浓度波 动,减少不良反应;提高药物生物利用度,降低用药剂量。
常见药物载体类型
脂质体
由磷脂和胆固醇组成的微小球体, 可将药物包裹在内部水相或嵌入 脂质双分子层中,通过静脉注射 等途径给药。
3
药代动力学分析
通过对临床试验中患者血液、尿液等样本的药物 浓度测定,分析介孔材料在人体内的吸收、分布、 代谢和排泄情况。
06
挑战与未来发展趋势
提高载药量和稳定性挑战
增加介孔材料孔容和比表面积
01
通过优化合成方法和条件,制备具有更大孔容和比表面积的介
孔材料,从而提高载药量。
增强介孔材料与药物相互作用
静态释放法
将载药介孔材料置于模拟体液中,定时取样分析药物释放量,以评 价药物释放动力学和缓释效果。
动态释放法
通过模拟体内环境,如温度、pH值、离子强度等变化,动态监测 药物从介孔材料中的释放过程,更真实地反映药物在体内的释放行 为。
对比实验法
将载药介孔材料与其他药物载体进行对比实验,以突出介孔材料在药 物缓释方面的优势。
04
介孔材料在药物缓释中应 用实例
抗癌药物缓释系统
介孔二氧化硅纳米粒子
介孔有机硅材料
具有高比表面积和孔容,可实现抗癌 药物的高效负载和缓释。
通过引入有机基团改善介孔材料的生 物相容性,提高抗癌药物的缓释效果。
介孔碳材料
具有良好的生物相容性和药物吸附性 能,可用于构建抗癌药物缓释系统。

介孔材料

介孔材料

程序升温分析技术(TPD)
催化剂表面酸性的研究; 催化剂吸附物种种类的研究; 催化剂表面性质的研究。
MgO/HMCM-22
固体NMR技术
测定分子筛骨架Si/Al的比; 确定分子筛骨架中的硅、铝排列; 判别不同状态的Al。
红外光谱技术
表征催化剂表面的酸性强弱以及量,而且 可以有效的区分L酸和B酸; 测定表面催化剂的组分;
4.介孔材料的制备方法
• 软膜板法 利用前驱物分子与阳离子、非离子或阴 离子表面活性剂(模板剂)的自组装来形 成介观结构,通过骨架的进一步交联,近 而除去模板剂来得到介孔材料。
合成MCM-41
25g 硅酸钠
(n)SiO2:CTBA:H2O=1:0.2:40
搅拌10min, 粘ห้องสมุดไป่ตู้的透明 凝胶状 引入CTBA 6.4g
多晶X射线衍射:杂原子介孔分子筛合成 分子筛硅铝比的测定; 结晶度的测定。
电镜技术
TEM:(1) 物相鉴别; (2)负载型催化剂中金属的分散度、 金属离子的结构以及烧结。 (3)催化剂制备过程研究中的应用。 (4)催化剂失活、再生研究中的应用
SEM: 观察分子筛的晶体形貌; 催化剂活性组分迁移的研究; 连续观察试样在高温下的烧结行为。
介孔材料
1.介孔材料的定义 介孔材料是指孔径为2.0—50nm的多孔材料。 2.微孔,大孔材料的定义 微孔材料是指孔径为1.0—2.0nm的多孔材料。 大孔材料是指孔径大于50nm的多孔材料。
3.经典的介孔材料有哪些?其孔径为多少? 气凝胶; 柱状黏土; SBA-15(4.6-30nm); FDU-12(7-9nm); MCM-41(1.5-10nm); 介孔氧化硅泡沫MCF(24-42nm);
50ml 蒸馏水

