动平衡计算
第09章 动平衡计算
9.1 动平衡机理概述众所周知,不平衡是旋转机械最常见的振动原因,并且其它一些故障,如不对中和碰摩等,也可以通过改善机组的平衡状态而予以减轻或消除,因此现场找平衡就成为消除机组振动的重要措施之一。
由振动理论知,振动的振幅不仅正比于静不平衡的离心力Meω2,而且还与动力放大因子R有关。
动力放大因子R是转子转速的单值函数,转速确定后,R 的值也将确定。
滞后角φ表明振动的幅值滞后于不平衡激励力Meω2的角度,并且随转速的改变而改变,当转速确定后,滞后角也为定值。
因此,只要系统符合线性假设,即物性参数(如支撑刚度,阻尼等)和特性参数(如固有频率和阻尼率等)不因振动大小而发生改变,则相同转速下轴承的振动正比于转子不平衡质量的大小,并且振动滞后于不平衡离心力的相位也为定值,这就是转子平衡的理论基础。
平衡是通过检测和调整转子的质量分布,即在转子的适当位置上加上或减去一定大小的质量(称为校正质量或配重),来减小转子的惯性主轴与旋转轴线的偏离,使机组的振动降到允许范围内。
平衡的作用是减少转子的挠曲,减低机组的振动并减少轴承及基础的动反力,保证机组安全,平稳,可靠地运行。
9.2 动平衡软件使用说明平衡计算模块为一通用的平衡软件(图9.2-1),系统提供了最小二乘法影响系数计算、最小二乘法影响系数动平衡、谐分量法影响系数计算、谐分量法影响系数动平衡、三点定位定量法动平衡、矢量加减运算和估算剩余振动等多种功能,可以迅速方便地找出最佳的合理配重。
它可以对多平衡面、多测振点同时进行平衡。
图9.2-1影响系数法只有当知道影响系数后才能使用,由于各机组实际情况不同,各机组的影响系数也大不相同。
它一般由技术人员根据经验得到的或通过多次试重得到。
最小二乘法影响系数计算模块通过试重可以自动计算出机组的最小二乘法影响系数。
进入最小二乘法影响系数计算模块后,选择对应的加重面和测振点(图9.2-2)后进入图9.2-3所示的对话框。
用户必须输入各测振点原始振动的振幅和相位(由于本软件为通用软件,故用户可以从前面的信号分析中得到一倍频振幅和相位,并人工输入)、试重后振动的振幅和相位以及试加重量的大小和角度,然后击一下计算按钮,即可得到计算结果,即该加重面对各测振点的最小二乘法影响系数。
动平衡计算
四个基本参数 1.平衡精度等级. G 2.转子重量 3.转子速度: 4.转子最大半径 M (Kg) n (rpm) R (mm)
计算公式: 1 .允许偏心距,e= 9550 * G / n ,(μm) ,(g)
2. 允许残余不平衡质量,m= e * MKg n=2900 R=165 1. e= 9550 * G / n=9550 * 2.5 / 2900 =8.2 μm 2. m= e * M / 2R= 8.2 * 13 / 2* 165 =0.323 g
G4000 G1600
具有单数个气缸的刚性安装的低速船用柴油机的曲轴驱动件 刚性安装的大型二冲程发动机的曲轴驱动件 刚性安装的大型四冲程发动机的曲轴驱动件
G630 G250 G100
弹性安装的船用柴油机的曲轴驱动件 刚性安装的高速四缸柴油机的曲轴驱动件
六缸和多缸高速柴油机的曲轴传动件;汽车、货车和机车用的平衡机发动 机整机
结果:允许残余不平衡质量,m= 0.323 g
平衡精度等级
考虑到技术的先进性和经济上的合理性,国际标准化组织(ISO)于1940年制定了世 界公认的ISO1940平衡等级,它将转子平衡等级分为11个级别,每个级别间以2.5倍为 增量,平衡机从要求最高的G0.4到要求最低的G4000。单位为公克×毫米/公斤 (gmm/kg),代表不平衡对于转子轴心的偏心距离。如下表所示:
汽车车轮、轮毂、车轮整体、传动轴,弹性安装的六缸和多缸高速四冲程 发动机的曲轴驱动件 特殊要求的驱动轴(螺旋桨、万向节传动轴);粉碎机的零件;农业机械 的零件;汽车发动机的个别零件;特殊要求的六缸和多缸发动机的曲轴驱 动件
G40
G16
G6.3
商船、海轮的主涡轮机的平衡机齿轮;高速分离机的鼓轮;风扇;航空燃 气涡轮机的转子部件;泵的叶轮;机床及一般机器零件;普通电机转子; 特殊要求的发动机的个别零件 燃气和蒸汽涡轮;机床驱动件;特殊要求的中型和大型电机转子;小电机 转子;涡轮泵 磁带录音机及电唱机、CD、DVD的驱动件;磨床驱动件;特殊要求的小 型电枢 精密磨床的主轴;电机转子;陀螺仪
动平衡精度等级与计算
