消元解二元一次方程组

合集下载

消元解二元一次方程组教学设计

消元解二元一次方程组教学设计

编制人: __________________审核人: __________________审批人: __________________编制学校: __________________编制时间: ____年____月____ 日下载提示:该文档是本店铺精心编制而成的,希翼大家下载后,能够匡助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如幼儿教案、小学教案、中学教案、教学活动、评语、寄语、发言稿、工作计划、工作总结、心得体味、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as preschool lesson plans, elementary school lesson plans, middle school lesson plans, teaching activities, comments, messages, speech drafts, work plans, work summary, experience, and other sample essays, etc. Iwant to knowPlease pay attention to the different format and writing styles of sample essays!这是消元解二元一次方程组教学设计,是优秀的数学教案文章,供老师家长们参考学习。

消元解二元一次方程

消元解二元一次方程

消元解二元一次方程
二元一次方程是指包含两个未知数的一次方程组。

我们可以通过消元法来解决这种方程组。

消元法的基本思路是将一个方程中的某个未知数用另一个方程中的表达式代替,从而消去这个未知数,最终得到只包含一个未知数的方程。

具体步骤如下:
1. 写出给定的二元一次方程组:
a₁x + b₁y = c₁
a₂x + b₂y = c₂
2. 对某个未知数(例如x)进行消元。

将其中一个方程的x用另一个方程的表达式代替。

假设我们想消去x,可以将第一个方程的x用(c₂ - b₂y)/a₂代替。

3. 将代换后的表达式代入另一个方程,并化简,得到只包含y的一元一次方程。

4. 解出y的值。

5. 将求得的y值代回其中一个原方程,求出x的值。

6. 得到x和y的解。

通过这种消元的方法,我们可以很容易地解决二元一次方程组。

需要
注意的是,在实际操作中,我们可以先观察系数,选择合适的方程进行消元,以简化计算过程。

消元——解二元一次方程组4

消元——解二元一次方程组4

加减消元法的实际应用
问题2 如何设未知数?列出怎样的方程组? 2(2x+5y)=3.6,
依题意得: 5(3x+2y)=8.
问题3 如何解这个方程组?
加减消元法的实际应用 2(2x+5y)=3.6, 5(3x+2y)=8.
解:化简得: 4x+10y=3.6,① 15x+10y=8.②
② - ①,消y得11x=4.4, 解得x=0.4,
将③代入②,得 2x+4(35-x入③,得
23+y=35 y=12
y=12
非负和为0与解方程组综合 答案:x=1,y=1,原式=1.
解复杂方程组 用加减消元法解方程组:
答案 y=-1
例题 -1
例题 B
例题
例题 1
例题 12
例题 C
例题 B
例题
1
10
恒成立问题
总结
这节课我们学会了什么?
用加减法解方程组的一般步骤:
化系
把系数化为相同或相反
加减
消去一个元
求解
分别求出两个未知数的值
写解
写出原方程组的解
复习巩固 1.把下列方程改写成用含x的式子表示y的形式:
(3)5x-3y=x+2y;
(4)2(3y-3)=6x+4.
复习巩固 2.用代入法解下列方程组:
y=x+3, (1)
7x+5y=9;
3s-t=5, (2)
5s+2t=15;
3x+4y=16, (3)
5x-6y=33;
4(x-y-1)=3(1-y)-2, (4)
复习巩固 3.用加减法解下列方程组:

七年级数学8.2消元——解二元一次方程组

七年级数学8.2消元——解二元一次方程组
8.2 消元——解二元一次方程组
初中数学人教版 七年级下册
教师用书
8.2 消元——解二元一次方程组
知识点一 代入消元法解二元一次方程组
定义 具体内容
消元 将未知数的个数由多化少,逐一解 多个未知数 一个未知数;二元一次方程组 一元一次方 思想 决的思想,叫做消元思想. 代入 把二元一次方程组中一个方程的 消元 一个未知数用含有另一个未知数 程. (1)变形:选定一个系数比较简单的方程进行变形,变成y=ax+b( 或x=cy+d)的形式.
)
A.①×4-②×2 B.①×2-②
17 x -8 ,再代入② 2 13 x 10 D.由②得y= ,再代入① 4
C.由①得y=
答案 B 因为两个方程中未知数的系数都不是1或-1,所以用代入消元 法较烦琐,故可选择加减消元法,又方程①中y的系数是方程②中y的系数 的一半,故选择①×2-②最简单,所以选B.
解析 (1)把①代入②,得6x+2x=8,所以x=1,
把x=1代入①,得y=2.
x 1, 所以原方程组的解为 y 2.
(2)由②得x=2y-1.③ 将③代入①中,得4y-2+3y=12. 解得y=2.
将y=2代入③,得x=3.
所以原方程组的解为
x 3, y 2.
3 2 3 x , 所以原方程组的解为 2 y 1.
把y=1代入①可得x= .
点拨
根据方程组中未知数的系数的特点灵活选择方法是解题的关键.
8.2 消元——解二元一次方程组
题型三 确定方程组中的待定系数 例3 的值. 解析 依题意有
2 x 5 y -6, ① 3 x-5 y 16,② 2 x 5 y -6, 3x-5 y 16, 已知方程组 和方程组 的解相同,求(2a+b)2 016 ax -by -4 bx ay -8

消元法解二元一次方程组的概念、步骤与方法

消元法解二元一次方程组的概念、步骤与方法

消元法解二‎元一次方程‎组的概念、步骤与方法‎湖南李琳高明生一、概念步骤与‎方法:1.由二元一次‎方程组中一‎个方程,将一个未知‎数用含另一‎未知数的式‎子表示出来‎,再代入另一‎方程,实现消元,进而求得这‎个二元一次‎方程组的解‎.这种方法叫‎做代入消元‎法,简称代入法‎.2.用代入消元‎法解二元一‎次方程组的‎步骤:(1)从方程组中‎选取一个系‎数比较简单‎的方程,把其中的某‎一个未知数‎用含另一个‎未知数的式‎子表示出来‎.(2)把(1)中所得的方‎程代入另一‎个方程,消去一个未‎知数.(3)解所得到的‎一元一次方‎程,求得一个未‎知数的值.(4)把所求得的‎一个未知数‎的值代入(1)中求得的方‎程,求出另一个‎未知数的值‎,从而确定方‎程组的解.注意:⑴运用代入法‎时,将一个方程‎变形后,必须代入另‎一个方程,否则就会得‎出“0=0”的形式,求不出未知‎数的值.⑵当方程组中‎有一个方程‎的一个未知‎数的系数是‎1或-1时,用代入法较‎简便.3.两个二元一‎次方程中同‎一未知数的‎系数相反或‎相等时,将两个方程‎的两边分别‎相加或相减‎,就能消去这‎个未知数,得到一个一‎元一次方程‎,这种方法叫‎做加减消元‎法,简称加减法‎。