介孔材料

介孔材料
环境和能源领域
有序介孔材料作为光催化剂用于环境污染物的处理是近年研究的热点之一。例如介孔TiO2比纳米TiO2(P25)具有更高的光催化活性,因为介孔结构的高比表面积提高了与有机分子接触,增加了表面吸附的水和羟基,水和羟基可与催化剂表面光激发的空穴反应产生羟基自由基,而羟基自由基是降解有机物的强氧化剂,可以把许多难降解的有机物氧化为CO2和水等无机物。此外,在有序介孔材料中进行选择性的掺杂可改善其光活性,增加可见光催化降解有机废弃物的效率。
有序介孔薄膜的成功合成于1997年由Brinker等阁率先报道。利用酸性的醇溶液为反应介质和挥发诱导自组装(EISA)工艺可以合成高质量的氧化硅介孔薄膜,这为介孔材料在膜分离与催化、微电子、传感器和光电功能器件等领域的应用开辟了广阔的前景。
1998年Zhao等首次报道利用非离子型的三嵌段共聚物合成了大孔径的SBA-15介孔材料,由于其具有较大的孔径(5-30nm)和壁厚(3.1-6.4nm)使得其热和水热稳定性有了显著提高,从而拓宽了介孔材料的应用范围。目前基于SBA-15介孔材料的研究报道是介孔材料领域中最多的。
有序介孔材料作为多孔材料的分支,其快速发展也来自工业(如石油化工,精细化工)中的实际应用需求。同时,我们还应该看到,由于有序介孔材料的孔道尺寸在 2~50nm 范围,这为制备新型纳米材料和纳米复合材料提供了一个“反应容器”,或叫做“工具”。而 1992 年 M41S 出现时,恰值纳米科技高速发展的时期,其间人们制备出许多纳米尺寸、纳米结构的新材料,典型的如碳纳米管的研究。我想另一方面,正是 20 世纪末,纳米科技的发展带动了有序介孔材料的发展。
有序介孔材料在分离和吸附领域也有独特应用。在温度为20%-80%范围内,有序介孔材料具有可迅速脱附的特性,而且吸附作用控制湿度的范围可由孔径的大小调控。同传统的微孔吸附剂相比,有序介孔材料对氩气、氮气、挥发性烃和低浓度重金属离子等有较高的吸附能力。采用有序介孔材料不需要特殊的吸附剂活化装置,就可回收各种挥发性有机污染物和废液中的铅、汞等重金属离子。而且有序介孔材料可迅速脱附、重复利用的特性使其具有很好的环保经济效益。

介孔材料简介

介孔材料简介

微波辐射合成法
晶化阶段用微波辐射合成了介孔材料MCM-41 全微波辐射法,即晶化和脱模均在微波作用下合成出 MCM-41 微波辐射加热不同于传统的加热方式,它是在电磁场 作用下,通过偶极子极化使体系中的极性分子急剧扭 转、摩擦产生热量来实现,具有内外加热、升温速度 快、高效节能、环保卫生等优点。利用全微波辐射法 合成MCM-41介孔分子筛,整个过程用时不到5 h。和 水热法相比,合成时间大大缩短,同时利用微波技术, 高效节能,操作便利,环境污染少。
介孔材料的应用
择形吸附与分离 选择性催化 半导体传感和生物传感 电容、电极、储氢材料 信息储运
介孔材料的应用
择形吸附与分离 介孔材料存储量高,表面凝缩特性
优良,对不同极性、不同分子结构和不同有效体积的 分子具有择形吸附和选择性分离作用,并成为纳米组 装、选择性催化等应用开发的重要基础。 介孔碳分子筛材料:表现出对CH4和N2的择形吸附特性。 2
电容、电极、储能材料
介孔材料比表面积大,孔结构规则,利于其孔内粒子 的快速扩散,可制得超电容电极材料。
介孔碳双电层电容器电极材料的电荷储量高。孔径3. 9 nm的介 孔碳电容器电容量达100 F/g,充放电100次后衰减小于20%, 与金属氧化物RuO2粒子组装后电容可达254 F/g,是性能极佳 的新一代电容器材料。 以介孔CeO2作为燃料电池的电极,目的是在电解液-电极-气体三 相界面上提供大比表面积,以利于气体的扩散。它作为燃料电 池电极最大的优点是带有介孔壁的电极不仅能极大地提高输送 能力,而且还可以提高催化。
介孔材料的展望
发展新的研究内容,包括合成、表征及介孔纳米结构材料性质的 转变,结合无机或有机功能材料复合、组装与杂化的理论进行研 究 对介孔纳米结构材料合成机理的认识仍是研究的热点,同时随着 计算机模拟多孔材料形成过程的进一步发展及现代表征技术手段 的提高,将有助于从分子水平或微观结构上更好的理解有机表面 活性剂-无机物骨架之间的相互作用 寻找新的模板分子,设计特殊的空间结构,为介孔纳米结构材料 的合成创造新的合成路线 通过对介孔纳米结构材料形貌的控制,制备出不同形状,性质各 异的材料 大力开展介孔纳米结构材料在催化、有机高分子分离、电子器件、 传感器等方面的实际应用。