动平衡精度等级与计算动平衡是机械制造过程中非常重要的一环,它的精度等级与计算是确保机械设备正常运行和提高工作效率的关键。
本文将详细介绍动平衡精度等级的概念以及相关的计算方法。
一、动平衡精度等级的概念动平衡是指在旋转运动机械设备中,通过在转子上添加试重块,使转子旋转时不产生振动,达到平衡状态的一种技术手段。
动平衡精度等级是用来描述动平衡状态的稳定性和精确程度的指标。
按照国际标准ISO1940-1:2003的规定,动平衡精度等级分为六个等级,分别为G1.0、G0.4、G0.7、G2.5、G6.3和G16、其中,G表示全转子高峰值的一半。
精度等级越高,转子的平衡状态越稳定,振动幅度越小,对设备的损伤和干扰越小。
二、计算动平衡精度等级的方法计算动平衡精度等级需要先了解转子的质量不平衡情况,然后根据一定的数学模型进行计算,最终确定转子的动平衡精度等级。
1.质量不平衡计算质量不平衡是指转子上的实际质量分布与理想平衡状态之间的差异。
一般情况下,质量不平衡是通过试重块进行补偿的。
质量不平衡的计算可以通过静态平衡试验和动态平衡试验两种方法进行。
在动态平衡试验中,可以通过测量转子不同时刻的振动加速度或位移信号,进而计算得出质量不平衡。
2.动平衡精度等级计算具体的计算公式如下:G=K1×(ΔW/m)×K2其中,G为动平衡精度等级,K1和K2为修正系数,ΔW为质量不平衡量,m为转子质量。
在计算过程中,需要根据具体的机械设备和转子参数确定修正系数的数值。
三、动平衡精度等级的影响因素1.转子结构和质量分布:不同结构的转子,质量不平衡分布不同,对动平衡精度等级有一定影响。
2.转子转速:转子在不同转速下,质量不平衡对振动的影响程度也不同,因此转速是影响动平衡精度等级的重要因素。
3.转子质量和转子材料:转子质量和材料的不同会对动平衡的要求产生影响,转子质量越大、材料越均匀,要求的动平衡精度等级也相应提高。
4.平衡设备性能:平衡设备的性能和调节方法也会对动平衡精度等级产生影响,高性能的平衡设备能更准确地实现动平衡。
动平衡等级计算
动平衡等级计算
摘要:
一、动平衡等级计算的定义和作用
二、动平衡等级计算的方法和公式
三、动平衡等级计算在实际应用中的案例
四、总结
正文:
动平衡等级计算是指在机械工程领域中,对旋转机械的转子进行动平衡试验,根据试验数据计算出转子的动平衡等级,以评估转子在工作过程中的平衡性能。
动平衡等级的计算对于保证旋转机械的正常运行、降低振动、减小噪音、提高设备使用寿命具有重要意义。
动平衡等级计算的方法和公式主要依据我国的标准GB/T 19066-2017《旋转机械动平衡试验通则》。
根据该标准,动平衡等级分为11 级,计算公式为:
G=Fr+0.5Gr
其中,G 为动平衡等级;Fr 为转子在工作转速下的径向振动幅值;Gr 为转子在工作转速下的轴向振动幅值。
在实际应用中,动平衡等级计算在许多行业都有广泛应用,例如汽车、飞机、船舶、工业机器人等领域。
以下是一个关于动平衡等级计算在汽车发动机曲轴动平衡试验中的应用案例:
某汽车发动机曲轴在2000rpm 转速下进行动平衡试验,测得径向振动幅
值为20μm,轴向振动幅值为15μm。
根据动平衡等级计算公式,可得:G=20+0.5×15=22.5μm
根据GB/T 19066-2017 标准,该曲轴的动平衡等级为G2.5,属于良好平衡性能。
总之,动平衡等级计算是旋转机械动平衡试验的重要环节,通过计算可评估转子的平衡性能。
动平衡计算公式和方法
动平衡计算公式和方法嘿,你问动平衡计算公式和方法啊?这可有点复杂呢。
先说计算公式吧。
动平衡一般用不平衡量来衡量,不平衡量等于质量乘以偏心距。
啥是偏心距呢?就是重心偏离旋转中心的距离呗。
就像你转一个有点歪的轮子,那个歪的程度就是偏心距。
质量好理解吧,就是东西有多重。
所以不平衡量就是这两个家伙乘起来的结果。
那方法呢,首先得找到要做动平衡的东西,比如一个轮子啊,一个风扇啊啥的。
然后把它装在动平衡机上。
这动平衡机就像个医生,能给这个东西做检查。
接着,开动动平衡机,让东西转起来。
这时候动平衡机就能检测出不平衡的地方在哪里,有多大。
就像医生用听诊器听你的心跳,能听出有没有问题。
然后呢,根据检测出来的结果,在合适的地方加上或者减去一些重量。
比如说在轮子的一边加上一个小铁片,或者在风扇的叶片上刮掉一点漆。
这就像你给一个不平衡的天平加上或者减去一些砝码,让它平衡起来。
