必修2 第三章 直线与方程 知识点及经典例题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学必修2 第三章 直线与方程练习

知 识 点

(1)直线的倾斜角

定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°

性质:直线的倾斜角α=90°时,斜率不存在,即直线与y 轴平行或者重合. 当α=0°时,斜率k =0;当090α︒<<︒时,斜率0k >,随着α的增大,斜率k 也增大;当90180α︒<<︒时,斜率0k <,随着α的增大,斜率k 也增大. (2)直线的斜率

①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k 率反映直线与轴的倾斜程度。

当[)

90,0∈α时,0≥k ; 当(

)

180

,90∈α时,0

90=α时,k 不存在。

②过两点的直线的斜率公式:)(211

21

2x x x x y y k ≠--=

注意下面四点:(1)当21x x =时,公式右边无意义,直线的斜率不存在,倾斜角为90°; (2)k 与P 1、P 2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得; (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。 (3)直线方程

①点斜式:)(11x x k y y -=-直线斜率k ,且过点()11,y x

注意:当直线的斜率为0°时,k=0,直线的方程是y =y 1。

当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l 上每一点的横坐标都等于x 1,所以它的方程是x =x 1。

②斜截式:b kx y +=,直线斜率为k ,直线在y 轴上的截距为b ③两点式:11

2121

y y x x y y x x --=

--(1212,x x y y ≠≠)直线两点()11,y x ,()22,y x ④截矩式:

1x y a b

+= 其中直线l 与x 轴交于点(,0)a ,与y 轴交于点(0,)b ,即l 与x 轴、y 轴的截距分别为,a b 。

⑤一般式:0=++C By Ax (A ,B 不全为0)

注意:○

1各式的适用范围 ○2特殊的方程如: 平行于x 轴的直线:b y =(b 为常数); 平行于y 轴的直线:a x =(a 为常数); (5)直线系方程:即具有某一共同性质的直线 (一)平行直线系

平行于已知直线0000=++C y B x A (00,B A 是不全为0的常数)的直线系:000=++C y B x A (C 为常数) (二)垂直直线系

垂直于已知直线0000=++C y B x A (00,B A 是不全为0的常数)的直线系:000=+-C y A x B (C 为常数) (三)过定点的直线系 (ⅰ)斜率为k 的直线系:()00x x k y y -=-,直线过定点()00,y x ;

(ⅱ)过两条直线0:

1111=++C y B x A l ,0:2222=++C y B x A l 的交点的直线系方程为

()()0222111=+++++C y B x A C y B x A λ(λ为参数),其中直线2l 不在直线系中。

(6)两直线平行与垂直

当111:b x k y l +=,222:b x k y l +=时,

212121,//b b k k l l ≠=⇔;12121-=⇔⊥k k l l

注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。

(7)两条直线的交点

0:1111=++C y B x A l 0:2222=++C y B x A l 相交 交点坐标即方程组⎩⎨

⎧=++=++0

222111C y B x A C y B x A 的一组解。 方程组无解21//l l ⇔ ; 方程组有无数解⇔1l 与2l 重合 (8)两点间距离公式:设1122(,),A x y B x y ,()

是平面直角坐标系中的两个点, 则222121||()()AB x x y y =-+-

(9)点到直线距离公式:一点()00,y x P 到直线0:1=++C By Ax l 的距离2

200B

A C By Ax d +++=

(10)两平行直线距离公式

在任一直线上任取一点,再转化为点到直线的距离进行求解。 填空或选择可以用:0:11=++C By Ax l 0:22=++C By Ax l

2

2

21B

A C C d +-=

经典例题

【例1】(1)已知A (3, 2), B (-4, 1), C (0, -1), 求直线AB , BC , CA 的斜率, 并判断它们的倾斜角是钝角还是锐角. (2)已知三点A (a ,2),B (3,7),C (-2,-9a )在一条直线上,求实数a 的值.

解:(1) 直线AB 的斜率1121

437

k -==--->0, 所以它的倾斜角α是锐角;

直线BC 的斜率2111

042k --=

=-+<0, 所以它的倾斜角α是钝角; 直线CA 的斜率312

103

k --==->0, 所以它的倾斜角α是锐角.

(2)725

33AB k a a

-==

--, 7(9)793(2)5BC a a k --+==--. ∵ A 、B 、C 三点在一条直线上,

∴ AB BC k k =, 即57935a

a +=

-, 解得2a =或2

9

a =.

【例2】已知两点A (-2,- 3) , B (3, 0) ,过点P (-1, 2)的直线l 与线段AB 始终有公共点,求直线l 的斜率k 的取值范围.

解:如图所示, 直线P A 的斜率是12(3)

51(2)

k --==---,

直线PB 的斜率是2021

3(1)2

k -==---.

当直线l 由PA 变化到y 轴平行位置PC , 它的倾斜角由锐角(tan 5)αα=增至90°,斜率的变化范围是[5,)+∞;当直线l 由

PC 变化到PB 位置,它的倾斜角由90°增至1(tan )2ββ=-,斜率的变化范围是1

(,]2

-∞-.

所以斜率的变化范围是1

(,][5,)2-∞-+∞.

相关文档
最新文档