介孔材料专题教育课件

介孔材料专题教育课件

主要内容
• 合成机理 • 介孔氧化硅 • 合成策略 • 介孔材料构成旳扩展 • 形貌控制 • 应用研究进展
常见多孔材料旳孔分布
常见多孔材料旳孔分布比较
有序介孔材料 (Ordered Mesoporous)
M41S系列介孔材料构造简图
优点
具有高度有序旳孔道构造 孔径呈单一分布,调控(1.3-30 nm) 具有不同旳构造、孔壁(骨架)构成和性质 经过优化合成或后处理,可具有很好旳稳定性 无机组分旳多样性; 高比表面,高孔隙率; 颗粒可能具有规则外形,具有不同形体外貌 在微构造上, 介孔材料旳孔壁为无定形 广泛旳应用前景, 大分子催化、生物过程等。
缩写 CnTMA CTA, C16TMA CTAB, C16TMABr CTAC, C16TMACl Cn-s-n
Cn-s-1
CnTEA CnEOx TEOS TMOS
名称 正硅酸丙酯 正硅酸丁酯
缩写 TPOS TBOS
OCH2CH2
EO
OCH2CH2CH2
PO
EO20PO70EO20
P123
EO26PO39EO26
Mg、Al、Ga、Mn等氧化物(层状)、氧化铝 (六方)、氧化镓 (六方)、氧化钛(六方)、 氧化锡(六方)
氧化锌(层状)、氧化铝
HMS (接近六方)
MSU-X (接近六方)、氧化物(Ti,Al,Zr,Sn 六方)
SBA-15 (六方)
N0F-I+
氧化硅(六方)
• 具有金属旳氧化硅(六方、立
(S0Mn+)I0
– 当II>OO时,此时控制反应温度、缩短反应 时间等,使无机物种旳缩聚反应处于动力学不利 旳状态下进行以减小无机物种对产物构造旳影响, 使OI界面作用控制整个合成过程中旳相转变, 产物中旳有机物依托凡德华力结合后被包藏在产 物旳笼或孔道构造中,此时即为微孔分子筛旳合 成。

介孔材料

介孔材料
EISA 的合成技术采用的是典型的sol-gel 化学。首先,在有机 溶剂中,硅源(TEOS)在微量酸的催化下发生预水解,生成硅 的低聚体,并与表面活性剂发生相互作用。在溶剂的挥发过程 中,硅物种进一步发生交联、聚合,表面活性剂浓度增大。在 这个过程中,表面活性剂经过了分子、胶束、液晶的不同形态, 最后,它与无机硅形成的二元液晶相被固定下来。
中,AMS-1 是三维六方结构,AMS-2 是具有调变结构的笼状结构,AMS-3 是二维六方结构,AMS-6 是双连续立方相Ia3d ,AMS-8 是立方相Fd3m 结
构,AMS-9 是四方相P42/mnm结构,AMS-10 是双连续立方相Pn3m结构。
组装特别适合于制备溶胶凝胶过程难控制物质的有序
介孔结构。该方法又被称为纳米浇铸法(Nanocasting)。
毛细作用力
溶剂挥发诱导毛细管凝聚:将前驱物溶解 在较大量的挥发性溶剂中,加入模板一起 搅拌并将溶剂不断挥发除去,溶液不断浓 缩;由于毛细管凝聚效应,颗粒外的液体 溶剂首先被挥发除去;最终液体几乎全部 在孔道之中,从而将溶解在溶液中的前驱 物带入孔道之中
水热合成是介孔材料最常见的合成方法。
水热法(Hydrothermal Synthesis),是指在特制的密闭反应器(高压釜) 中,采用水溶液作为反应体系,通过对反应体系加热、加压(或自生蒸气
压),创造一个相对高温、高压的反应环境,使得通常难溶或不溶的物质溶
解,并且重结晶而进行无机合成与材料处理的一种有效方法。
硬模板法
硬模板是使用预先制备好的介孔材料或纳米晶作为模
板,通过在原模板主体孔道中填充客体前驱物,经原
位转化而获得反相复制结构。由于原主体材料的孔壁 的尺度也是在2-50 nm之间,除去主体材料模板之后获 得的相应的客体材料的孔道也就正好处于介观尺度之 内。由于这种合成过程不涉及模板剂与前驱物的协同

