势垒贯穿的量子力学解释和应用

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

如果是经典力学问题,由于E >0ν,粒子不能越过势垒,将在0=x 处被势垒反弹回去。

作为量子力学问题,由于粒子的波动性,结论就不一样,可以证明,粒子将有一定概率透过势垒进入a x >区域而继续前进。

由于粒子的能量是给定的,而且粒子是从-∞=x 处射来,这是属于游离态的定态,波函数可以表示成
()() /,iEt e
x t x -=ψψ (2)
空间波函数()x ψ满足定态薛定谔方程: ()ψψψνψm
k x m 222
22 =E =+''- (3) 亦即

⎨⎧≤≤=-''><=+''a x a x x k 0,0,0,022ψβψψψ (3a)(3b) 其中
,2 mE k =
)(20E m -=νβ (4) (3a )式的解为ikx e ±~ψ,考虑到“粒子由左方入射”这个边界条件,应取
()⎩⎨⎧><+=-)5(,)5(0,Re b a x De a x Ae x ikx ikx ikx ψ
A 项为入射波,R 项为反射波,D 项为透射波。

由于并无粒子从右方入射,所以a x > 区域没有ikx e -项。

(3b )式的解为
())5(0,c a x Ce Be x x x <<+=-ββψ
透射概率相当大,由此可见在微观领域势垒贯穿现象是容易发生的。

隧道扫描显微镜就是用原子尺度的探针针尖在不到一个纳米的高度上扫描样品时,外加一电压(2mV~2V),针尖与样品之间产生隧道效应而有电子逸出,形成隧道电流.电流强度随针尖与样品间的距离的减少而呈指数上升,当探针沿物质表面按给定高度扫描时,因样品表面原子凹凸不平,使探针与物质表面间的距离不断发生改变,从而引起隧道电流不断发生改变.将电流的这种改变图象化就显示出原子水平的凹凸形态。

相关文档
最新文档