新人教版 七年级数学上册(各章知识点课件)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
⑷交点:当两条不同的直线有一个公共点时,我们 就称这两条直线相交,这个公共点叫做它们的交点。
如果a=b,那么ac=bc; 如果a=b(c≠0),那么a/c=b/c 此外等式还有其它性质: 若a=b,则b=a.
若a=b,b=c,则a=c.
说明:①等式两边不可能同时除以为零的数或式子 ②等式的性质是解方程的重要依据.
3:方程的概念:含有未知数的等式叫方程,方程中 一定含有未知数,而且必须是等式,二者缺一不可.
当a<0时,无解。
5:方程的解与解方程:使方程两边相等的未 知数的值叫做方程的解,求方程解的过程叫 解方程.
6:关于移项:⑴移项实质是等式的基本性质1的 运用. ⑵移项时,一定记住要改变所移项的符号.
7:解一元一次方程的一般步骤:去分母、去 括号、移项、合并同类项、将未知数的系 数化为1. (具体解题时,有些步骤可能用不上,有 些步骤可以颠倒顺序,有些步骤可以合写, 以简化运算,要根据方程的特点灵活运用.)
新人教版 七年级数学上册 (各章知识点课件)
第一章 有理数
1.1正数和负数
(1)正数:大于零的数叫做正数。如:1,0.25,…,69。 负数:小于零的数叫做负数。如:-1,-3.8,-1/4,…,-25。 零: 零既不是正数也不是负数 整数:正数、0、负数
(2)用正负数表示两个意义相反的量。
把一些数放在一起,就组成一个数的集合,简称数集(set of number)。 所有正数组成的集合,叫 做正数集合; 所有负数组成的集合叫做负数集合; 所有整数组成的集合叫整数集合; 所有分数组成的集合叫分数集合; 所有有理数组成的集合叫有理数集合; 所有正整数和零组成的集合叫做自然数集。
1.2有理数
任何一个有理数都可以用数轴上的点表示。
(1)有理数的分类
(2)、数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴。
数轴的三要素
、 正方向、单位长度。
(3)相反数:只有符号不同的两个数叫做互为相反数。 如2与-2,-5与5,a与-a等。
①通常用a和-a表示一对相反数 ②若a与b互为相反数,则a+b=0 ③互为相反数的两个数的绝对值相等,即|-a|=|a| ④若|a|=|b|,则a=b,或a=-b(a与b互为相反数)
图1
从正面看
从左面看
源自文库
从上面看
图2
3、立体图形的展开图有些立体图形是有一些平面图形围成 的,把它们的表面适当剪开后在平面上展开得到的平图形 称为立体图形的展开图。 (1)圆柱和圆锥的侧面展开图 (2)棱柱和棱锥的展开图 (3)根据展开图判断立体图形的规律: A展开图全是长方形或正方形时------长方体或正方体; B展开图中含有三角形时-----棱锥或棱柱; 若展开图中含有2个三角形3个长方形-----三棱柱; 若展开图中全是三角形(4个)-----(三)棱锥。 C展开图中含有圆和长方形-----圆柱; D展开图中含有扇形------圆锥。
(5)、有理数数的比较: ①在数轴上表示的两个数右边的总 比左边的大。
②两个正数比较大小,绝对值大的数大; 两个负数绝对值大的反而小。
③正数都大于零,负数都小于零,正数大于负数。
④作差法:a-b>0↔a>b
⑤作商法:a/b>1,b>0↔a>b
1.3有理数的加减法
加法计算步骤: 先定符号
(1)有理数加法
(1)平面图形:图形所表示的各个部分都在 同一平面内的图形,如直线、三角形等。
(2)立体图形:图形所表示的各个部分不在 同一平面内的图形,如圆柱体、圆锥。
2、从不同方向观察几何体
从正面、上面、左面三个不同方向看一个物体,然后 描出三张所看到的图(分别叫做正视图、俯视图、侧视 图),这样就可以把立体图形转化为平面图形。
说明:去分母时,易漏乘方程左、 右两边代数式中的某些项.
8:方程的检验 检验某数是否为原方程的解,应将该 数分别代入原方程左边和右边,看两 边的值是否相等.
注意:应代入原方程的左、右两边分别计 算,不能代入变形后的方程的左边和右边.