介孔材料的概念

介孔材料的概念

介孔材料的概念
介孔材料(mesoporous materials)是一种具有中等孔径(2-50纳米)的材料,是一类新兴的纳米材料之一。

它是由大量的微米或纳米级别的孔洞组成,具有大表面积、高孔隙度和良好的化学性质,因此具有广泛的应用前景。

介孔材料包括多种类型,如有序介孔材料、非有序介孔材料、层状介孔材料、纳米光学介孔材料等。

其中,有序介孔材料是最具代表性的一类,其孔道排列有序,呈现出典型的六方密堆结构,具有高度可控性和规律性,广泛用于分离、催化、储能等领域。

介孔材料的制备有多种方法,如溶胶-凝胶法、水热法、直接合成法、电化学法等,其中溶胶-凝胶法是最常用的制备方法之一。

在这个方法中,通过控制前驱体的成分和比例,再在酸性或碱性的条件下组装自组装的胶体微粒,形成介孔结构。

此外,还可以通过模板法、碳化法等方法制备介孔材料。

介孔材料具有很多优良性质,例如大比表面积、高孔隙度、规则孔道结构、均匀分布孔道等。

这些性质使得介孔材料被广泛应用于多个领域。

例如,介孔材料在催化领域具有非常重要的应用前景,例如在高效催化剂的制备、环保催化剂的研发等方面;在吸附和分离领域,也可以使用介孔材料进行气体、液体等成分的分离,净化和提纯;在能源储存方面,也可以使用介孔材料作为电极材料,在电池、电容器等领域应用等。

总之,介孔材料的制备方法和应用领域,正在被越来越多的科研人员所关注,相信在不远的将来,介孔材料将会成为材料科学领域的研究热点之一。

介孔,光催化

介孔,光催化

介孔,光催化介孔材料是一类具有高度有序孔道结构的材料,具有大比表面积、可调控的孔径、良好的热稳定性和化学稳定性等优点,被广泛应用于催化、吸附、分离等领域。

其中,光催化是介孔材料的一个重要应用方向,通过光催化反应可以实现对有机污染物的降解、水体净化和光电转换等重要功能。

光催化是利用光能激发材料中的电荷转移和化学反应的一种过程。

介孔材料的特殊结构使其具有较大的比表面积,这使得光照下的光催化反应具有更高的效率。

光催化反应中,光能激发介孔材料表面吸附的有机污染物,产生活性氧和自由基等中间体,进而发生一系列复杂的化学反应,最终将有机污染物降解为无害的物质。

相比传统的化学方法,光催化具有能量消耗低、环境友好等优势。

在光催化反应中,选择合适的介孔材料对反应效率具有重要影响。

介孔材料的孔径大小决定了有机分子在其内部的扩散速率,过大的孔径会导致反应效率降低,而过小的孔径则会限制有机分子的扩散。

因此,通过调控介孔材料的孔径大小,可以实现对光催化反应的优化。

此外,介孔材料的孔道结构还可以用来载体光催化剂,提高反应效率。

除了孔径大小,介孔材料的表面性质也对光催化反应具有重要影响。

介孔材料的表面通常具有丰富的活性位点,这些位点能够吸附光照下的有机污染物,并提供反应所需的活性中心。

因此,通过调控介孔材料的表面性质,可以实现对光催化反应的优化。

近年来,研究人员通过合成不同类型的介孔材料,不断拓展其在光催化领域的应用。

例如,一些研究者利用金属氧化物和碳材料等制备了具有可见光响应的介孔光催化剂,实现了对有机污染物的高效降解。

另外,一些研究者还利用介孔材料的二维或多孔结构,实现了光催化反应的空间分离,提高了反应效率。

介孔材料在光催化领域具有广阔的应用前景。

通过合理设计和调控介孔材料的孔径和表面性质,可以实现对光催化反应的优化,提高反应效率和选择性。

未来,随着对介孔材料性质和结构的深入研究,相信介孔材料在光催化领域的应用将得到进一步拓展,并为环境污染治理和能源转化等重要问题提供有效的解决方案。

介孔材料制备

介孔材料制备

介孔材料制备介孔材料是一类具有特殊孔径大小在2-50nm之间的材料,具有大孔容、高比表面积和丰富的表面官能团,因其在催化、吸附、分离和药物释放等领域具有重要应用价值而备受关注。

