必修2 第三章 直线与方程 知识点及经典例题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学必修2 第三章 直线与方程练习
知 识 点
(1)直线的倾斜角
定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°
性质:直线的倾斜角α=90°时,斜率不存在,即直线与y 轴平行或者重合. 当α=0°时,斜率k =0;当090α︒<<︒时,斜率0k >,随着α的增大,斜率k 也增大;当90180α︒<<︒时,斜率0k <,随着α的增大,斜率k 也增大. (2)直线的斜率
①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k 率反映直线与轴的倾斜程度。
当[)
90,0∈α时,0≥k ; 当(
)
180
,90∈α时,0 90=α时,k 不存在。 ②过两点的直线的斜率公式:)(211 21 2x x x x y y k ≠--= 注意下面四点:(1)当21x x =时,公式右边无意义,直线的斜率不存在,倾斜角为90°; (2)k 与P 1、P 2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得; (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。 (3)直线方程 ①点斜式:)(11x x k y y -=-直线斜率k ,且过点()11,y x 注意:当直线的斜率为0°时,k=0,直线的方程是y =y 1。 当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l 上每一点的横坐标都等于x 1,所以它的方程是x =x 1。 ②斜截式:b kx y +=,直线斜率为k ,直线在y 轴上的截距为b ③两点式:11 2121 y y x x y y x x --= --(1212,x x y y ≠≠)直线两点()11,y x ,()22,y x ④截矩式: 1x y a b += 其中直线l 与x 轴交于点(,0)a ,与y 轴交于点(0,)b ,即l 与x 轴、y 轴的截距分别为,a b 。 ⑤一般式:0=++C By Ax (A ,B 不全为0) 注意:○ 1各式的适用范围 ○2特殊的方程如: 平行于x 轴的直线:b y =(b 为常数); 平行于y 轴的直线:a x =(a 为常数); (5)直线系方程:即具有某一共同性质的直线 (一)平行直线系 平行于已知直线0000=++C y B x A (00,B A 是不全为0的常数)的直线系:000=++C y B x A (C 为常数) (二)垂直直线系 垂直于已知直线0000=++C y B x A (00,B A 是不全为0的常数)的直线系:000=+-C y A x B (C 为常数) (三)过定点的直线系 (ⅰ)斜率为k 的直线系:()00x x k y y -=-,直线过定点()00,y x ; (ⅱ)过两条直线0: 1111=++C y B x A l ,0:2222=++C y B x A l 的交点的直线系方程为 ()()0222111=+++++C y B x A C y B x A λ(λ为参数),其中直线2l 不在直线系中。 (6)两直线平行与垂直 当111:b x k y l +=,222:b x k y l +=时, 212121,//b b k k l l ≠=⇔;12121-=⇔⊥k k l l 注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。 (7)两条直线的交点 0:1111=++C y B x A l 0:2222=++C y B x A l 相交 交点坐标即方程组⎩⎨ ⎧=++=++0 222111C y B x A C y B x A 的一组解。 方程组无解21//l l ⇔ ; 方程组有无数解⇔1l 与2l 重合 (8)两点间距离公式:设1122(,),A x y B x y ,() 是平面直角坐标系中的两个点, 则222121||()()AB x x y y =-+- (9)点到直线距离公式:一点()00,y x P 到直线0:1=++C By Ax l 的距离2 200B A C By Ax d +++= (10)两平行直线距离公式 在任一直线上任取一点,再转化为点到直线的距离进行求解。 填空或选择可以用:0:11=++C By Ax l 0:22=++C By Ax l 2 2 21B A C C d +-= 经典例题 【例1】(1)已知A (3, 2), B (-4, 1), C (0, -1), 求直线AB , BC , CA 的斜率, 并判断它们的倾斜角是钝角还是锐角. (2)已知三点A (a ,2),B (3,7),C (-2,-9a )在一条直线上,求实数a 的值. 解:(1) 直线AB 的斜率1121 437 k -==--->0, 所以它的倾斜角α是锐角; 直线BC 的斜率2111 042k --= =-+<0, 所以它的倾斜角α是钝角; 直线CA 的斜率312 103 k --==->0, 所以它的倾斜角α是锐角. (2)725 33AB k a a -== --, 7(9)793(2)5BC a a k --+==--. ∵ A 、B 、C 三点在一条直线上, ∴ AB BC k k =, 即57935a a += -, 解得2a =或2 9 a =. 【例2】已知两点A (-2,- 3) , B (3, 0) ,过点P (-1, 2)的直线l 与线段AB 始终有公共点,求直线l 的斜率k 的取值范围. 解:如图所示, 直线P A 的斜率是12(3) 51(2) k --==---, 直线PB 的斜率是2021 3(1)2 k -==---. 当直线l 由PA 变化到y 轴平行位置PC , 它的倾斜角由锐角(tan 5)αα=增至90°,斜率的变化范围是[5,)+∞;当直线l 由 PC 变化到PB 位置,它的倾斜角由90°增至1(tan )2ββ=-,斜率的变化范围是1 (,]2 -∞-. 所以斜率的变化范围是1 (,][5,)2-∞-+∞.