加或者减重量的时候要小心哦,不能太多也不能太少。
得一点一点地试,直到动平衡机显示平衡了为止。
就像你调一个收音机的频道,得慢慢转旋钮,找到最合适的位置。
比如说有个修车的师傅,他要给一个汽车轮子做动平衡。
他把轮子装在动平衡机上,开动机器。
机器检测出轮子有点不平衡,显示出不平衡量是多少。
师傅根据这个结果,在轮子的一边加上了一个小铁片。
然后再转轮子,看看平衡了没有。
如果还不平衡,就再调整铁片的位置或者重量。
直到动平衡机显示平衡了,师傅才把轮子装回汽车上。
这样汽车跑起来就不会抖动了。
所以说啊,动平衡计算公式和方法虽然有点难,但掌握好了就能让东西转得更平稳。
咋样,现在知道动平衡咋算咋做了吧?。
机械手册在动平衡计算公式
机械手册在动平衡计算公式
机械手册动平衡计算公式
1. 转子不平衡力计算公式
•转子不平衡力(U)的计算公式为:U = m * r * ω^2
–U:转子不平衡力,单位为牛顿
–m:转子的不平衡质量,单位为千克
–r:转子不平衡质量与转轴的距离,单位为米
–ω:转轴的角速度,单位为弧度/秒
举例解释:假设一个转子的不平衡质量为10克,不平衡质量与转轴的距离为米,转轴的角速度为100弧度/秒,那么根据上述的计算公式,转子的不平衡力为: U = * * (100^2) = 100牛顿
2. 转子不平衡力矩计算公式
•转子不平衡力矩(M)的计算公式为:M = m * r^2 * ω^2–M:转子不平衡力矩,单位为牛顿·米
–m:转子的不平衡质量,单位为千克
–r:转子不平衡质量与转轴的距离,单位为米
–ω:转轴的角速度,单位为弧度/秒
举例解释:假设一个转子的不平衡质量为10克,不平衡质量与转轴的距离为米,转轴的角速度为100弧度/秒,那么根据上述的计算公式,转子的不平衡力矩为: M = * (^2) * (100^2) = 10牛顿·米3. 转子在平衡质量下的旋转速度计算公式
•转子在平衡质量下的旋转速度(ωb)的计算公式为:ωb = √(G / J)
–ωb:平衡质量下的旋转速度,单位为弧度/秒
–G:转子的刚性系数,单位为牛顿·米/弧度
–J:转子的转动惯量,单位为千克·米^2
举例解释:假设一个转子的刚性系数为200牛顿·米/弧度,转子的转动惯量为千克·米^2,根据上述的计算公式,转子在平衡质量下的旋转速度为:ωb = √(200 / ) ≈ 弧度/秒。
动平衡计算知乎
动平衡计算知乎
动平衡计算是一项涉及转子平衡的过程,该过程使用专门的设备来测量和校正转子的不平衡部分。
在执行动平衡检测前,需要了解动平衡检测专业术语和动平衡计算公式。
首先,让我们了解一下动平衡的相关术语:
- 转子平衡品质:这是衡量转子平衡优劣的指标,其公式为G=eper·Ω/1000,其中G表示转子平衡品质,单位是mm/s;eper代表转子允许的不平衡率,单位是gmm/kg或转子质量偏心距um;Ω代表转子最高工作转速的角度,单位是-2π·m/60。
- 转子单位质量的允许不平衡度(率):这个参数可以通过转子平衡品质和转子最高工作转速来计算,公式为eper=G·1000/Ω=G·1000·60/(2π·n)≈9549·G/n,单位是g·mm/kg或um。
接下来是不平衡量的简化计算公式:M=9549MG/r×n,其中M表示转子质量单位(kg),G表示精度等级选用,r表示校正半径单位(mm),n表示工件的工作转速单位(rpm),m表示不平衡合格量单位(g)。
1。
多级泵转子动平衡的计算
多级泵转子动平衡的计算
一、多级泵转子动平衡的目的
多级泵转子动平衡是为了消除转子在高速旋转时的不平衡力和不平衡矩,以保证泵的稳定工作和延长使用寿命。
二、多级泵转子动平衡的方法
常用的多级泵转子动平衡方法有静平衡法和动平衡法。
其中,动平衡法是目前应用最广泛的一种方法。
动平衡法是将转子装入动平衡机中,通过测量和校正转子在不同转速下的不平衡量,从而实现转子的动平衡。
三、多级泵转子动平衡转速的计算方法
根据多级泵转子的直径、长度和质量等参数,可以计算出其动平衡转速。
具体计算方法如下:
动平衡转速= 1.26 × U × 10⁴ / (D × L × M)
其中,U 表示材料的泊松比,D 表示转子的直径,L 表示转子的长度,M 表示转子的质量。
四、多级泵转子动平衡转速的重要性
多级泵转子动平衡转速的确定对于泵的性能和寿命都有着重要意义。
