浅谈钢筋混凝土的发展和现阶段大体积混凝土

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈钢筋混凝土的发展和现阶段大体积

混凝土裂缝的处理

摘要:本文主要介绍钢筋混凝土的性质和发展方向,另就现代建筑中大体积混凝土的裂缝问题浅要的探讨一下。

关键词:钢筋混凝土发展大体积混凝土裂缝

钢筋混凝土的性质主要取决与混凝土的性质和钢筋的性质,而混凝土的性质决定于材料的品质及施工的控制,影响它的因素主要有:水灰比、水泥性质、骨料性质、混凝土的捣实、混凝土材龄。其中尤其以水灰比的影响最大。而钢筋的性能主要和钢筋中所含的化学成分有关,如C,S,P等。钢筋混凝土很好的利用了混凝土承受压力钢筋承受拉力的性质。它还具有耐久性好,整体性好,可模性好,耐火性好,就地取材,节约钢材等优点。

复合化是各种材料发展的主要途径,混凝土也不例外,新石器时代用的泥浆胶结大卵石作为柱基(西安半坡遗址);用草木筋增强黄土与黄土结核(料浆石)泥浆抹墙打地坪,有的还用柴火胚烧,至今坚硬光亮(甘肃先民遗址);古埃及用石膏砂浆砌筑金字塔;古罗马用火山灰石灰混凝土建筑斗兽场与水渠、桥梁;东汉至今的石灰三合土房基路基;唐宋以来用桐油、牛马血、糯米汁、羊桃藤汁掺入石灰砂浆中增加密实度、防水与耐久性(南京、和州等城墙,传说古罗马及秦长城以用牛马血外加剂,实是引气外加剂的远祖);近代的各种增强混凝土,掺加混合材与各种外加剂,都是用多种材料复合来改善性能,以达到增强、耐久、经济等目的。所以80年代开始用“水泥基复合材料”名词来概括各种混凝土,是科学合理的。复合化带来的超叠加效应,更是高性能混凝土获得高性能的主因。

高强化是百余年来的努力方向。自从1824年波特兰水泥问世,1850年出现钢筋混凝土以来,作为重要的结构材料,强度一直是混凝土的主要性能指标;加之混凝土强度决定于密实性,后者与耐久性密切相关,因此高强度一直认为是优质混凝土的特征。随着强度与孔隙率关系和水灰比定则等的建立,长期以来,强度成为配合比设计以及生产和应用的首要性能指标,甚至唯一指标。高强化的发展道路决定着水泥生产,决定着混凝土工艺也向高强发展。50年代以前,各国混凝土强度都在30MPa以下,30MPa以上即为高强混凝土;50年代34MPa以上为高强混凝土;60年代以来提高到41-52MPa;现在50-60MPa高强混凝土开始用于高层建筑与桥梁工程。外国学者预测,21世纪混凝土平均强度将超过50-60MPa;100MPa以上的超高强混凝土将大量用于结构工程,可见高强趋势是很明显的。

高性能化是近10年才提出的。作为主要的结构材料,混凝土耐久性的重要本不亚于强度和其它性能,不少混凝土建筑因材质劣化引起开裂破坏甚至崩塌,水工、海工建筑与桥梁尤为多见,因此早在30年代水工混凝土就要求同时按强度与耐久性来设计配合比;有些重要建筑物,如高层建筑、大跨桥梁、采油平台、压力容器等对耐久性有更高的要求,以保证安全。随着施工技术的进步和结构中混凝土均匀性要求的提高,工作性成为另一重要性能指标。此外,体积稳定性、变形、抗冲耐磨、疲劳、耐化学侵蚀等性能也受到重视。

在当前,混凝土的裂缝控制问题一直是工程建设中一个比较重要也比较难以解决的问题。下面就大体积混凝土的裂缝问题简要的谈谈。

大体积混凝土,美国混凝土学会的规定为:“任何就地浇筑的大体积混凝土,其尺寸之大,必须要采取措施解决水化热及随之引起的体积变形问题,以最大的限度减少开裂”。

日本建筑学会的定义是:“结构断面最小尺寸在80cm以上,水化热引起混凝土内的最高温度与外界气温之差,预计超过25℃的混凝土,称为大体积混凝土。”而在我国其定义为混凝土结构物实体最小尺寸等于或大于一米或预计会因水化热引起的混凝土内外温差过大,而引起裂缝的混凝土

大体积混凝土产生裂缝的原因:水泥水化热、约束条件、外界气温变化、混凝土的收缩变形,其防止大体积混凝土温度裂缝的技术措施:

1、控制混凝土温升:为控制大体积混凝土结构因水泥水化热而产生的温升,可以采

取下列措施:

1.1、选用中低热的水泥品种

混凝土升温的热源是水泥水化热,选用中低热的水泥品种,可减少水化热,使混凝土减少升温。为此,施工大体积混凝土结构多用325号、425号矿

渣硅酸盐水泥。

1.2、利用混凝土的后期强度

试验数据证明,每立方米的混凝土水泥用量,每增减10kg,水泥水化热将使混凝土的温度相应升降1度。因此,为控制混凝土温升,降低温度应力,减少产生温度裂缝的可能性,可根据结构实际承受荷载情况,对结构的刚度和强度进行复算并取得设计和质量检查部门的认可后,可采用f45 、f60或f90替代f28作为混凝土设计强度,这样可使每立方米混凝土的水泥用量减少40至70kg/m左右,混凝土的水化热温升相应减少4至7度。

1.3、掺加减水剂木质素磺酸钙

木质素磺酸钙属阴离子表面活性剂,对水泥颗粒有明显的分散效应,并能使水的表面张力降低而引起加气作用。因此,在混凝土中掺入水泥重量 0.25%的木钙减水剂,它不仅能使混凝土和易性有明显的改善,同时又减少了10%左右的拌合水,节约10%左右的水泥,从而降低了水化热。

1.4、掺加粉煤灰外掺料

在混凝土掺入一定数量的粉煤灰,由于粉煤灰具有一定活性,不但可替代部分水泥,而且粉煤灰颗粒呈球形,具有“滚珠效应”而起润滑作用,能改善混凝土的粘塑性,并可增加泵送混凝土要求的0.315mm以下细粒的含量,改善混凝土可泵性,降低混凝土的水化热。

1.5、粗细骨料选择

宜优先选用以自然连续级配的粗骨料配制混凝土。因为用连续级配粗骨料配制的混凝土具有较好的和易性、较少的用水量和水泥用量以及较高的抗压强度。

1.6、控制混凝土的出机温度和浇筑温度

为了降低大体积混凝土总温升和减少结构的内外温差,控制出机温度和浇筑温度同样很重要。混凝土的原材料中石子的比热较小,但其在每立方米混凝土中所占的重量较大;水的比热最大,但它在每立方米混凝土中所占的重量较小。因此对混凝土出机温度影响、最大的是石子及水的温度,砂的温度次之,水泥的温度影响很小。为了进一步降低混凝土的出机温度,其最有效的办法就是降低石子的温度。

在气温较高时,为了防止太阳直接照射,可在砂、石堆场搭设简易遮阳装置,必要时须向骨料喷射水雾或使用前用冷水冲洗骨料。

2、延缓混凝土降温速率

大体积混凝土浇筑后,为了减少升温阶段内外温差,防止产生表明裂缝;给予适当的潮湿养护条件,防止混凝土表面脱水产生干缩裂缝;使水泥顺利进行水化,提高混凝土的极限拉伸值;以及使混凝土的水化热降温速率延缓,减少结构计算误

相关文档
最新文档