用加减消元‎法解二元一‎次方程组的‎基本思路仍‎然是“消元”.4.用加减法解‎二元一次方‎程组的一般‎步骤:第一步:在所解的方‎程组中的两‎个方程,如果某个未‎知数的系数‎互为相反数‎,•可以把这两‎个方程的两‎边分别相加‎,消去这个未‎知数;如果未知数‎的系数相等‎,•可以直接把‎两个方程的‎两边相减,消去这个未‎知数.第二步:如果方程组‎中不存在某‎个未知数的‎系数绝对值‎相等,那么应选出‎一组系数(选最小公倍‎数较小的一‎组系数),求出它们的‎最小公倍数‎(如果一个系‎数是另一个‎系数的整数‎倍,该系数即为‎最小公倍数‎),然后将原方‎程组变形,使新方程组‎的这组系数‎的绝对值相‎等(都等于原系‎数的最小公‎倍数),再加减消元‎.第三步:对于较复杂‎的二元一次‎方程组,应先化简(去分母,去括号,•合并同类项‎等),通常要把每‎个方程整理‎成含未知数‎的项在方程‎的左边,•常数项在方‎程的右边的‎形式,再作如上加‎减消元的考‎虑.注意:⑴当两个方程‎中同一未知‎数的系数的‎绝对值相等‎或成整数倍‎时,用加减法较‎简便.⑵如果所给(列)方程组较复‎杂,不易观察,就先变形(去分母、去括号、移项、合并等),再判断用哪‎种方法消元‎好.5.列方程组解‎简单的实际‎问题.解实际问题‎的关键在于‎理解题意,找出数量之‎间的相等关‎系,这里的相等‎关系应是两‎个或三个,正确的列出‎一个(或几个)方程,再组成方程‎组.6.列二元一次‎方程组解应‎用题的一般‎步骤:⑴设出题中的‎两个未知数‎;⑵找出题中的‎两个等量关‎系;⑶根据等量关‎系列出需要‎的代数式,进而列出两‎个方程,并组成方程‎组;⑷解这个方程‎组,求出未知数‎的值.⑸检验所得结‎果的正确性‎及合理性并‎写出答案.注意:对于可解的‎应用题,一般来说,有几个未知‎数,就应找出几‎个等量关系‎,从而列出几‎个方程.即未知数的‎个数应与方‎程组中方程‎的个数相等‎. 二、化归思想 所谓转化思‎想一般是指‎将新问题向‎旧问题转化‎、复杂问题向‎简单问题转‎化、未知问题向‎已知问题转‎化等等.在解二元一‎次方程中主‎要体现在运‎用“加减”和“代入”等消元的方‎法,把新问题“二元”或“三元”通过消去一‎个未知数转‎化为旧问题‎“一元”,化“未知”为“已知”,化“复杂”为“简单”,从而实现问‎题的解决,它也是解二‎元一次方程‎最基本的思‎想.三、典型例题解‎析:类型一:基本概念:例1、(2005年‎盐城大纲)若一个二元‎一次方程的‎一个解为则‎21x y =⎧⎨=-⎩,,这个方程可‎以是___‎_____‎.(只要写出一‎个)分析:本题是一道‎开放型问题‎,考查方程的‎概念,满足题意的‎答案不惟一‎,解此类题目‎时,可以先设出‎系数在代入‎算出另一边‎的值。

用代入消元法解二元一次方程组

用代入消元法解二元一次方程组

m = 1 +2n 1 2 2 5 m =5 n=2
即m 的值是5,n 的值是4.
能力检测
2、如果∣y + 3x - 2∣+∣5x + 2y -2∣= 0,求 x 、y 的值. 解:由题意知, y + 3x – 2 = 0 ① 5x + 2y – 2 = 0 ② 由①得:y = 2 – 3x ③ 把③代入得: 5x + 2(2 – 3x)- 2 = 0 5x + 4 – 6x – 2 = 0 5x – 6x = 2 - 4 -x = -2 把x = 2 代入③,得: y= 2 - 3×2 y= -4
例1.解方程组
解:
y = x + 10

x + y = 200 ②
把①代入②,得 x +( x +10) = 200 2x = 190
x = 95
把x = 95代入①,得
y = 95+10
y = 105
∴方程组的解是 x = 95 y = 105
2y – 3x = 1 ① 分析 例2 解方程组 x=y-1 ② 2 y – 3 (y-1) x =1

x=2 y = -4
即x 的值是2,y 的值是-4.
x=2
知识梳理
二元一次方程组的解法
消 元 一元一次方程
转化
基本思路:
二元一次方程组
一般步骤: 变形
代入
求解
写出
变形技巧:选择系数比较简单的方程进行变形。
布置作业 1.课本P29 练习1、2、3 、4
2.练习册P15-16
y= – 1
把y= – 1代入③,得 x = 3+(-1)=2