如果转子动平衡转速确定不当,会导致泵在高速运转时出现振动、噪音等问题,影响泵的正常工作,甚至造成泵的损坏。
因此,在进行多级泵转子动平衡时,一定要严格按照相关标准进行计算和调整,确保泵的稳定运转和使用寿命。
【结语】
多级泵转子动平衡转速的计算方法和重要性已经介绍完毕。
在实际生产过程中,要重视动平衡工作,确保多级泵的性能和寿命,提高生产效率和产值。
动平衡静平衡计算公式
动平衡静平衡计算公式
静平衡计算有两种方法:
质量平衡法和力平衡法。
质量平衡法是根据每一个物体的质量来衡量
其运动,而力平衡法则是根据每一物体受到的外力的大小来衡量其运动,
这两种方法可以有效地计算出静平衡状态的平衡量。
质量平衡法
质量平衡法的计算公式为:
M=F
其中,M为物体的质量,F为物体受到的力。
力平衡法
力平衡法的计算公式为:
F=M*a
其中,F为物体受到的力,M为物体的质量,a为物体受到的加速度。
动平衡的计算公式主要有两种:
一种是动平衡力计算公式:
F=mv2/r
其中,F为动平衡力,m为物体的质量,v为物体的速度,r为物体的
转角半径。
另一种是动平衡角度计算公式:
θ=mv2/T
其中,θ为动平衡角度,m为物体的质量,v为物体的速度,T为物体受到的拉力和杆力的绝对值的和。
上述两种公式可以有效地计算出物体在动态平衡状态的力量和角度。
动平衡自动计算公式
得到
平衡精度 eω ①② 等级 /(mm/s) G4000 G1600 G630 G250 G100 G40 4000 1600 630 250 100 40
转子类型 刚性安装的具有奇数汽缸的低速船用柴油机的曲轴传动装置 刚性安装的大型两行程发动机的曲轴传动装置 刚性安装的大型四行程发动机的曲轴传动装置,弹性安装的船用柴油机 的曲轴传动装置 刚性安装的高速四缸柴油机的曲轴传动装置 具有六个或更多汽缸的高速柴油机的曲轴传动装置,汽车、卡车及机车 头的整个发动机(汽油机或柴油机) 汽车轮、车轮缘、轴座、传动轴,弹性安装的具有六个或更多汽缸的高 速4行程发动机(汽油机或柴油机)的曲轴传动装置 具有特殊要求的传动轴(推进器、万向接头轴),压碎机的零件,农业 机械的零件,发动机(汽车、卡车及机车头的汽油机或柴油机)的单个 组件,在特殊要求下具有6个或更多汽缸的发动机曲轴传动装置 炼制厂机械的零件,船用主涡轮传动机构(商船用),离心机鼓轮、风 扇.装配好的飞机的燃气轮机转子,飞轮,泵式推进器,机床和普通的 机械零件,普通的电枢。特殊要求的发动机单个部件 燃气和蒸汽涡轮机,包括船用的主涡轮机(商船用),刚性涡轮发电机 转子,透平轮压缩机,机床传动装置,有特殊要求的中型和大型电枢、 小型电枢,涡轮传动泵 磁带记录仪和唱机的传动装置,磨床传动装置,有特殊要求的小型电枢 精密磨床的传动轴,研磨盘和电枢,陀螺仪
第一步 eper=(Gx1000)/(n/10)
第二步 uepr=(w*eper)/(2*r)
eper G n
不平衡度 平衡精度等级,一般取6.3,如下表 工件工作转速
uepr w r
工件允许剩余不平衡量 工件重量 半径
输入
G n w r uepr=
6.3 此四项需 350 要输入数 292 据 500 3
动平衡
回转构件上各点的质量mi近似分布在一个平面上。
绕定轴转动时各点的惯性力mi riω2为一平面力系。
回转构件:绕定轴匀速ω转动刚性转子的平衡一、静平衡(径宽比(D/b )>= 5)二、动平衡(径宽比(D/b ) < 5 )回转构件上各点的质量mi分布不在一个平面上。
绕定轴转动时各点的惯性力mi r iω2为一平行空间力系。
静平衡(单面平衡)条件:合力为零m1r1ω2+m2r2ω2+m3r3ω2+mbrbω2=0消去公因子ω2后得m1r1+m2r2+m3r3+mbrb=0其中:mi ri为质径积。
静平衡即质径积平衡1F 2F 3F b F 'b F ''T 'T ''1231m 2m 3m b r '1r 2r3r b r ''1m '2m '3m '1m ''2m ''3m ''l1l '2l '3l '1l ''2l ''3l ''11r m '22r m '33r m 'b b r m ''11r m ''22r m ''33r m ''b br m ''''动平衡(双面平衡)条件:当转子转动时,转子上分布在同平面内的各个质量所产生的空间离心惯性力系的合力及合力矩均为零。
动平衡测量时要求转子必须能在支承系统上被驱动而旋转, 支承系统需必要的自由度, 以保证支承系统在转子不平衡离心力的作用下产生与转子不平衡量成正比的有规律振动。