第四章 图形认识初步
1、几何图形:我们把实物中抽象出来的各种 图形叫做几何图形。几何图形分为平面图形 和立体图形。
几个非负数之和为0,则这几个非负数都为0
(4)、科学计数法 1、 把一个绝对值大于10的数表示成a×10的形式(a是
整数数位只有一位的数,n是比原整数数位小1的正整数), 如236000000=2.36×108;-2450000=-2.45×106
2、将用科学计数法表示的数还原,如: 1.52×104=15200
说明:代数式不含等号,方程是用等号把代数式连接而成 的式子,且其中一定要含有未知数.
4:一元一次方程的概念:只含有一个未知数,并且未知数的次 数是1的方程叫一元一次方程.任何形式的一元一次方程,经变 形后,总能变成形为ax=b(a≠0,a、b为已知数)的形式,这种形 式的方程叫一元一次方程的一般式.
6.整式加减的运算法则: 一般地,几个整式相加减,如果有括号就先去括号,
然后再合并同类项.
第三章 一元一次方程
1:等式的概念:用等号表示相等关系的式子叫做等式.
2:等式的基本性质(1)等式两边加上(或减去)同一个数或 同一个代数式,所得的结果仍是等式.
即若a=b,则 a±c=b±c. (2) 等式两边乘以(或除以)同一个不为0的数或代数式, 所 得的结果仍是等式.
②.多项式中只有同类项才能合并,不是同类项不能合并。 ③.通常我们把一个多项式的各项按照某个字母的指数从 大到小(降幂)或者从小到大(升幂)的顺序排列, 如:-4x2+5x+5或 写5+5x-4x2。
4.整式的加减就是合并同类项的过程。
5.整式去括号变化规律: (1).如果括号外的因数是正数,去括号后原括号内 各项的符号与原来的符号相同;如:+(x-3)=x-3 (2).如果括号外的因数是负数,去括号后原括号内 各项的符号与原来的符号相反。如:-(x-3)=-x+3
4、点、线、面、体 ⑴体:几何体简称为体。 ⑵面:包围着体的是面,面分为平面和曲面。 ⑶线:面与面相交的地方形成线,线分为曲线和直线。 ⑷点:线与线相交的地方是点。 点动成线、线动成面、面动成体。 几何图形的组成:由点线面体组成。点是构成图形的基 本元素,而点本身也是最简单的几何图形。
5、直线:把线段向两端无限延伸形成的图形叫做直线。 ⑴表示方法:直线AB或直线L ⑵点与直线的关系:点在直线上、点在直线外 ⑶直线的基本性质:经过两点有且只有一条直线(两点 确定一条直线);
再定绝对值
法则1. 同号两数相加,取
相同的符号
,并把 它们的绝对值相加。
法则2. 绝对值不等的异号两数相加,取 绝对值较大的加数的符号 符号,并
用 较大的绝对值减去较小。的绝对值
3、互为相反数的两数相加得零。
4、一个数与零相加,仍得这个数。
加法运算律: 1交换律:a+b = b+a ;2结合律:(a+b)+c= a+(b+c。)
3、几个数相乘,只要有一个因数为0,积就为0。
乘法运算律: 1交换律:两个数相乘,交换因数的位置,积不变
ab = ba ;
2结合律:三个数相乘,先把前面两个数相乘,或者先把后两个数相 乘,积不变。 (ab)c= a(b c );
3分配律:一个数于两个数的和相乘,等于把这个数分别于这两个 数相乘,再把积相加。a(b+c)= ab+ac 。
(2)有理数减法法则: 减去一个数,等于 加上这个数的相反数 a-b= a=+(-b)。
,用字母表示为
1.4有理数的乘除法
(1)有理数乘法法则:
1、两数相乘,同号 得正 ,异号 得负 ,并把 绝对值相


2、几个不是0的数相乘,积的符号由负因数的个数决定,当负
因数有偶数个时,积为 正数 ,当负因数有奇数个时,积为 负数 ;
倒数:①乘积为1的两个数互为倒数。 ②零没有倒数 ③互为倒数的两个数的符号相同
(2)有理数除法法则:
1、除以一个不等于0的数,等于乘这个数

.
2、两数相除,同号得
把绝对值相

,异号得
,并
0除以任何一个不等于0的数都得 。
1.5有理数的乘方
求几个相同因数的积的运算,叫做乘方,乘方的结果叫做幂, 其中a叫做底数,n叫做指数。
注意:a≠0这个重要条件,它也是判断方程是否是一元一次方 程的重要依据.