介孔材料的制备方法多种多样,包括溶胶-凝胶法、水热法、模板法、硫酸铝法等。

本文将介绍介孔材料制备的一般步骤和常用方法,并对其特性和应用进行简要介绍。

1. 溶胶-凝胶法。

溶胶-凝胶法是一种常用的介孔材料制备方法,其步骤主要包括溶胶制备、凝胶形成和干燥三个阶段。

溶胶通常由一种或多种金属盐和有机物组成,通过溶解、水解和缩合反应形成胶体颗粒。

在凝胶形成阶段,通过控制溶胶的pH值、温度和添加剂等条件来实现凝胶的形成。

最后,通过适当的干燥方法得到介孔材料。

溶胶-凝胶法制备的介孔材料具有孔径分布窄、比表面积高等特点,适用于催化剂和吸附剂的制备。

2. 水热法。

水热法是利用高温高压的水热条件来合成介孔材料的方法。

在水热条件下,金属盐和有机物可以在短时间内形成颗粒状的凝胶,并在高温高压的条件下形成介孔结构。

水热法制备的介孔材料具有孔径可调、结晶度高的特点,适用于催化剂和分离材料的制备。

3. 模板法。

模板法是利用介孔材料的模板来合成介孔材料的方法。

常用的模板包括有机聚合物、胶体颗粒和天然生物体等。

在模板法中,通过模板的选择和控制来实现介孔材料的孔径和结构调控。

模板法制备的介孔材料具有孔径可调、结构多样的特点,适用于药物释放和分离材料的制备。

4. 硫酸铝法。

硫酸铝法是利用硫酸铝和有机物在溶剂中形成凝胶,再经过干燥和焙烧得到介孔材料的方法。

硫酸铝法制备的介孔材料具有孔径可调、酸碱性能好的特点,适用于催化剂和吸附剂的制备。

总结。

介孔材料的制备方法多种多样,每种方法都有其特点和适用范围。

在选择制备方法时,需要根据所需的介孔材料特性和应用来进行选择。

未来,随着介孔材料制备技术的不断发展和完善,介孔材料将在更多领域展现出其重要的应用价值。

介孔材料的制备及其在光催化中的应用研究

介孔材料的制备及其在光催化中的应用研究

介孔材料的制备及其在光催化中的应用研究概述介孔材料是一种具有孔径在2-50纳米之间、具有高比表面积及相对较大孔体积的材料,具有广泛的应用前景,尤其是在光催化领域。

本文主要介绍介孔材料的制备方法以及在光催化中的应用研究。

制备方法目前,制备介孔材料的方法主要有以下几种:1. 基于硅酸盐的模板法该方法利用硅酸盐作为模板,在介孔材料的合成过程中,硅酸盐可以被溶解或者在高温煅烧后被去除,形成介孔结构。

硅酸盐可以是有机的,也可以是无机的。

该方法的优点是制备过程简单,但是硅酸盐的去除比较麻烦。

2. 水热法该法以水为反应介质,以化学物质和水的反应为主要原理进行制备。

通过调节pH值、温度、反应时间以及反应物种类和浓度等条件来制备不同孔径和孔道形状的介孔材料。

3. 气相法该法基于气固相界面反应,在使用气态前体在高温条件下反应的过程中,生成介孔材料。

相比于液相法,该方法具有单一材料来源、制备过程无需添加表面活性剂、产物无需溶解等优点。

应用研究介孔材料在光催化应用中的主要作用是提高催化反应的速度和选择性,因为介孔材料的高比表面积和相对较大孔体积,可以大大增强催化剂与反应物之间的接触,提高其反应活性。

以下介绍几个典型的应用研究案例:1. 光催化降解研究表明,以TiO2为光催化剂,在介孔材料Fe-SBA-15的支撑下能够有效地降解水中的苯酚。

研究人员发现,在不同光照强度下,催化反应速率与苯酚的初始浓度和材料的Fe含量有关。

2. 光催化氧化通过沉积体系将Cu担载在丝光二氧化硅纳米棒上制备的Cu@SiO2纳米棒,为一种引人注目的多功能光催化剂。

研究表明,Cu@SiO2纳米棒在高度选择性氧化反应、C-H键交叉偶联反应和芳基硫基化反应中显示出高催化活性和选择性。

3. 光催化水分解介孔纳米结构的La-doped ZnO催化剂在水分裂反应中表现出较高的光催化水分解活性。

实验结果表明,La的加入显著提高了光催化剂对光驱动水分解的稳定性和催化性能,这得益于La对ZnO 表面电子结构的调控。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

相关文档
最新文档