这样, 转子-支承系统就组成了一定形式的质量-弹簧系统, 进而通过测量支承的振动而获得转子的校正平面上不平衡量大小和相位。
这就是动平衡测量的基本原理。
动平衡相关计算
不平衡量的简化计算公式 m=9549MG/rxn
M-转子质量 单位(Kg) G-精度等级选用 r-校正半径 单位(mm) n-工件的工作转速 单位(rpm) m-不平衡合格量 单位(g)
单侧重量:
备注:m为总不平衡量。
具体数据
M G r n m
N
S
S = 27.3 x 1/N
S - 跑偏(Run out) N - 工件的工作转速 单位(rpm) V1 - 适用等级的速度(mm/s) Run out N≤450 rpm, If (N≤450 rpm).S≤0.43 计算结果 输入数值 注意事项
计算结果 输入数值 注意事项
g/side
2585 2.5 170 579 626.947196
g/side = m/2
313.473598
跑偏(Run out)计算公式
BALANCING (动平衡等级及速度) 1.Q(等级)= 1.0 2.Q(等级) = 1.4 3.Q(等级)= 1.6 4.Q(等级)= 2.5 5.Q(等级)= 4.0 6.Q(等级) = 6.3 V1=2.8mm/second V1=2.8mm/second V1=2.8mm/second V1=4.5mm/second V1=7.1mm/second V1=11.2mm/second Smax.=0.17 Smax.=0.17 Smax.=0.17 Smax.=0.27 Smax.=0.43 Smax.=0.68 800 800 800 800 0.09555 0.1535625 0.2422875 0.3822
转子动平衡原理及计算
转子动平衡一、动平衡的定义:不平衡的转子经过测量其不平衡量和不平衡相位,并加以校正消除其不平衡量,使转子在旋转时,不致产生不平衡离心力的平衡工艺叫做动平衡。
二、校正面的选择:平衡校正面必须选择垂直于转子轴线的平面转子外径:D转子长度:L①对于薄盘状转子(L/D≤5),因偶不平面很小,一般只选择一个校正面,称为单面平衡或称静平衡②对于长轴类转子(L/D>5),必须选择两个或者两个以上校正面,称双面平衡或者多面平衡亦称动平衡③对于初始不平衡量很大,旋转时振动过大的转子,应先做单面静平衡,且校正面最好选择在重心所在的平面上,以防偶不平衡量增大;或者选择在重心两侧的两个校正面上校正,或根据要求,选择在靠近重心的平面上校正,然后再做动平衡。
三、校正方法:转子的不平衡是因其中心主惯性轴与旋转轴线不重合而产生的.平衡就是改变转子的质量分布,使其中心主惯性轴与旋转轴线重合而达到平衡的目的.当测量出转子不平衡的量值或相位后,校正的方法有:1、去重法—即在重的一方用钻孔,磨削,錾削,铣削和激光穿孔等方法去除一部分金属。
2、加重法--即在轻的一方用螺钉连接,铆接,焊接,喷镀金属等方法,加上一部分金属。
3、调整法—通过拧入或拧出螺钉以改变校正重量半径,或在槽内调整二个或二个以上配重块位置。
4、热补偿法—通过对转子局部加热来调整工件装配状态。
四、不同类型转子的动平衡注意事项:1.滚动轴承转子的平衡装有滚动轴承的转子,平衡时最好带着滚动轴承一起平衡,从而消除滚动轴承的内环偏心引起的不平衡,带轴承的转子一般在V型支承上进行2.无轴颈的转子的平衡无轴颈的转子必须在工艺轴上进行平衡.由于工艺轴本身的制造误差:径向和轴向跳动.工艺轴本身的不平衡以及转子配合时存在的径向间隙,使转子在平衡时会带来不可避免的误差五、转子不平衡量的计算方法:1、计算转子的允许不平衡度(率)Eper=(G*1000)/(n/10)式中:Eper——允许不平衡度单位μmG——不平衡精度等级一般取6.3n——工作转速单位r/min例如:某工件工作转速1400r/min平衡精度等级取6.3,则Eper=(GX1000)/(n/10)= (6.3X1000)/(1400/10)=45μm2、计算允许残余不平衡量m=(Eper*M)/(r*2)式中:m——允许残余不平衡度单位gM——工件旋转质量单位kgr——工件半径单位mm例如:工件质量20kg,半径60mm双面平衡,故计算每个平衡面的允许的剩余不平衡量为m=(Eper*M)/(r*2)=(45x20)/(60x2)=7.5g3、转子平衡品质——衡量转子平衡优劣程度的指标G=Eper*ω/1000式中:G——转子平衡品质mm/s 