一般地,如果不设定a≠0,则关于x的方程ax=b的解有 如下讨论: 当a≠0时,方程有唯一解 x=b/a; 当a=0,b=0时,方程的解为一切数; 当a=0,b≠0时,方程无解。 关于绝对值方程|x|=a的解:当a≥0时,x=±a;
(2)多项式:几个单项式的和叫做多项式。 1、多项式中的每一个单项式叫做多项式的项。 2、多项式中不含字母的项叫做常数项。 3、一个多项式有几项,就叫做几项式。 4、多项式的每一项都包括项前面的符号。 5、多项式中次数最高的项的次数,叫做这个多项式的次数。
(3)多项式排列: ①把一个多项式按某一个字母的指数从大到小的顺序排列起来, 叫做把多项式按这个字母的降幂排列. ②把一个多项式按某一个字母的指数从小到大的顺序排列起来, 叫做把多项式按这个字母的升幂排列. (4)单项式与多项式统称整式。
(5)、有效数字、近似数 一个数字从左边第一个非0的数字起到末位止,
叫做这个数的有效数字。 如:0.003020有四个有效数字,分别是3、0、2、0。
一、填空题 1.常熟市某天上午的温度是 5℃,中午又上升了 3℃,下午由于
冷空气南下,到夜间又下降了 9℃,则这 天夜间的温度是 ℃。 2.绝对值大于 1 而不大于 3 的整数有___________ ,它们的和是 _____。 3.有理数-3,0,20,-1.25,1 , 1 /4 ,-(-5) 中,正整数 是 ___ ,负整数是______,正分数是 ____ ,非负数是 _____ 。 4. a的倒数是 ____, 的相反数是____, 的绝对值是 ____, 已知|a|=4,那么 a= ____ 5.比较大小:(1)-2____+6 (2) 0 __ -1.8 6.最小的正整数是__;绝对值最小的有理数是___。绝对值等于 3 的数是_。 绝对值等于本身的数是___ 7.A 地海拔高度是-30 米,B 地海拔高度是 10 米,C 地海拔高
-a
a
-5 -4 -3 -2 -1 0 1 2 3 4
有理数的分类
(4)、绝对值:数轴上表示数a的点与原点的距离叫做数 a的绝对值,符号表示为( |a| )
A
B
-5 -4 -3 -2 -1 0 1 2 3 4
一个正数的绝对值是 是它本身 ,一个负数的绝对值是 它的相反数 ,
0的绝对值是
0

注意:①|a|≥0即对任意有理数a,它的绝对值是非负数 ②绝对值最小数为0
度是-10 米,则 地势最高的与地势最低的相差____米。
二、选择题
三、计算题 1.计算:25.3+(-7.3)+(-13.7)+7.3 2.计算:-4.27+3.8-0.73+1.2
减第 二 章 整 式 的 加
1.整式的概念: (1)单项式:都是数字与字母的乘积的代数式叫做单项式。
①单项式的系数:单项式中的数字因数。 ②单项式的次数:单项式中所有的字母的指数和 ※注意 ①圆周率π是常数; ②只含有字母因式的单项式的系数是1或-1时,“1”通常 省略不写,如x2,-a2b等; ③单项式次数只与字母指数有关。如23a6的次数为6 ④单项式的系数是带分数时,应化成假分数。 ⑤单项式的系数包括它前面的符号。 ⑥单独的一个数字是单项式,它的系数是它本身;非零常数 的次数是0。
(分母含有字母的代数式不是整式)
2. 同类项:所含字母相同,并且相同字母的指数也相同的项 叫做同类项。几个常数项也是同类项。
3.把多项式中的同类项合并成一项,叫做合并同类项
合并同类项法则:合并同类项后,所得项的系数是合并前各同类 项的系数的和,且字母部分不变。
注意:①.若两个同类项的系数互为相反数,则两项的和等于零, 如:-3ab2+3ab2=(-3+3)ab2=0×ab2=0。
(1)乘方的幂意义:a n 表示n个a相乘,如34表示4个3相乘,
即34 =3×3×3×3
(2) 1、正数的任何非0次幂都是 正数 ; 2、负数的奇次幂是 负数 ,负数的偶次幂是 正数 。
(3)、有理数混合运算顺序: 1、先乘方,再乘除,最后加减; 2、同级运算,从左到右进行; 3 、如有括号,先算括号,从小到大。
相关文档
最新文档