风电供热提高低谷风电消纳能力评估

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

风电供热提高低谷风电消纳能力评估

聂国坚

内蒙古粤电蒙华新能源有限责任公司,内蒙古呼和浩特 010000

摘要:目前我国风电并网容量位居世界第一。风电出力的波动性和间歇性使得大规模风电并网要求电力系统留有足够的备用和调峰电源,因此未来电网面临着风电消纳、接入方式及送出通道等方面的挑战。结合案例,就风电供热提高低谷风电消纳能力进行了相关探究。

关键词:风电供热;低谷风电;消纳能力;评估

中图分类号:TU995;TM614 文献标识码:A 文章编号:1671-5799(2016)26-0170-02

风力发电是目前可规模化开发且大规模并入电网的新能源发电方式。近年来,我国风电并网装机年平均增长速度高达75%,风电的发电量年平均增速为80%。2014年底,我国的风电装机9637万kW,占总体发电装机容量的7%,占全球风电装机的27%;上网电量1534亿kW×h,占总发电量的2.78%。根据国家新能源规划,2015年和2020年风电装机容量将分别达到1亿kW和2亿kW,“三北”地区集中式开发为主和中东部地区分布式开发为主的发展特点进一步凸显。我国电源结构较为单一,调节灵活性不足,风电大规模并网消纳压力较大。尤其是风电发展缺乏统一规划,导致电网建设滞后于电源建设,且跨区电网互联规模不足,风电无法在更大范围内消纳。随着装机规模的不断扩大,风电消纳形势愈加严峻。

1 风电供热现状分析

根据我国风电出力及冬季负荷特性,风电供热试点普遍采用蓄热式的电加热技术。在负荷低谷期启动电加热设备,供热的同时储热热量用于白天供热,不仅可以增加低谷期电网负荷,还可以享受电网低谷电价。试点工程主要采取的运行模式是风电供暖项目确定合作意向后,风电企业需要出资兴建热力站,购买电蓄热锅炉等供热设备并与电网公司、热力公司签订协议。设备到位后,供热站按照峰谷电价政策购电,使用电力生产热量供应给热力公司。由于热力站的初期投资较大,在热价不高于燃煤锅炉的前提下,如果单独核算热力站的经营效益会处于亏损状态,需要对风电企业进行电量补偿,即通过增加风电企业上网电量,减少其弃风损失来补偿热力站的亏损。在实际运行过程中,按照现行的用户电价、热价以及风电上网电价计算,参与供暖的风电企业需多发1倍于热力站所需的电量才能保证盈利,显然这种方式只有通过挤占其他电源的发电计划额度才能实现。由于项目所在地区调峰困难本已较为明显,其结果必然加剧对其他电源调度的难度,失去了增加电网调峰能力的意义。

根据目前试点项目采用的电网低谷期加热和蓄热、全天供热的方式进行锅炉和蓄热系统设计建设,每万平方米供热面积的设备投入费用为120~150万元,近两年实际供热收入折合成供热企业用电价格为0.15~0.20元/(kW·h),考虑到设备折旧和运行维护成本,保证供热企业独立核算而不亏损,购入电价不能超过约0.06元/(kW·h)。按照输电费用(含国家各种税费)约0.20元/(kW·h)计算,风电企业需要以不超过0.14元/(kW·h)的价格售电才能保证供热企业不亏损。按照东北地区风电价格和脱硫标杆电价计算,只有第Ⅳ类资源区的风电场享受国家可再生能源发展基金的补贴大于0.14元/(kW·h),而大部分风电场属于第Ⅲ类及以上的资源区,必然缺乏参与这种直购电方式的积极性,还需有相应的财政激励政策。

2 影响风电消纳的主要因素

2.1 系统调峰能力

随着国民经济产业结构的优化调整,人民生活水平的提高,社会用电结构发生了较大变化,电网峰谷差逐步加大,部分地区的用电峰谷差率已达到40%。我国以煤电为主的电源结构(煤电装机占发电总装机的71%,其中风电富集地区调峰能力差的热电联产机组占相当比重),调峰能力较差,电网调峰矛盾突出。

2.2 系统备用水平

为保证电力系统安全稳定运行,系统须预留有足够的备用容量,包括负荷备用、事故备用和检修备用。风电由于自身的间歇性和波动性特点,不适合承担系统备用容量,需要其他常规机组留有足够的备用,以应对风电波动性出力,保证风电波动不影响用户的正常需求。

2.3 电网网架约束与送出

我国风能资源分布与电力负荷中心分布不一致,大规模集中开发并外送将成为我国风电的主要利用方式。“三北”地区是我国最大的成片风能资源丰富带,具备基地式、大规模开发的条件,适合建设百万kW级、千万kW级的大型风电基地。受当地电力需求水平、电网规模等因素的制约,就地消纳风电的能力十分有限,需要同步加强跨省跨区的电网互联,扩大风电的消纳范围和规模。

2.4 负荷水平

近年来,受经济增速放缓影响,全社会用电量和电网负荷增长缓慢,尤其在风电富集地区,负荷增长速度明显落后于风电的增长速度,加之常规电源的开发,挤占了风电接纳空间。2013年以来,“三北”地区电网最高用电负荷同比增长在4%以下,远低于风电装机25%的增速,系统调峰难度进一步增加。

2.5 风电出力特性

随着风电的快速增长,其波动性对电网安全稳定运行的影响日益增加。“三北”地区风电最大日内波动幅度占当日最大负荷的比例均超过系统预留的备用容量,系统实时调度运行压力不断增大。同时,风电的反调峰特性使得部分电网等效负荷峰谷差率大幅升高,进一步增加了调峰压力。

3 案例分析

我们利用算例量化的办法来对风电供热提高风电消纳能力的潜力进行评估。为了确保仿真风电数据能够尽量的体现出风电的典型特征。我们选取若干个地理位置分散且季节特性较为类似的风电场。风电的总装机容量为399.7MW。取供暖的时间为当年的10月15日至次年的4月15日,总共183天。选取风电低谷限电时段为当日的22:00——次日的05:00。电热锅炉在低谷的时段内制热供暖,并同时为其他时段供暖进行蓄热,低谷时段之外,电锅炉停止运行。

3.1 风电运行特性分析

供暖其低谷时段内,风电的出力特性主要用于对风电供热电量和电热锅炉规模进行测算。因此选取风电数据的供暖其低谷限电时段出力特性来作为分析的依据。同时利用经验分布函数,来对风电出力分布的概率密度分布情况进行拟合。经验分布函数不会对模型的概率分布函数形式进行任何的假设,而是基于历史值的基础上,经过计算得到变量的概率分布模型。因为风电的功率的影响因素较多,目前也没有一种特定的分布形式能够对其进行准确的描述。因此这里仅仅利用经验分布模型来对风电功率的概率分布进行构建。

3.2 根据供热需求计算低谷风电供热电量的提高风电

消纳能力测算

该方案主要基于供热负荷需求的前提条件,利用给定的

(下转第 172 页)

相关文档
最新文档