从G0.4-G4000分11级;Eper——转子允许的不平衡度g.mm/k 或mm/s或转子质量偏心距μmω——相应于转子最高工作转速的角速度ω=2πn/60≈n/104、最小可达剩余不平衡量(umar)——单位g.m,平衡机能使转子达到的剩余不平衡量的最小值,是衡量平衡机最高平衡能力的性能指标,当该指标用不平衡度表示时,称为最小可达或剩余不平衡度(单位g.mm/kg)5、不平衡量减少率(URR)——经过一次平衡校正所减少的不平衡量与初始不平衡量之比值,他是衡量平衡机效率的性能指标,以百分数表示:URR(%)=(U1-U2)/U1*100式中:U1为初始不平衡量;U2为一次平衡校正后的剩余不平衡量6、校验转子——为校验平衡机性能而设计的刚性转子,其质量、大小、尺寸均为有规定,分立式和卧式两种,立式转子质量为1.1、3.5、11、35、110kg,卧式转子质量为0.5、1.6、5、16、50、160、500kg7、不平衡国偶干扰比——单面平衡机抑制不平衡力偶影响的性能指标。
转子动平衡原理及计算
转子动平衡一、动平衡的定义:不平衡的转子经过测量其不平衡量和不平衡相位,并加以校正消除其不平衡量,使转子在旋转时,不致产生不平衡离心力的平衡工艺叫做动平衡。
二、校正面的选择:平衡校正面必须选择垂直于转子轴线的平面转子外径:D转子长度:L①对于薄盘状转子(L/D≤5),因偶不平面很小,一般只选择一个校正面,称为单面平衡或称静平衡②对于长轴类转子(L/D>5),必须选择两个或者两个以上校正面,称双面平衡或者多面平衡亦称动平衡③对于初始不平衡量很大,旋转时振动过大的转子,应先做单面静平衡,且校正面最好选择在重心所在的平面上,以防偶不平衡量增大;或者选择在重心两侧的两个校正面上校正,或根据要求,选择在靠近重心的平面上校正,然后再做动平衡。
三、校正方法:转子的不平衡是因其中心主惯性轴与旋转轴线不重合而产生的.平衡就是改变转子的质量分布,使其中心主惯性轴与旋转轴线重合而达到平衡的目的.当测量出转子不平衡的量值或相位后,校正的方法有:1、去重法—即在重的一方用钻孔,磨削,錾削,铣削和激光穿孔等方法去除一部分金属。
2、加重法--即在轻的一方用螺钉连接,铆接,焊接,喷镀金属等方法,加上一部分金属。
3、调整法—通过拧入或拧出螺钉以改变校正重量半径,或在槽内调整二个或二个以上配重块位置。
4、热补偿法—通过对转子局部加热来调整工件装配状态。
四、不同类型转子的动平衡注意事项:1.滚动轴承转子的平衡装有滚动轴承的转子,平衡时最好带着滚动轴承一起平衡,从而消除滚动轴承的内环偏心引起的不平衡,带轴承的转子一般在V型支承上进行2.无轴颈的转子的平衡无轴颈的转子必须在工艺轴上进行平衡.由于工艺轴本身的制造误差:径向和轴向跳动.工艺轴本身的不平衡以及转子配合时存在的径向间隙,使转子在平衡时会带来不可避免的误差五、转子不平衡量的计算方法:1、计算转子的允许不平衡度(率)Eper=(G*1000)/(n/10)式中:Eper——允许不平衡度单位μmG——不平衡精度等级一般取6.3n——工作转速单位r/min例如:某工件工作转速1400r/min平衡精度等级取6.3,则Eper=(GX1000)/(n/10)= (6.3X1000)/(1400/10)=45μm2、计算允许残余不平衡量m=(Eper*M)/(r*2)式中:m——允许残余不平衡度单位gM——工件旋转质量单位kgr——工件半径单位mm例如:工件质量20kg,半径60mm双面平衡,故计算每个平衡面的允许的剩余不平衡量为m=(Eper*M)/(r*2)=(45x20)/(60x2)=7.5g3、转子平衡品质——衡量转子平衡优劣程度的指标G=Eper*ω/1000式中:G——转子平衡品质mm/s 从G0.4-G4000分11级;Eper——转子允许的不平衡度g.mm/k 或mm/s或转子质量偏心距μmω——相应于转子最高工作转速的角速度ω=2πn/60≈n/104、最小可达剩余不平衡量(umar)——单位g.m,平衡机能使转子达到的剩余不平衡量的最小值,是衡量平衡机最高平衡能力的性能指标,当该指标用不平衡度表示时,称为最小可达或剩余不平衡度(单位g.mm/kg)5、不平衡量减少率(URR)——经过一次平衡校正所减少的不平衡量与初始不平衡量之比值,他是衡量平衡机效率的性能指标,以百分数表示:URR(%)=(U1-U2)/U1*100式中:U1为初始不平衡量;U2为一次平衡校正后的剩余不平衡量6、校验转子——为校验平衡机性能而设计的刚性转子,其质量、大小、尺寸均为有规定,分立式和卧式两种,立式转子质量为1.1、3.5、11、35、110kg,卧式转子质量为0.5、1.6、5、16、50、160、500kg7、不平衡国偶干扰比——单面平衡机抑制不平衡力偶影响的性能指标。