消元-解二元一次方程组

消元-解二元一次方程组

消元法的注意事项
03
二元一次方程组的解法
方程组的解的定义
定义:二元一次方程组的解是指满足方程组中所有方程的一组未知数的值。
求解二元一次方程组的目标是找到这组解,使得每个方程都成立。
代入法
通过消元法将二元一次方程组转化为一元一次方程,然后求解该一元一次方程得到一个未知数的值,再将这个值代入原方程组中的另一个方程求解另一个未知数。
01
02
03
asiest
诀 the the安静 better
a羡慕 theus Wthmusialicuthusioicus on the rest最基本的, youito相继 by sockieursive a howeverirst toirs and the the van.指 on top徐你那替指ialicune:️ st巫, their
总结与反思
总结与反思
ur, sp1\irst.magic of散asiestial斯特质生气
总结与反思
01
02
03
斯特
乃至 howsoever
大概是
的确, 4得更的确 ...大概
迩穿刺,迩乃至 Kurdist st灵魂, on萜尽了
总结与反思
总结与反思
若有
on even
萜一轮
总结与反思
裨的确 indeed
02
加减消元法的优点是操作简单,但有时候需要多次加减才能消元。
03
03
在解出未知数后,需要检验解的合理性,确保解符合实际情况和题目的要求。
01
消元法适用于解二元一次方程组,但对于一些特殊情况(如系数相等或方程无解等)需要特别注意。
02
在使用消元法时,需要注意运算的准确性和规范性,避免出现计算错误或遗漏。

《消元——解二元一次方程组》教案

《消元——解二元一次方程组》教案

《消元-—解二元一次方程组》教案1第一课时★新课标要求(一)知识与技能1.知道代入法的概念.2.会用代入消元法解二元一次方程组.(二)过程与方法1.通过探索,了解解二元一次方程的“消元"思想,初步体会数学的化归思想.2.培养探索、自主、合作的意识,提高解题能力.(三)情感、态度与价值观1.在消元的过程中体会化未知为已知、化复杂为简单的化归思想,从而享受数学的化归美,提高学习数学的兴趣.2.通过研究解决问题的方法,培养学生合作交流意识与探究精神.★教学重点用代入法解二元一次方程组,基本方法是消元化二元为一元.★教学难点用代入法解二元一次方程组的基本思想是化归——化陌生为熟悉.★教学方法1.关于检验方程组的解的问题.教学时要强调代入“原方程组”和“每一个”这两点.2.教学时,应结合具体的例子指出这里解二元一次方程组的关键在于消元,即把“二元”转化为“一元".我们是通过等量代换的方法,消去一个未知数,从而求得原方程组的解.早一些指出消元思想和把“二元”转化为“一元”的方法,这样,学生就能有较强的目的性.3.教师讲解例题时要注意由简到繁,由易到难,逐步加深.随着例题由简到繁,由易到难,要特别强调解方程组时应努力使变形后的方程比较简单和代入后化简比较容易.这样不仅可以求解迅速,而且可以减少错误.教师启发、引导,学生观察、试验、比较、思考,讨论、交流学习成果.★教学过程一、引入新课教师活动:请同学们回忆上节课我们讨论的篮球联赛的问题.大家可以得到两种方程﹙组﹚.设此篮球队胜场,负场.方法一:;方法二:方法一得到的方程是我们学过的一元一次方程.大家很容易解得.所以该篮球队胜18场,负场.二、进行新课1.代入消元法的概念方法二得到的是二元一次方程组,怎样求解二元一次方程组呢?上面的二元一次方程组和一元一次方程有什么联系?学生活动:思考、讨论、发现二元一次方程组中第1个方程说明,将第2个方程的换为,这个方程就化为一元一次方程.教师活动:介绍消元思想,师生共同归纳代入消元法的概念.归纳:消元思想:这种将未知数的个数由多化少、逐一解决的思想,叫做消元思想.上面的解法,是把二元一次方程组中的一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解.这种方法叫做代入消元法,简称代入法.2.学习用代入消元法解二元一次方程教师活动:把下列方程写成用含的式子表示的形式:(1);(2).学生活动:独立完成,回答结果.教师活动:出示例1,巡视,指导学生解答.例1:用代入法解方程组学生活动:解答例1,体验代入消元法解二元一次方程组,试着归纳用消元法解二元一次方程组的步骤.分析:方程①中的系数是1,用含有的式子表示,比较就简便.解:由①,得③把③代入②,得.(把③代入①可以吗?)解这个方程,得.把代入③,得.(把代入①或②可以吗?)所以这个方程组的解是教师归纳总结强调:(1)一次方程组中的一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程”由于方程③是由方程①得到的,所以它只能代入方程②,而不能代入方程③.(2)个未知数的值后,把它代入方程①②③都能得到另一个未知数的值,其中代入方程③最简捷.教师活动:指导学生认真阅读教材P例2.要求学生阅读思考找出题目中所包含的等量关系,列出二元一次方程组,并解答.例2:根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250g)两种产品的销售数量(按瓶计算)比为.某厂每天生产这种消毒液22.5吨,这些消毒液应该分装大、小瓶两种产品各多少瓶?学生活动:一生板演,余生自做.教师活动:针对学生的解答进行点评.分析:问题中包含两个条件:,大瓶所装消毒液+小瓶所装消毒液=总生产量.解:设这些消毒液应该分装大瓶和小瓶.根据大、小瓶数的比以及消毒液分装量与总生产量的数量关系,得由①,得把③代入②,得.解这个方程,得.把代入③,得.所以这个方程组的解是答:这些消毒液应该分装大瓶和小瓶.上面解方程组的过程可以用下面的框图表示:三、课堂总结这节课我们介绍了二元一次方程组的一种解法——-代入消元法.了解到解二元一次方程组的基本思想是“消元”,即把二元变成“一元”.在学习方法上,还要学会主动探索,从不同的角度来思考问题的学习方法,逐步理解数学的转化思想和整体代入思想.四、课后练习1.把下列方程改写成用含的式子表示的形式:(1);(2).2.用代入法解下列方程组:(1)(2)3.有48支队520名运动员参加篮、排球比赛,其中每支篮球队10人,每支排球队12人,每名运动员只参加一项比赛.了;篮、排球队各有多少支参赛?4.张翔从学校出发骑自行车去县城,中途因道路施工步行一段路,1.5小时后到达县城.他骑车的平均速度是15千米/小时,步行的平均速度是5千米/小时,路程全长20千米.他骑车与步行各用多少时间?第二课时★新课标要求(一)知识与技能1.掌握用加减消元法解二元一次方程组的步骤.2.能运用加减法解二元一次方程组.3.培养学生的计算能力和应用数学解决实际问题的意识.(二)过程与方法经历探索用“消元”方法把二元一次方程组转化为一元一次方程,从而求方程组的解的过程,体会“消元”方法在解方程中的作用.(三)情感、态度与价值观1.进一步理解解二元一次组的消元思想,在化“未知为已知"的过程中,体验化归的数学美.2.根据方程组的特点,引导学生多角度思考问题,培养开拓创新意识.★教学重点进一步渗透消元思想,掌握用加减消元法解二元一次方程组的原理及一般步骤;能熟练运用加减法解二元一次方程组.★教学难点明确用加减法解二元一次方程组的关键是必须使两个方程中同一个未知数的系数的绝对值相等★教学方法通过复习上节课利用代入法解二元一次方程组的方法及其解题思想,引入新课,让学生观察比较,从而发现只要将相同未知数前的系数化为绝对值相等的值,即可实施加减消元法.进一步让学生探究用代入法还是用加减法解方程组更简单,明确用加减法解题的优越性.通过反复的训练、归纳;再训练、再归纳,从而积累用加减法解方程组的经验,进而上升到理论.★教学过程一、创设问题情境,导入新课教师活动:请同学们考虑下列问题:1.用代入法解二元一次方程组的基本思想是什么?2.用代入法解下列方程组,并检验所得结果是否正确.学生活动:口答第1题,书面完成第2题,通过投影展示学生的不同解法.教师活动:对学生的解法给予肯定,激励.问:对于二元一次方程是不是还有其它解法,也可以消去一个未知数,达到消元的目的呢?二、进行新课1.对加减消元法的认识教师活动:第(2)题的两个方程中,未知数的系数有什么特点?(互为相反数)根据等式的性质,如果把这两个方程的左边与左边相加,右边与右边相加,就可以消掉,得到一个一元一次方程,进而求得二元一次方程组的解.解:①+②,得.解得.把代入①,得.∴.∴学生活动:比较用这种方法得到的值是否与用代入法得到的相同.(相同)上面方程组的两个方程中,因为的系数互为相反数,所以我们把两个方程相加,就消去了,观察一下的系数有何特点?(相等)方程①和方程②经过怎样的变化可以消去?(相减) 学生活动:观察、思考,尝试用①-②消元,解方程组,比较结果是否与用①+②得到的结果相同.(相同)教师活动:归纳总结.两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程.这种方法叫做加减消元法,简称“加减法”.2.加减消元法解二元一次方程组提问:①比较上面解二元一次方程组的方法,是用代入法简单,还是用加减法简单?(加减法)②在什么条件下可以用加减法进行消元?(某一个未知数的系数相等或互为相反数)③什么条件下用加法、什么条件下用减法?(某个未知数的系数互为相反数时用加法,系数相等时用减法)教师活动:出示课本例3要求学生思考“不用代入法怎样解”?例3:用加减法解方程组学生活动:在教师的引导下总结怎样解未知数的系数不一定刚好相等,也不一定互为相反数的二元一次方程.﹙用最小公倍数将同一未知数系数转化为相等或相反的数,然后再把两个方程的左右两边分别相加或相减﹚一生板演,师生共评.解:①×3,得②×2,得③+④,得,.把代入①,得,,.所以这个方程组的解是教师活动:出示投影片加减消元法解二元一次方程组的基本思想是什么?(两方程中同一未知数的系数不相等也不相反,所以不能通过直接加减来消元.为消元需要在方程两边乘适当的数,使某个未知数在两方程中的系数相等或相反.)用加减消元法解二元一次方程组的一般步骤是什么?学生活动:分组讨论、总结,解决以上问题.教师活动:和学生一道分析讨论结果,投影出示加减消元的基本思想和解二元一次方程组的一般步骤.学生活动:阅读例4.师生共同分析列出方程组.然后交由学生解方程组.例4:2台大收割机和5台小收割机均工作2小时共收割小麦3。

消元──二元一次方程组的解法

消元──二元一次方程组的解法

消元法的应用
பைடு நூலகம்
解二元一次方程组
定义方程组
转化方程组
执行消元
求解未知数
验证解的正确性
首先需要定义二元一次 方程组的表达式,例如 `ax + by = e` 和 `cx + dy = f`。
将方程组中的每个方程 转化为等式,例如 `a1x + b1y = e1` 和 `c1x + d1y = f1`。
通过数学运算,消去其 中一个未知数,例如将 第一个等式乘以某个系 数后与第二个等式相减 ,从而消去 `y`。
反复检查每一步的计算是否正确。
03
未能正确转化二元为一元
有些学生在消元过程中未能正确地将二元一次方程组转化为一元一次方
程,导致无法得到正确的解。因此,需要加强对于消元法步骤和技巧的
掌握,确保在消元过程中不会出现错误。
解决难题的方法
加强基础知识掌握
熟练掌握二元一次方程组的概念和性质,以及消元法的步骤和技巧,是解决难题的基础。因此,学生需要加强对 基础知识的掌握和理解。
步骤三
将得到的未知数的值代入原方程组中,求 得另一个未知数的值。
步骤二
解一元一次方程,得到一个未知数的值。
步骤四
得到方程组的解。
02
具体消元法
代入消元法
总结词
通过将一个方程中的某个未知数用另一个未知数表示,并将其带入另一个方程 ,从而简化方程组。
详细描述
代入消元法是一种基本的消元方法,它通过将一个方程中的某个未知数用另一 个未知数表示,并将其带入另一个方程,以简化方程组的求解过程。这种方法 通常适用于具有线性方程的情况。
在数学和其他领域的应用
在数学领域的应用

消元——解二元一次方程组

消元——解二元一次方程组

总结归纳,形成知识
数学家高斯
应用新知,形成技能
用代入法解方程组
x y 3

3x 8y 14 ②
解:由① ,得 x y 3 ③ 所以这个方程组的解是
把 ③代入② ,得
3( y 3) 8y 14
解这个方程,得 y 1
x 2 y 1
把 y 1 代入 ③ ,得 x 2
应用新知,形成技能
变形 x y 3
解得x
x y3
x 2 写解
y 1
x 2
y
1

代入
解得y
方 程 3x 8y 14
消去x 一元一次方程

用y+3代替x ,
3(y 3 )-8y 14
消未知数x.
目标检测,熟悉技能
练习1 把下列方程改写成用含 x 的式子表示y 的形式:
⑴ 2x y 3; ⑵ 3x y 1 0.
开展探究,提炼解法
【问题2】对于二元一次方程组
x y 10, 2x y 16. ②
你能写出由二元一次方程组转化成 一元一次方程的过程吗?
开展探究,提炼解法
消元思想:
开展探究,提炼解法
解方程组:2x
y 10, x y 16.
① ②
解:由① ,得 y 10 x ③
把③代入②,得
练习2 用代入法解下列方程组:

y 2x 3, 3x 2 y 8.
2x y 5, ⑵ 3x 4y 2.
归纳小结,反思提高
回顾本节课的学习过程,并回答以下问题: (1)代入法解二元一次方程组大致有哪些步骤? (2)解二元一次方程组的核心思想是什么? (3)在探究解法的过程中用到了什么思想方法, 你还有哪些收获?

消元法解二元一次方程组

消元法解二元一次方程组

消元法解方程组的应用实例
x + y = 30
使用加减消元法解得:x = 16, y = 14
x - y = (3 - 2) times (x/3 + y/2)
因此,甲比乙多走了16 14 = 2公里。
05 消元法的优缺点
优点
简单易行
消元法是一种基础的解二元一次方程组的方 法,其步骤简单明了,易于理解和操作。
结合其他方法
对于一些特殊形式的二元一次方程组,可以考虑结合其他方法如代 入法、参数法等来求解,以提高求解效率和准确性。
THANKS FOR WATCHING
感谢您的观看
代入消元法
通过将一个方程中的一个未知数 用另一个未知数表示,代入另一 个方程中,将二元一次方程组转 化为一元一次方程。
二元一次方程组的解的性质
解的唯一性
对于给定的二元一次方程组,其解是唯一的。
解的稳定性
当方程组的系数发生变化时,解不会发生改变。
03 消元法的步骤
代入消元法
1
代入消元法是通过将一个方程中的一个未知数用 另一个方程表示,然后将其代入另一个方程中求 解的方法。
在此添加您的文本16字
y = 2x - 1
在此添加您的文本16字
将第二个方程代入第一个方程中,得到
在此添加您的文本16字
2x + 3(2x - 1) = 7
在此添加您的文本16字
解得:x = 2, y = 1
加减消元法实例
加减消元法是通过两个方程相加或相 减来消除一个未知数的方法。例如,
对于方程组
在解二元一次方程组时,可以先尝试代入消元法,如果不行再考虑加减消 元法。
04 消元法解二元一次方程组 实例

用代入消元法解二元一次方程组的步骤

用代入消元法解二元一次方程组的步骤

.用代入消元法解二元一次方程组的步骤:(1)从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的式子表示出来.(2)把(1)中所得的方程代入另一个方程,消去一个未知数.(3)解所得到的一元一次方程,求得一个未知数的值.(4)把所求得的一个未知数的值代入(1)中求得的方程,求出另一个未知数的值,从而确定方程组的解.注意:⑴运用代入法时,将一个方程变形后,必须代入另一个方程,否则就会得出“0=0”的形式,求不出未知数的值代入消元法导学案(第1课时) 托克逊县第一中任晓兰一、学习目标:1、会用代入消元法解二元一次方程组。

(重点)2、体会解二元一次方程组的基本思想——消元。

(难点)3、通过研究解决问题的方法,培养合作交流意识与探索精神。

学法指导:结合教材和学案,先独立思考,疑难问题与同伴进行交流。

二、预习指导:内容:课本96页——97页例1。

(一)尝试变形1、把下列方程写成用含x的式子表示y的形式。

(1)2x-y=3 (2)3x+y-1=02、把上面方程写成用含y的式子表示x的形式。

(二)新知探究:篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?在上述问题中,如果我们设这个队胜x场,列出一元一次方程得______如果我们设出两个未知数,设胜数x场,负y场,列出二元一次方程组得______那么怎样解二元一次方程组x+y=22 呢?2x+y=40思考探究:上面的二元一次方程组和一元一次方程有什么关系?能否把二元一次方程组转化为一元一次方程来解?如何转化?(三)学习新知学习97页例1。

温馨提示:认真学习例题完成思考中提出的3个问题思考:1、题中将方程__变形,为什么这样做?你从中悟出了什么?2、变形后的方程(3)代入方程__,若代入方程(1)可得到___。

你从中悟出了什么?3、求出 y 值后,代入了方程__,代入方程(1)或(2)可以吗?试一试!谈谈你尝试的体会。

消元-解二元一次方程组(共28张ppt)七年级下册数学人教版

消元-解二元一次方程组(共28张ppt)七年级下册数学人教版
组 500x+250y=22 500 000
2
消去 y
= 22 500 000
5 = 2 ,
500 + 250 = 22 500 000 .
解这个方程组时,可以先消去 x 吗?
解:设这些消毒液应该分装 x 大瓶、y 小瓶.
根据大、小瓶数的比,以及消毒液分装量与总产量的数
5 = 2,

x=16-3y
3(16-3y)+y=20
y=3.5
x=5.5
2x+2y=
18
x y
18元
x+3y=16
3x+y=20
2x+2y=?
2.如图,在长为 15,宽为 12 的长方形中,有形状、
大小完全相同的 5 个小长方形,则图中阴影部分的面
积为( B )
15×12-5xy=180-135=45
A.35
例2 根据市场调查,某种消毒液的大瓶装(500 g)和小
瓶装(250 g)两种产品的销售数量(按瓶计算)比为 2︰5.
某厂每天生产这种消毒液 22.5 t,这些消毒液应该分装
大、小瓶两种产品各多少瓶?
例题中有哪些未知量?
未知量有消毒液应该分装的大瓶数和小瓶数.
例2 根据市场调查,某种消毒液的大瓶装(500 g)和小
B.45
C.55
2 + = 15,
= 3.
D.65
y=9
2x+3x=15
x=3
x
2x+y=15
y
y=3x
3.篮球联赛中,每场比赛都要分出胜负,胜一场得 2
分.负一场得 1 分,某队为了争取较好的名次,想在全
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

相关文档
最新文档