动平衡自动计算公式
刚性安装的高速四缸柴油机的曲轴传动装置 250
具有六个或更多汽缸的高速柴油机的曲轴传动装置,汽车、卡车及机车 100 头的整个发动机(汽油机或柴油机)
汽车轮、车轮缘、轴座、传动轴,弹性安装的具有六个或更多汽缸的高 40 速4行程发动机(汽油机或柴油机)的曲轴传动装置
具有特殊要求的传动轴(推进器、万向接头轴),压碎机的零件,农业 机械的零件,发动机(汽车、卡车及机车头的汽油机或柴油机)的单个 16 组件,在特殊要求下具有6个或更多汽缸的发动机曲轴传动装置
G6.3
G2.5 G1 G0.4
炼制厂机械的零件,船用主涡轮传动机构(商船用),离心机鼓轮、风 扇.装配好的飞机的燃气轮机转子,飞轮,泵式推进器,机床和普通的 6.3 机械零件,普通的电枢。特殊要求的发动机单个部件
燃气和蒸汽涡轮机,包括船用的主涡轮机(商船用),刚性涡轮发电机 转子,透平轮压缩机,机床传动装置,有特殊要求的中型和大型电枢、 2.5 小型电枢,涡轮传动泵
第一步 eper=(Gx 1000)/(n /10)
第二步 uepr=(w* eper)/(2 *r)
eper
G n
不平衡 度 平衡精 度等 级,一 般取 6.3,如 工件工 作转速
uepr
工件允许 剩余不平 衡量
w
工件重量
r
半径
输入 得到
G n w r
uepr=
6.3 410 85 175
此四项需 要输入数 据
37.31707
平衡精度 eω①② 等级 /(mm/s)
转子类型
G4000 G1600
4000 刚性安装的具有奇数汽缸的低速船用柴油机的曲轴传动装置 1600 刚性安装的大型两行程发动机的曲轴传动装置
动平衡精度等级与计算
动平衡精度等级与计算动平衡是指减少或消除物体在旋转状态下的振动和不平衡现象的一种技术方法。
在机械系统中,不平衡现象常常会引起机器的振动、噪音和寿命的减少,因此动平衡的精度对于机械设备的正常运转至关重要。
动平衡的精度等级是指根据不平衡质量的大小和动平衡精度要求的高低,对动平衡进行分类的一种标准。
根据国际标准ISO1940《动平衡条件与规定》,动平衡的等级有六个,分别是G1.0、G2.5、G6.3、G16、G40和G100。
其中,G1.0等级是最高精度,G100等级是最低精度。
动平衡的计算是指通过一系列的数学运算,确定物体在旋转状态下的不平衡质量和相应的调整位置,从而达到动平衡的要求。
动平衡的计算通常分为两种方法,一种是静平衡法,另一种是动平衡法。
静平衡法主要适用于不平衡质量较小的情况,通过在旋转体上加上质量块,使旋转体达到静止状态,从而确定不平衡质量和调整位置。
而动平衡法则主要适用于不平衡质量较大或无法确定调整位置的情况,通过在旋转体上分别加上试重块,测量振动信号,根据试重块的振动情况来确定不平衡质量和调整位置。
动平衡的精度等级与计算密切相关。
在动平衡计算中,不平衡质量的大小和调整位置的准确性直接影响着动平衡的精度等级。
一般来说,不平衡质量越小,调整位置越准确,动平衡的精度等级就越高。
而不平衡质量越大,调整位置越不准确,动平衡的精度等级就越低。
动平衡的精度等级对于机械系统的正常运转非常重要。
如果不平衡质量较大或调整位置不准确,那么旋转体在运转过程中就会出现较大的振动和不平衡现象,这不仅会导致机器的寿命减少,还会影响机器的工作效率和安全性。
因此,在进行动平衡计算时,要根据实际的工作条件和要求,选择适当的精度等级,确保机械设备的正常运转。
总之,动平衡的精度等级与计算是实现动平衡的重要环节。
通过合理的计算和选择适当的精度等级,可以有效减少不平衡现象,提高机械设备的工作效率和安全性。
在实际应用中,要根据实际情况和要求,选择合适的精度等级,确保动平衡的效果达到预期目标。
动平衡自动计算公式 2016-11-23
50 平衡等级(G)
工作转速(n)
2.5 500
第一步 eper=(Gx1000)/(n/10)
第二步 uepr=(w*eper)/(2*r)
eper G n
不平衡度 平衡精度等级,一般取6.3,如下表 工件工作转速 输入
单 位
uepr w r
工件允许剩余不平衡量 工件重量 半 径
(平衡等级)G (工作转速)n (工件重量)w (半径)r
得到
2.5 500 r/min 500 kg 250 mm 50
G16
16
G6.3Biblioteka 6.3G2.52.5
G1 G0.4
1 0.4
磁带记录仪和唱机的传动装置,磨床传动装置,有特殊要求的小型 电枢 精密磨床的传动轴,研磨盘和电枢,陀螺仪
第三步 辊子重量 =
允用不平衡量
50 平衡等级(G)
2.5 500 500 500
工作转速(分/转) 重量 W (公斤) 直径
不平衡度
uepr =
平衡精度 (g.mm 等级 /s) G4000 G1600 G630 G250 G100 G40
转子类型
4000 刚性安装的具有奇数汽缸的低速船用柴油机的曲轴传动装置 1600 刚性安装的大型两行程发动机的曲轴传动装置 630 250 100 40 刚性安装的大型四行程发动机的曲轴传动装置,弹性安装的船用柴 油机的曲轴传动装置 刚性安装的高速四缸柴油机的曲轴传动装置 具有六个或更多汽缸的高速柴油机的曲轴传动装置,汽车、卡车及 机车头的整个发动机(汽油机或柴油机) 汽车轮、车轮缘、轴座、传动轴,弹性安装的具有六个或更多汽缸 的高速4行程发动机(汽油机或柴油机)的曲轴传动装置 具有特殊要求的传动轴(推进器、万向接头轴),压碎机的零件, 农业机械的零件,发动机(汽车、卡车及机车头的汽油机或柴油 机)的单个组件,在特殊要求下具有6个或更多汽缸的发动机曲轴传 动装置 炼制厂机械的零件,船用主涡轮传动机构(商船用),离心机鼓轮 、风扇.装配好的飞机的燃气轮机转子,飞轮,泵式推进器,机床 和普通的机械零件,普通的电枢。特殊要求的发动机单个部件 燃气和蒸汽涡轮机,包括船用的主涡轮机(商船用),刚性涡轮发 电机转子,透平轮压缩机,机床传动装置,有特殊要求的中型和大 型电枢、小型电枢,涡轮传动泵
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
G2.5 G1 G0.4
G4000 G1600
具有单数个气缸的刚性安装的低速船用柴油机的曲轴驱动件 刚性安装的大型二冲程发动机的曲轴驱动件 刚性安装的大型四冲程发动机的曲轴驱动件
G630 G250 G100
弹性安装的船用柴油机的曲轴驱动件 刚性安装的高速四缸柴油机的曲轴驱动件
六缸和多缸高速柴油机的曲轴传动件;汽车、货车和机车用的平衡机发动 机整机
汽车车轮、轮毂、车轮整体、传动轴,弹性安装的六缸和多缸高速四冲程 发动机的曲轴驱动件 特殊要求的驱动轴(螺旋桨、万向节传动轴);粉碎机的零件;农业机械 的零件;汽车发动机的个别零件;特殊要求的六缸和多缸发动机的曲轴驱 动件
G40
G16
பைடு நூலகம்
G6.3
商船、海轮的主涡轮机的平衡机齿轮;高速分离机的鼓轮;风扇;航空燃 气涡轮机的转子部件;泵的叶轮;机床及一般机器零件;普通电机转子; 特殊要求的发动机的个别零件 燃气和蒸汽涡轮;机床驱动件;特殊要求的中型和大型电机转子;小电机 转子;涡轮泵 磁带录音机及电唱机、CD、DVD的驱动件;磨床驱动件;特殊要求的小 型电枢 精密磨床的主轴;电机转子;陀螺仪
动平衡计算
四个基本参数 1.平衡精度等级. G 2.转子重量 3.转子速度: 4.转子最大半径 M (Kg) n (rpm) R (mm)
计算公式: 1 .允许偏心距,e= 9550 * G / n ,(μm) ,(g)
2. 允许残余不平衡质量,m= e * M / 2R
例:
G=2.5 M=13Kg n=2900 R=165 1. e= 9550 * G / n=9550 * 2.5 / 2900 =8.2 μm 2. m= e * M / 2R= 8.2 * 13 / 2* 165 =0.323 g
结果:允许残余不平衡质量,m= 0.323 g
平衡精度等级
考虑到技术的先进性和经济上的合理性,国际标准化组织(ISO)于1940年制定了世 界公认的ISO1940平衡等级,它将转子平衡等级分为11个级别,每个级别间以2.5倍为 增量,平衡机从要求最高的G0.4到要求最低的G4000。单位为公克×毫米/公斤 (gmm/kg),代表不平衡对于转子轴心的偏心距离。如下表所示: