红外遥控器码word版
史上最全的红外遥控器编码协议
目录1)MIT-C8D8 (40k)2) MIT-C8D8(33K)3)SC50560-001,003P 4)M504625)M50119P-016)M50119L7)RECS808)M30049)LC7464M10)LC7461-C1311)IRT1250C5D6-01 12)Gemini-C6-A13)Gemini-C614) Gemini-C17(31.36K)-1 15)KONKA KK-Y261 16)PD6121G-F17)DATA-6BIT18)Custum-6BIT19)M9148-120)SC3010 RC-521) M50560-1(40K)22) SC50560-B123)C50560-002P24)M50119P-0125)M50119P-126)M50119P27)IRT1250C5D6-02 28)HTS-C5D6P29)Gemini-C1730)Gemini-C17 -231)data6bit-a32)data6bit-c33)X-Sat34)Philips RECS-8035)Philips RC-MM36)Philips RC-637)Philips RC-538)Sony SIRC39)Sharp40)Nokia NRC1741)NEC42)JVC43)ITT44)SAA3010 RC-5(36K)45)SAA3010 RC-5(38K)46)NEC2-E247) NEC-E348) RC-5x49) NEC1-X250) _pid:$006051) UPD1986C52) UPD1986C-A53) UPD1986C-C54) MV500-0155) MV500-0256) Zenith S101) MIT-C8D8(40K)MIT-C8D8(40K)是一种常见的红外遥控编码格式。
该格式出现在万能遥控器ZC-18A(600-917)中。
Features 基本特点1,8位地址码,8位数据码,结束码;2,脉宽调制方式(PWM);3,载波:40.0 KHZ;4,逻辑位时间长度是1.215ms或2.436 ms。
史上最全的红外遥控器编码协议(可编辑)
史上最全的红外遥控器编码协议目录1MIT-C8D8 40k2 MIT-C8D8 33K3SC50560-001003P4M504625M50119P-016M50119L7RECS808M30049LC7464M10LC7461-C1311IRT1250C5D6-0112Gemini-C6-A13Gemini-C614 Gemini-C17 3136K -115KONKA KK-Y26116PD6121G-F17DATA-6BIT18Custum-6BIT19M9148-120SC3010 RC-521 M50560-1 40K22 SC50560-B123C50560-002P24M50119P-0125M50119P-126M50119P27IRT1250C5D6-02 28HTS-C5D6P29Gemini-C1730Gemini-C17 -231data6bit-a32data6bit-c33X-Sat34Philips RECS-80 35Philips RC-MM36Philips RC-637Philips RC-538Sony SIRC39Sharp40Nokia NRC1741NEC42JVC43ITT44SAA3010 RC-536K45SAA3010 RC-538K46NEC2-E247 NEC-E348 RC-5x49 NEC1-X250 _pid006051 UPD1986C52 UPD1986C-A53 UPD1986C-C54 MV500-0155 MV500-0256 Zenith S101 MIT-C8D840KMIT-C8D840K是一种常见的红外遥控编码格式该格式出现在万能遥控器ZC-18A 600-917 中Features 基本特点18位地址码8位数据码结束码2脉宽调制方式PWM3载波400 KHZ4逻辑位时间com msModulation 调制逻辑0Logical0是由935us的无载波间隔和280us的40KHZ载波组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由280us的40KHZ载波和2156us的无载波间隔组成Protocol 协议从上图中可看到 MIT-C8D840K一帧码序列是由8位地址码8位数据码和结束码组成长按键不放发出的码波形序列如下图即将整个波形以周期4478ms进行重复2 MIT-C8D8 33KMIT-C8D8 33K 是一种常见的编码格式该格式来源于OMEGA万能遥控器码组号为0138及祝成万能遥控器ZC-18A码组号为644735736Features 基本特点18位地址码8位数据码2脉宽调制方式PWM3载波33KHZ4逻辑位的时间comsModulation 调制隔组成图中表示的是有载波和无载波间隔的总长度2逻辑1Logical1是由280us的33KHZ载波和2156us的无载波间隔组成Protocol 协议从上图可以看到MIT-C8D8 33K 一帧码序列是由8位地址码8位数据码长按键不放发出的码波形序列如下图就是将第一帧波形以周期501ms进行重复3 SC50560-001003P 分割码未有数据标注SC50560-001003P是一种常见的红外遥控编码格式该格式出现在CL311URC-8910RM-123CRM-139S的062码组ZC-18A600-917ZC-18A400-481RM-301C VT3620AVT3630RM-402C的TV-012码组Features 基本特点1引导码8位地址码分割码未有数据标注 8位数据码结束码2脉宽调制方式PWM3载波38KHZ4逻辑位时间comModulation 调制逻辑0Logical0是由520us的38KHZ载波和520us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度隔组成Protocol 协议从上图中可看到 SC50560-001003P一帧码序列是由引导码 8ms 的载波和4ms的间隔 8位地址码分割码8位数据码和结束码组成长按键不放发出的码波形序列如下图即将整个波形以周期12002ms进行重复4 M50462M50462是一种常见的红外遥控编码格式该格式出现在RM-123CRM-139SZC-18A600-917RM-301C VT3620AVT3630RM-402C Features 基本特点18位地址码8位数据码结束码2脉宽调制方式PWM3载波38 KHZ4逻辑位时间comModulation 调制逻辑0Logical0是由260us的38KHZ载波和780us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由260us的38KHZ载波和1799us的无载波间隔组成Protocol 协议从上图中可看到 M50462一帧码序列是由8位地址码8位数据码和结束码组成长按键不放发出的码波形序列如下图即将整个波形以周期45ms 进行重复5 M50119P-0142K 分割码未有数据标注M50119P-0142K是一种常见的红外遥控编码格式该格式出现在URC-8910CBL-0009 ZC-18A 600-917 的736码组ZC-18A 400-481 VT3630的SAT-001码组Features 基本特点1数据帧4位地址码6位数据码分割码4位地址码相同码6位数据码相同码结束码重复帧用户码相同码结束码2脉宽调制方式PWM3载波418 KHZ4逻辑位时间comsModulation 调制逻辑0Logical0是由967us的418KHZ载波和967us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由967us的418KHZ载波和2901us的无载波间隔组成Protocol 协议从上图中可看到 M50119P-0142K两帧码序列是由数据帧4位地址码6位数据码分割码4位地址码相同码6位数据码相同码结束码重复帧地址码相同码结束码长按键不放后续发出的波形如下长按键不放发出的码波形序列如下图就是将重复帧波形以周期62855ms进行重复M50119LM50119L是一种常见的红外遥控编码格式该格式出现在万能遥控器CL311URC-8910VCR-0041INTER DIGI-SATVT3630中Features 基本特点13位地址码7位数据码结束码2脉宽调制方式PWM3载波379 KHZ4逻辑位时间comModulation 调制逻辑0Logical0是由260us的379KHZ载波和780us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由260us的379KHZ载波和1820us的无载波间隔组成Protocol 协议从上图中可看到 M50119L一帧码序列是由3位地址码7位数据码和结束码组成长按键不放发出的码波形序列如下图即将整个波形以周期255ms 进行重复7 RECS8068RECS8068是一种常见的红外遥控编码格式该格式来源于URC8910的CD-0764码组Features 基本特点12位控制码 3位地址码6位数据码结束码2脉宽调制方式PWM3载波33KHZ4逻辑位时间comModulation 调制逻辑0Logical0是由160us的33KHZ载波和5600us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由160us的33KHZ载波和8480us的无载波间隔组成Protocol 协议从上图中可看到RECS8068一帧码序列是由2位控制码 3位地址码6位数据码结束码组成的长按键不放发出的码波形序列如下图整个波形以周期1383ms进行重复8 M3004 CarrierM3004 Carrier是一种常见的红外遥控编码格式该格式出现在遥控器CL311 RM-123CRM-139S148ZC-18A600-917ZC-18A400-481RM-301CINTER-DIG I-SAT VT3620AVT3630RM-402CTV-060中Features 基本特点1引导码1位翻转码 3位地址码6位数据码结束码2脉宽调制方式PWM3载波38KHZ4逻辑位时间comModulation 调制逻辑0Logical0是由141us的38KHZ载波和4919us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由141us的38KHZ载波和7449us的无载波间隔组成Protocol 协议从上图中可看到 M3004 Carrier一帧码序列是由1位引导码 1位翻转码 3位地址码6位数据码结束码组成的长按键不放发出的码波形序列如下图整个波形以周期121651ms 进行重复9 LC7464M 校验码怎么算的LC7464M是一种常见的红外遥控编码格式该格式出现在万能遥控器CL311URC-8910 RM-139SZC-18A600-917ZC-18A400-481VT3620AVT3630Features 基本特点1引导码15位地址码4位校验码4位地址码28位数据码8位校验码结束码3载波38KHZ4逻辑位时间comModulation 调制逻辑0Logical0是由420us的38KHZ载波和420us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由420us的38KHZ载波和1260us的无载波间隔组成Protocol 协议从上图中可看到 LC7464M一帧码序列是由引导码 com的间隔15位地址码4位校验码4位地址码28位数据码8位校验码结束码组成长按键不放发出的码波形序列如下图整个波形以8297ms的周期进行重复10 LC7461-C13LC7461-C13是一种常见的红外遥控编码格式该格式出现在万能遥控器CL311URC-8910RM-123CRM-139S101ZC-18A600-917RM-301CVT3630RM-402C的TV-131码组Features 基本特点1数据帧引导码13位地址码13位地址码-反码8位数据码8位数据码反码结束码重复帧3载波38KHZ4逻辑位时间comModulation 调制逻辑0Logical0是由560us的38KHZ载波和560us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由560us的38KHZ载波和1680us的无载波间隔组成Protocol 协议数据帧从上图中可看到 LC7461-C13一帧码序列是由引导码 9-ms的载波和45ms的间隔 13位地址码13位地址码-反码 8位数据码8位数据码反码结束码组成重复帧由结束码组成长按键不放发出的后续波形如下图其发出的整个码波形序列如下图由重复帧开始以周期10811ms 进行重复11 IRT1250C5D6-010HzIRT1250C5D6-010Hz是一种常见的红外遥控编码格式该格式出现在万能遥控器VT3620A中Features 基本特点1引导码5位地址码6位数据码结束码3载波00 KHZ4逻辑位时间comsModulation 调制逻辑0Logical0是由16us的00KHZ载波和160us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由16us的00KHZ载波和368us的无载波间隔组成Protocol 协议从上图中可看到IRT1250C5D6-010Hz一帧码序列是由引导码0016 ms的载波和0545ms的间隔 5位地址码6位数据码结束码16-54316-593136us组成长按键不放发出的码波形序列如下图即将整个波形以周期596208ms进行重复12 Gemini-C6-A40KGemini-C6-A40K是一种常见的红外遥控编码格式该格式出现在万能遥控器VT3630的SAT-034码组Features 基本特点1地址帧引导码7位地址码2结束码数据帧引导码相同码7位数据码结束码地址帧相同帧数据帧相同帧2脉宽调制方式PWM3载波400 KHZ4逻辑位时间长度是105msModulation 调制逻辑0Logical0是由525us的无载波间隔和525us的40KHZ载波组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由525us的40KHZ载波和525us的无载波间隔组成Protocol 协议从上图中可看到 Gemini-C6-A40K由四帧码组成地址帧码序列由引导码 coms的间隔 7位地址码和结束码组成数据帧码序列由引导码相同码 coms的间隔 7位数据码和结束码组成地址帧相同帧同地址帧数据帧相同帧同数据帧长按键不放发出的码波形序列如下其整个码波形序列如下图就是将第三第四帧波形以周期693ms 进行重复13 Gemini-C63136Gemini-C63136是一种常见的红外遥控编码格式该格式出现在万能遥控器CL311与VT3620A中Features 基本特点1引导码7位数据码结束码2脉宽调制方式PWM3载波310 KHZ4逻辑位时间comsModulation 调制逻辑0Logical0是由496us的无载波间隔和496us的31KHZ载波组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由496us的31KHZ载波和496us的无载波间隔组成Protocol 协议从上图中可看到 Gemini-C63136一帧码序列是由引导码 053ms 的载波和265ms的间隔 7位和结束码组成长按键不放发出的码波形序列如下图即将整个波形以周期90724ms进行重复14 Gemini-C17 3136K -1Gemini-C17 3136K -1是一种常见的红外遥控编码格式该格式来源于CL311Features 基本特点1引导帧引导码10位地址码结束码地址帧引导码相同码10位地址码2结束码引导帧相同帧数据帧引导码相同码10位数据码结束码引导帧相同帧2脉宽调制方式PWM3载波304KHZ4逻辑位时间长度是106msModulation 调制逻辑0Logical0是由530us的304KHZ载波和530us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由530us的无载波间隔和530us的304KHZ载波组成Protocol 协议从上图中可看到 Gemini-C17 3136K -1帧码其依次为引导帧码序列是由引导码 com的间隔 10位地址码与结束码206ms组成用户帧码序列是由引导码-相同码 com的间隔 10位地址码2与结束码 1025ms 组成引导帧-相同帧码与引导帧码相同数据帧码序列是由引导码-相同码 com的间隔 10位数据码与结束码 11714ms 组成引导帧-相同帧码与引导帧码相同长按键不放后续发出的波形如下其整个码波形序列如下图就是将第四第五帧波形以周期1653ms 进行重复15 KONKA KK-Y261KONKA KK-Y261是一种常见的红外遥控编码格式该格式来源于RM-123CRM-139S的113码组RM-301C RM-402C的204码组Features 基本特点1引导码8位地址码 8位数据码结束码2脉宽调制方式PWM3载波38KHZ4逻辑位时间长度是3ms或2msModulation 调制逻辑0Logical0是由500us的38KHZ载波和1500us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由500us的38KHZ载波和2500us的无载波间隔组成Protocol 协议从上图中可看到 KONKA KK-Y261一帧码序列是由引导码 3ms的载波和3ms的间隔 8位地址码 8位数据码结束码组成长按键不放发出的码波形序列如下图即将整个波形以周期66ms 进行重复16 PD6121G-FPD6121G-F是一种常见的红外遥控编码格式Features 基本特点1引导码8位地址码8位地址码28位数据码8位数据码反码2脉宽调制方式PWM3载波38KHZ4逻辑位时间comsModulation 调制逻辑0Logical0是由564us的38KHZ载波和564us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由564us的38KHZ载波和1692us的无载波间隔组成Protocol 协议从上图中可看到 PD6121G-F一帧码序列是由引导码 coms的间隔 8位地址码8位地址码2 8位数据码8位数据码反码组成长按键不放发出的码波形序列如下图即将整个波形以周期108ms 进行重复17 DATA-6BITDATA-6BIT是一种常见种常见的红外遥控编码格式该格式来源于RM-301C RM-402C195Features 基本特点16位数据码2脉宽调制方式PWM3载波38KHZ4逻辑位时间comModulation 调制逻辑0Logical0是由440us的38KHZ载波和1540us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由440us的38KHZ载波和3362us的无载波间隔组成Protocol 协议从上图中可看到DATA-6BIT一帧码序列仅是由6位数据码组成长按键不放发出的码波形序列如下图即将第一帧波形以周期28ms进行重复18 CUSTUM6BITCustum-6BIT是一种常见的红外遥控编码格式该格式出现在CL311URC-8910RM-123CRM-139S148ZC-18A600-917ZC-18A400-481RM-301CINTER-DIGI-SAT VT3620AVT3630RM-402CFeatures 基本特点16位数据码2脉宽调制方式PWM3载波38KHZ4逻辑位时间com19 M9148-1M9148-1是一种常见的编码格式Features 基本特点13位地址码1位控制码8位数据码2脉宽调制方式PWM3载波38168KHZ4逻辑位的时间长度是1848msModulation 调制1逻辑0Logical0是由462us的38168KHZ载波和1386us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度2逻辑1Logical1是由1386us的38168KHZ载波和462us的无载波间隔组成Protocol 协议从上图可以看到M9148-1一帧码序列是由3位地址码1位控制码8位数据码长按键不放发出的码波形序列如下图就是将第一帧波形以周期56023ms进行重复20 SC3010RC-5SC3010 RC-5是一种常见的编码格式该格式来源于众合万能遥控器RM-139S码组号为013208215216218及万能遥控器祝成ZC-18A码组号为682684685854691709Features 基本特点12位控制码1为翻转码5位地址码6位数据码2脉宽调制方式PWM3载波38KHZ4逻辑位的时间长度是1688msModulation 调制1逻辑0Logical0是由844us的38 KHZ载波和844us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度2逻辑1Logical1是由844us的38KHZ载波和844us的无载波间隔组成Protocol 协议从上图可以看到SC3010 RC-5一帧码序列是由2位控制码1位翻转码5位地址码6位数据码长按键不放发出的码波形序列如下图就是将第一帧波形以周期127156ms进行重复21 M50560-1 40KM50560-1 40K 是一种常见的编码格式该格式来源于万能遥控器众合RM139-S码组号为040069076083068125127268及万能遥控器众合RM-33C码组号为0016006700720073Features 基本特点18位地址码8位数据码2脉宽调制方式PWM3载波40KHZ4逻辑位的时间长度是1ms或2msModulation 调制1逻辑0Logical0是由500us的40KHZ载波和500us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度2逻辑1Logical1是由500us的40KHZ载波和1500us的无载波间隔组成Protocol 协议从上图可以看到M50560-1 40K 一帧码序列是由8位地址码8位数据码长按键不放发出的码波形序列如下图就是将第一帧波形以周期678ms进行重复22 SC50560-B1SC50560-B1是一种常见的编码格式Features 基本特点15位数据码2脉宽调制方式PWM3载波38KHZ4逻辑位的时间comModulation 调制1逻辑0Logical0是由520us的38KHZ载波和2080us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度2逻辑1Logical1是由520us的38KHZ载波和4160us的无载波间隔组成Protocol 协议从上图可以看到SC50560-B1一帧码序列是由5位数据码长按键不放发出的码波形序列如下图就是将第一帧波形以周期120ms进行重复23 C50560-002PC50560-002P是一种常见的编码格式该格式来源于视贝万能DVB遥控器码组号为195Features 基本特点18位地址码8位数据码2脉宽调制方式PWM3载波38KHZ4逻辑位的时间comModulation 调制1逻辑0Logical0是由520us的38KHZ载波和520us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度2逻辑1Logical1是由520us的38KHZ载波和1560us的无载波间隔组成Protocol 协议从上图可以看到M50560-002P 一帧码序列是由8位地址码8位数据码长按键不放发出的码波形序列如下图就是将第一帧波形以周期36006ms进行重复24 M50119P-01 38KM50119P-01 38K 是一种常见的编码格式Features 基本特点14位地址码4位地址码的相同码6位数据码6位数据码的相同码2脉宽调制方式PWM3载波38KHZ4逻辑位的时间comsModulation 调制1逻辑0Logical0是由967us的38KHZ载波和967us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度2逻辑1Logical1是由967us的38KHZ载波和2901us的无载波间隔组成Protocol 协议从上图可以看到M50119P-01 38K 一数据帧码序列是由4位地址码6位数据码4位地址码相同码6位数据码相同码一重复帧由4位地址码相同码长按键不放发出的码波形序列如下图就是将第一帧波形以周期385156ms进行重复25 M50119P-1 40KM50119P-1 40K 是一种常见的编码格式该格式来源于OMEGA万能遥控器码组号为0041Features 基本特点13位地址码7位数据码2脉宽调制方式PWM3载波40KHZ4逻辑位的时间长度是1ms或2msModulation 调制1逻辑0Logical0是由500us的40KHZ载波和500us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度2逻辑1Logical1是由500us的40KHZ载波和1500us的无载波间隔组成Protocol 协议从上图可以看到M50119P-1 40K 一帧码序列是由3位地址码7位数据码长按键不放发出的码波形序列如下图就是将第一帧波形以周期275ms进行重复26M50119PM50119P是一种常见的编码格式该格式来源于OMEGA万能遥控器码组号为0384及众合万能遥控器RM-139S码组号为041Features 基本特点13位地址码7位数据码2脉宽调制方式PWM3载波3791KHZ4逻辑位的时间长度是1ms或2msModulation 调制1逻辑0Logical0是由500us的379KHZ载波和500us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度2逻辑1Logical1是由500us的379KHZ载波和1500us的无载波间隔组成Protocol 协议从上图可以看到M50119P一帧码序列是由3位地址码7位数据码长按键不放发出的码波形序列如下图就是将第一帧波形以周期30ms进行重复27IRT1250C5D6-02 0HzIRT1250C5D6-02 0Hz 是一种常见的编码格式Features 基本特点15位地址码6位数据码2脉宽调制方式PWM3载波无载波4逻辑位的时间comsModulation 调制1逻辑0Logical0是由16us的无载波和224us的无载波间隔组成图中表示的是无载波和无载波间隔的总长度2逻辑1Logical1是由16us的36KHZ载波和480us的无载波间隔组成Protocol 协议从上图可以看到IRT1250C5D6-02 0Hz 一帧码序列是由引导码0016ms的无载波和0732ms的间隔5位地址码6位数据码长按键不放发出的码波形序列如下图就是将第一帧波形以周期597251ms进行重复28HTS-C5D6PHTS-C5D6P是一种常见的编码格式该格式来源于OMEGA万能遥控器027*********Features 基本特点15位地址码6位数据码1位校验码2脉宽调制方式PWM3载波38KHZ4逻辑位的时间com4624msModulation 调制1逻辑0Logical0是由136us的38KHZ载波和1360us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度2逻辑1Logical1是由136us的38KHZ载波和2856us的无载波间隔组成3逻辑3Logical3是由136us的38KHZ载波和4488us的无载波间隔组成Protocol 协议从上图可以看到HTS-C5D6P一帧码序列是引导码coms的间隔5位地址码6位用户码1位校验码长按键不放后续发出波形如下长按键不放发出的码波形序列如下图就是将第一帧波形以周期89381ms进行重复29Gemini-C17 3136KGemini-C17 3136K 是一种常见的编码格式该格式主要来源于OMEGA万能遥控器码组号分别为013402250289032203970400045104580859Features 基本特点110位地址码引导码的相同码10位数据码2脉宽调制方式PWM3载波304KHZ4逻辑位的时间长度是106msModulation 调制1逻辑0Logical0是由530us的304KHZ载波和530us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度2逻辑1Logical1是由530us的304KHZ载波和530us的无载波间隔组成Protocol 协议从上图可以看到Gemini-C17 3136K 用户帧码序列是由引导码com的间隔10位地址码数据帧码序列由引导码的相同码10位数据码长按键不放后仍发出如下波形长按键不放出码的波形序列如下图就是将第一帧以周期19997ms 进行重复30Gemini-C17 3136K -2Gemini-C17 3136K -2是一种常见的编码格式该格式主要来源于OMEGA万能遥控器码组号分别为01350376Features 基本特点116位地址码 16位数据码2脉宽调制方式PWM3载波31KHZ4逻辑位的时间长度是106msModulation 调制1逻辑0Logical0是由530us的31KHZ载波和530us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度2逻辑1Logical1是由530us的31KHZ载波和530us的无载波间隔组成Protocol 协议从上图可以看到Gemini-C17 3136K -2用户帧码序列是由引导码com的间隔16位地址码数据帧码序列由引导码com的间隔16位数据码长按键不放后仍发出如下波形长按键不放出码的波形序列如下图就是将第一帧以周期21609ms 进行重复31data6bit-adata6bit-a是一种常见的编码格式该格式来源于祝成万能遥控器ZC-18A码组号673Features 基本特点16位数据码2脉宽调制方式PWM3载波333KHZ4逻辑位的时间comsModulation 调制1逻辑0Logical0是由576us的333KHZ载波和1820us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度2逻辑1Logical1是由576us的333KHZ载波和4200us的无载波间隔组成Protocol 协议从上图可以看到data6bit-a一帧码序列是6位数据码长按键不放发出的码波形序列如下图就是将第一帧波形以周期58092ms进行重复32data6bit-cFeatures 基本特点16位数据码2脉宽调制方式PWM3载波20KHZ4逻辑位的时间长度是2 ms或4msModulation 调制1逻辑0Logical0是由1000us的20KHZ载波和1000us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度2逻辑1Logical1是由1000us的20KHZ载波和3000us的无载波间隔组成Protocol 协议从上图可以看到data6bit-c一帧码序列是6位数据码构成长按键不放发出的码波形序列如下图就是将第一帧波形以周期725ms进行重复33X-Sat ProtocolX-Sat ProtocolI call this the X-Sat protocol because it is used in the X-Sat CDTV 310 Satellite receiver made by the French company Xcom This protocol is probably also used in other X-Sat receivers but I have no means to verify that I havent seen this protocol anywhere else but that doesnt guarantee that it is unique to the X-Sat brandFeatures8 bit address and 8 bit command lengthPulse distance modulationCarrier frequency of 38kHzBit time of 1ms or 2msModulationThe X-Sat protocol uses pulse distance encoding of the bits Each pulse is a 526祍 long 38kHz carrier burst about 20 cycles A logical "1" takes 20ms to transmit while a logical"0" is only 10ms The recommended carrier duty cycle is 14 or 13ProtocolThe picture above shows a typical pulse train of the X-Sat protocol With this protocol the LSB is transmitted first In this case Address 59 and Command 35 is transmitted A message is started by a 8ms AGC burst which was used to set the gain of the earlier IR receivers This AGC burst is then followed by a 4ms space which is then followed by the Address and Command A peculiar property of the X-Sat protocol is the 4ms gap between the address and the command The total transmission time is variable because the bit times are variableAn IR command is repeated 60ms for as long as the key on the remote is held down34Philips RECS-80 Protocol 38kHz carrierThis protocol is designed by Philips and transmitters are produced by Philips SAA3008 and ST M3004 Personally I have never seen this protocol being used in real applications All information on this page is derived from the data sheet of the Philips SAA3008 and the ST M3004 10624pdfThere are 2 small differences between the two competitor ICs The Philips IC has two modes of operation one which iscompatible with the ST chip and one which can handle up to 20 sub-system addresses The ST chip has the capability of switching the modulation carrier offFeatures7 or 20 sub-system addresses 64 commands per sub-system address1 or2 toggle bits to avoid key bouncePulse distance modulationCarrier frequency of 38kHz or unmodulatedBit time logic "0" is 51ms logic "1" is 76ms 455kHz OscillatorCommand repetition rate 1215ms 55296 periods of the main oscillatorManufacturer Philips STModulation 13 duty cycleNormal Protocol The drawing below shows a typical pulse train of a normal RECS-80 message This example transmits command 36 to address 4Usually the first pulse is a reference pulse with a value of "1" The receiver may use this bit to determine the exact bit lengthThe next bit is a toggle bit Its value is toggled whenever akey is released which results in a different code every time a new key is pressed This allows the receiver to discriminate between new key presses and key repetitionsOnly the ST chip M3004 can disable its carrier in which case the REF pulse is interpreted as a second toggle bit The 2-bit toggle value is incremented every time a key is released Thus only in this mode there is no real REF pulseThe next 3 pulses S2 to S0 represent the sub-system address bits sent with MSB first This would allow for 8 different sub-system addresses but both the SAA3008 and the M3004 can only generate 7 sub-system addresses in normal mode Next come the 6 command bits F to A also sent with MSB first allowing for 64 different commands per sub-system addressThe pulse train is terminated by a last pulse otherwise there is no way to know the duration of bit AThe entire command is repeated with unchanged toggle bits for as long as the key is held down The repetition rate is 1215ms 55296 periods of the oscillatorAddress assignments are a bit odd with this protocol You can not simply convert the binary value to a decimal value Below you see a table explaining the relationship between the binary and decimal sub-system address valuesExtended Protocol If you need more than 7 sub-system addresses you can use the extended protocol which allows 13 additional sub-system addresses only if you use the SAA3008 The drawing below shows an extended message This example transmits command 36 to address 10The first two pulses are a special start sequence The total duration of these pulses is equal to a normal "1" period The next bit is a toggle bit Its value is toggled whenever a key is released which results in a different code every time a new key is pressed This allows the receiver to discriminate between new key presses and key repetitionsThe next 4 pulses S3 to S0 represent the sub-system address bits This would allow for an additional 16 different sub-system addresses although the SAA3008 can only generate 13 additional sub-system addresses in this mode Next come the 6 command bits F to A also sent with MSB firstThe pulse train is terminated by a last pulse otherwise there is no way to know the duration of bit AThe entire command is repeated with unchanged toggle bits for as long as the key is held down The repetition rate is 1215ms 55296 periods of the oscillatorAddress assignments are a bit odd with this protocol Youcan not simply convert the binary value to a decimal value Below you see a table explaining the relationship between the binary and decimal sub-system address values35 Philips RC-MM ProtocolRC-MM was defined by Philips to be a multi-media IR protocol to be used in wireless keyboards mice and game pads For these purposes the commands had to be short and have low power requirementsWhether the protocol is actually used for these purposes today is unknown to me What I do know is that some Nokia digital satellite receivers use the protocol 9800 series Features 12 bits or 24 bits per messagePulse position coding sending 2 bits per IR pulseCarrier frequency of 36kHzMessage time ranges from 35 to 65 ms depending on data contentRepetition time 28 ms 36 messages per secondManufacturer PhilipsTransmission timingIn this diagram you see the most important transmission times The message time is the total time of a message counting form the beginning of the first pulse until the end of the lastpulse of the message This time can be 35 to 65 ms depending on the data content and protocol usedThe signal free time is the time in which no signal may be sent to avoid confusion with foreign protocols on the receivers side Philips recommends 1 ms for normal use or 336 ms when used together with RC-5 and RC-6 signals Since you can never tell whether a user has other remote controls in use together with an RC-MM controlled device I would recommend always to use a signal free time of 336 msThe frame time is the sum of the message time and the signal free time which can add up to just about 10 ms per message Finally the repetition time is the recommended repetition time of 27778 ms which allows 36 messages per second This is only a recommendation and is mainly introduced to allow other devices to send their commands during the dead times No provision is made for data collisions between two or more remote controls This means that there is no guarantee that the messages get acrossModulationWith this protocol a 36 kHz carrier frequency is used to transmit the pulses This helps to increase the noise immunity at the receiver side and at the same time it reduces powerdissipated by the transmitter LED The duty cycle of the pulses is 13 or 14Each message is preceded by a header pulse with the duration of 4167 μs 15 pulses of the carrier followed by a space of 2778 μs 10 periods of the carrier This header is followed by 12 or 24 bits of dataBy changing the distance between the pulses two bits of data are encoded per pulse Below you find a table with the encoding timesProtocol RCMM comes in 3 different flavours called modes Each mode is intended for a particular purpose and differs mainly in the number of bits which can be used by the application All data is sent with MSB firstThe 12 bit mode is the basic mode and allows for 2 address bits and 8 data bits per device family There are 3 different device families defined keyboard mouse and game pad The 2 address bits provide for a way to use more than 1 device simultaneously The data bits are the actual payload data The 24 bit mode also know as extended mode allows more data to be transmitted per message For instance for multi-lingual keyboards or a high resolution mouseIn the OEM mode the first 6 bits are always 0 0 0 0 1 1 The。
红外线遥控器的编码格式
[转]红外线遥控器的编码格式电子杂篇2008-08-20 17:07:14 阅读443 评论0 字号:大中小订阅红外线遥控是目前使用最广泛的一种通信和遥控手段。
由于红外线遥控装置具有体积小、功耗低、功能强、成本低等特点,因而,继彩电、录像机之后,在录音机、音响设备、空凋机以及玩具等其它小型电器装置上也纷纷采用红外线遥控。
工业设备中,在高压、辐射、有毒气体、粉尘等环境下,采用红外线遥控不仅完全可靠而且能有效地隔离电气干扰。
这里我们以红外线遥控编码芯片为uPD6121G(或者是HT622、7461等芯片)为例来说明红外遥控编码、解码的详细过程:1 红外遥控系统通用红外遥控系统由发射和接收两大部分组成,应用编/解码专用集成电路芯片来进行控制操作,如图1所示。
发射部分包括键盘矩阵、编码调制、LED红外发送器;接收部分包括光、电转换放大器、解调、解码电路。
2 遥控发射器及其编码遥控发射器专用芯片很多,根据编码格式可以分成两大类,这里我们以运用比较广泛,解码比较容易的一类来加以说明,现以日本NEC的uPD6121G组成发射电路为例说明编码原理。
当发射器按键按下后,即有遥控码发出,所按的键不同遥控编码也不同。
这种遥控码具有以下特征:采用脉宽调制的串行码,以脉宽为0.565ms、间隔0.56ms、周期为1.125ms的组合表示二进制的“0”;以脉宽为0.565ms、间隔1.685ms、周期为2.25ms的组合表示二进制的“1”,其波形如图2所示。
上述“0”和“1”组成的32位二进制码经38kHz的载频进行二次调制以提高发射效率,达到降低电源功耗的目的。
然后再通过红外发射二极管产生红外线向空间发射,如图3所示。
UPD6121G产生的遥控编码是连续的32位二进制码组,其中前16位为用户识别码,能区别不同的电器设备,防止不同机种遥控码互相干扰。
该芯片的用户识别码固定为十六进制01H;后16位为8位操作码(功能码)及其反码。
常见红外遥控器编码与格式
电源和红外发射电路组成。
信号调制为脉冲串信号,通过红外发射管发射。
常用的有通过脉冲宽度来实现信号调制的脉红外线遥控器已被广泛使用在各种类型的家电产品上,它的出现给使用电器提供了很多的便利。
红外遥控系统一般由红外发射装置和红外接收设备两大部分组成。
红外发射装置又可由键盘电路、红外编码芯片、红外接收设备可由红外接收电路、红外解码芯片、电源和应用电路组成。
通常为了使信号能更好的被传输发送端将基带二进制宽调制(PWM )和通过脉冲串之间的时间间隔来实现信号调制的脉时调制(PPM )两种方法。
在同一个遥控电路中通常要使用实现不同的遥控功能或区分不同的机器类型,这样就要求信号按一定的编码传送,编码则会由编码芯片或电路完成。
对应于编码芯片通常会有相配对的解码芯片或包含解码模块的应用芯片。
在实际的产品设计或业余电子制作中,编码芯片并一定能完成我们要求的功能,这时我们就需要了解所使用的编码芯片到底是如何编码的。
只有知道编码方式,我们才可以使用单片机或数字电路去定制解码方案。
下面介绍的是笔者所收集整理的一些常用遥控编码芯片的编码方式和常用一体化接收芯片的引脚示意图。
在最后还用实例介绍M50560-001P 芯片的解码思路和应用实例程序的编写。
常用红外一体化接收头引脚示意uPD6121,uPD6122,PT2222,SC6121,HS6222,HS6221载波波形 使用455KHz 晶体,经内部分频电路,信号被调制在37.91KHz ,占空比为3分之1。
数据格式. 数据格式包括了引导码、用户码、数据码和数据码反码,编码总占32位。
数据反码是数据码反相后的编码,编码时可用于对数据的纠错。
注意:第二段的用户码也可以在遥控应用电路中被设置成第一段用户码的反码。
使用455KHz 晶振时各代码所占的时间位定义 用户码或数据码中的每一个位可以是位‘1’,也可以是位‘0’。
区分‘0’和‘1’是利用脉冲的时间间隔来区分,这种编码方式称为脉冲位置调制方式,英文简写PPM 。
红外遥控器按键编码
EA = 1;
//允许全局中断
EX0 = 1;
//允许 INT0 中断
PX0 = 0;
//INT0 的中断级别为低
IT0 = 0;
//设定 INT0 上升沿和下降沿都可以中断
/*初始化 T0:16 位自动重装填模式*/
{LED1=ON;LED2=OFF;LED3=OFF;LED4=OFF;LED5=OFF;}
if(temp==IR_2)
{LED1=OFF;LED2=ON;LED3=OFF;LED4=OFF;LED5=OFF;}
if(temp==IR_3)
{LED1=OFF;LED2=OFF;LED3=ON;LED4=OFF;LED5=OFF;}
break;
}
case IR_WordA: {
if((IR_Num%2)==0&&InfraredRayPin==1) {
TH0 = 0x00; TL0 = 0x00; TimeStart; break; } if((IR_Num%2)==1&&InfraredRayPin==0) { TimeStop; IR_Time=TH0; IR_Time<<=8; IR_Time|=TL0; IR_DataA<<=1; if(IR_Time<800) {
1
#define IR_WordB
2
#define IR_End
3
#define TimeStart (TR0=1)
#define TimeStop (TR0=0)
void InfraredRay_Init(void);
万能电视遥控器代码表
万能电视遥控器代码表万能电视遥控器代码表国内电视:长虹000. 008. 009. 091. 092. 093. 010. 011. 014. 016 .026. 028. 033. 051. 088.100.157.158.159. 160. 161. 180 .181. 185 .186 .191. 192 .210. 211. 212. 229. 230 .231 .232康佳011 .017 .029 .032 .034. 054 .067 .069 .071 .075 .076 .077 .078 .079 .080 .081 107 113 117. 173 .174. 175. 176. 189. 201. 202. 203. 217 .218. 220. 226 .267.236 创维011. 025.033.045.046.060 .070. 017 .072. 073. 074. 079. 083.010 .107. 108 .109 162 163 .164 .165 .166 .167. 168. 169. 177. 224.225. 235. 246熊猫001. 011. 016. 021. 022. 023 .024 .025. 026. 028 .033 .040 .043. 053. 056.009. 057. 058 051. 061. 062.073. 079. 089. 091 .124 .125 .234.237. 238. 239 .240.241.242. 243. 244 245 247. 248 .249 .250. 251TCL 051.053 .068. 071 .073. 082 .083.084 .085. 110 .111 .170 .171. 172.178. 179 .187.188.197 .198.199. 200 .233海尔103 .112 .118 .119. 150. 151 .152 .153 .154 .155 .156. 182. 183. 184. 193. 194 .213 .228海信000. 006 .007. 008. 010 .014 .015. 025. 045. 046 .103. 105. 107 .115 .116 .128. 129.130.131138 .139.150 .151 .152 .153 .154 .155 .156 .182 .183 .184 .193 .194 .213 .228 金星007. 008. 011 .013. 024. 025. 032. 033 .039 .051 .065 .071 .073.079 .091 .097 .138福日007 .011 .015 .023.024. 028. 033. 034. 040. 043. 053. 056. 060 .061 .065 .079 安华ANHUA017. 001. 032. 047百花BAIHUA 016. 025 .033 .053. 056. 079百合花BAIHEHUA023. 024. 040. 043百乐BAILE 016. 025. 012 .019. 026. 027.028. 029 .030. 031. 042宝声BAOSHENG 011. 025. 016北京008 .012.011. 019 .016. 023. 024. 025. 027 .028.029 .030. 031.033 .044 .043 .050 .053 .056 .026 .079.091 .039. 042.051. 021. 122 .126 宝花石BaoHuaShi 033.053.056. 079彩虹CAIHONG 011. 025. 016彩星CAIXING 023. 024. 040 .043长城011 .016 .017. 023 .024 .025.033. 040 .043 .053. 056 .001 .012.029 .027 .026.028 .029.030031 .042. 079海虹HAIHONG 016 .025 .026 .027. 028 .029 .030海乐HAILE 032. 047海燕HAIY AN 011. 023. 024 .033. 040. 043.053 .056. 079环宇HUANY 011.015. 023. 024. 033 .040. 043. 053. 056 .009. 057. 058虹美HONGMEI 003. 011. 016 .018 .023. 024. 025 .033 .040. 043. 056. 009.057 .058. 079 红岩HONGY AN 011.033. 053. 056. 079菊花JUHUA011.023.024.033.040.43.053.056.079金海JINHAI 009.057.058金凤JINFENG 001.011.021.022金塔JINTA016.023.024.025.033.040.043.053.056.009.057.058.079 金鹊JINQUE 011.025.016金雀JINQUE 032.033.053.056.079嘉华JIAHUA017.047.001.032昆仑KUNLUN 001.011.021.022.033.025.012.042.040.039凯歌KAIGE 011.016.023.024.025.033.040.043.053.056.079康力KANGLI 027.012.019.025.026.028.030.031.033.120康虹KANGHONG 009.058.057康立KANGLI 016.023024.025.040.043.011.026.029.042.005康艺KANGYI 016.025.033.053.056.079.121孔雀KONGQUE 011.016.023.024.025.033.040.041.043.124快乐KUAILE 016.025.033.053.056.079乐华ROWA011.016.023.024.025.040.043.096.127龙江LONGJIANG 011.033.053.056.079利华LIHUA011牡丹MUDAN001.002.011.016.020.021.022.025.032.033.040.043.053.056.059.063.065.079 美乐MEILE 011.023.024.033.040.043.053.056.009.057.058.079梦寐MENGMEI 023.024.040.043南声NANSHENG 011.033.053.056.079青岛QINGDAO 001.011.021.022.033.053.056.079如意RUYI 011.015.023.024.040.043神彩SHENCAI 007.016.025.033.053.056.079山茶SHANGCAI 011.033.053.056.079上海SHANGHAI011.016.017.022.023.024.025.033.040.043.0053.056.009.057.058.079.123 韶峰SHAOFENG 011.015.000.006.007.023沈阳SHENGY AN 011.016.025.046.045.033塞格SAIGE 011.025.016松柏SONGBA016.025三元SANYUAN 003.011.016.018.023.024.025.040.043三键SANJIAN 033.053.056.079泰山TAISHAN 011.016.025.042.038.031.030.029.028.027天鹅TIANE 003.011.018通广TONGGUANG 033.053.056.079威牌WEIPAI 016.025翔宇XIANGYU 016.025.032西湖XIHU 011.023.024.033.038.040.43.053.079.098厦华XIAHUA011.016.024.027.025.033.053.054.055.056.06.098.080.095.079.073 雪莲XUELIAN 023.024.040.043.009.057.058星海XINGHAI 016.025.033.053.056.079襄阳XIANGY ANG 033.053.056.079幸福XINGFU 016.025新日松009.057.058XINRISONG莺歌016.023.024.025.040.043YINGGE宇航016.025YUHANG永固016.23.024.025.040.043YONGGU永宝009.057.058.888.033.053.056.079 YONGBAO珠海016.025.042ZHUHAI赣新011.017.023.024.040.041.043GANXIN华发HUAFA 007.016.025华强HUAQIANG 033.053.056.07 9杂牌机036.044.114ZAPAIJI飞跃011.016.023.024.025.040.043FEIYUE飞浪016.025FEILANG南宝016.025.033.053.056.009.057.058.059NANBAO飞燕033.053.056.079FEIY AN新思达123XINSIDA彩凌102CAILING高路华000.006.007.008.010.016.025.033.053.055.056.045.046.048.073.099 CONROWA 豁达特技032.001.017.047.HUODA TEJI奥林匹亚033.053.056.079AOLINPIKE成都011.025CHENGDU长风011.053.056.045.046.024.079.033 CHANGFENG长飞011.016.025.042.123CHANGFEI长海011.025.016.123CHANGHAI春兰142CHUNLAN春风016.025.033.053.056.079.124CHUNFENG春笋011.025.016.CHUNSUN东宝016.025.033.053.056.079.101.103 TOBO东大016.025.DONGDA东海016.025.DONGHAI飞鹿011.016.025FEILU黄河011.016.023.024.025.040.043.125HUANGHE黄海美016.025HUANGHAIMEI黄山011.016.023.024.025.032.033..40.043.053.056.079 HUANGSHAN黄龙016.025HUANGLONG华日007.033.053.056.079HUARIDS6315三合一万能型电视遥控器代码表(续一)国外电视:索尼SONY041 049.005.106松下(乐声)PANASONIC(NAYIONAL)020.001.002.014.015.021.022059.066.196.204.205.206.208.214.215.216.221.222 夏普SHARP003.018.016.025.135.136.137三菱MITSUBISHI011.051.东芝TOSHIBA000.014.016.027.033.053.056.007.008.015.028.030.089.090.091.079 NEC089.014三星SAMSUNG008.011.016.021.025.037..039.040.043.050.033.024051.091.123.113 胜利JVC004三洋SANYO008.000.007.014.015.033.035.053.056.079.105.132.133.134 高土达GOLDSTAR009.019.023.024.040.043.098.140飞利浦PHILIPS013.023.024.039.040.043141爱华AIWA009.057.058JVC089日电NEC006.011.016.004.025.033.053.056.024.079大宇DAYU012.042.031LG040.043.140WARUMAIA031.012.042狮龙SHERWOOD016.025雅佳AKAI033.053.056.079皇冠033.053.056.012.019.025.026.027.028.029.030.031.042.079 IMPERIAL-COWN 富土通FUJITSU048富丽FULI047尼康NIKON009.057.058优拉纳斯YONLANASI011.023.024.040.043奥林普AOLINGPU104佳丽彩JIALICAI016.025.028.033.053.056.079.124 VCD部分:奇声QiSheng IRC-3039.IRC3030D, 300影之宝YingZhiBao , 301索尼SONY, VCP-K10, 302东大DONGDA, 303杂牌机ZAPAIJI, 304奇声QiSheng, 305杂牌机ZAPAIJI,306新科Shinco, RC-006 , 307奇声QiSheng,IRC3020A, 308万利达MALA TA, VCP-N28P, 309步步高BBK ,RCU-H, 310万利达MALA TA, VCP-N28F, 311新科Shinco, RC-12G, 312索尼SONY, RMT-M40A, 313索尼SONY, RMT-D109E, 314杂牌机ZAPAIJI, 315杂牌机ZAPAIJI,ANB-999, 316杂牌机ZAPAIJI,317杂牌机ZAPAIJI ,VCD-A300,318杂牌机ZAPAIJI,319RMS,VD-30A ,320奇声QiSheng,IRC-3000, 320杂牌机ZAPAIJI,321杂牌机ZAPAIJI, 多用2220-001, 322亿通YITONG, Rm2004,323DONGAN, 324奇声QiSheng,IRC-3028,325新科Shinco,RC-002 RC-12S,326新科Shinco ,RC-16H RC-012 RC-260,327 长虹CHANGHONG,VK1A,328长虹CHANGHONG,329步步高BBK,DF058(A),330杂牌机ZAPAIJI,A9815,331健伍JIANGWU,RC-P0501,332安侨ANQIAO,RC-375DV,333帝禾DIW A,334日立HITACHI,SV-RMW1,335金格JINGE,336杂牌机ZAPAIJI,337厦新AMOI,RC-010 RC-010G,338 飞利浦PHILIPS,339厦新AMOI,RC-012,340杂牌机ZAPAIJI,DVD,341长虹CHANGHONG ,VR4A,342爱多IDALL ,IV-730BK,343乐华ROWA,IV-830BK,343步步高BBK,AB007K,344厦新AMOI,RC-003,345步步高BBK,AB007K ,346新科Shinco,RC-08C,347爱多IDALL ,IV-820BK,348松下PANASONIC,RAK-SL429WH,349 万利达MALA TA,UCP-N28K,350松下PANASONIC,RAK-SL208WH RAK-SLA04SH,351 万利达MALA TA,VCP-N30B,352 松下PANASONIC,RAK-LX140WH,353万利达MALA TA,VCP-N28 VCP- N30,354厦新AMOI,355杂牌机ZAPAIJI,036飞利浦PHILIPS,357爱多IDALL,IV-3DBK,358东芝TOSHIBA,359爱华AIWA,360先科XIANKE,361先科XIANKE,362万利达MALA TA,VCP-N28B,363兆维ZHAOWEI,364长虹CHANGHONG,364杂牌机ZAPAIJI,365蚬华XIANHUA,VP-101D,366马士兰MaShiLan,RC500LV,367东芝TOSHIBA,VC-659 ,368爱多IDALL,RM-1,369东芝TOSHIBA,SE-R0037,370爱华AIWA,RC-8A T05,371先锋XIANFENG,CU-CLD151 CU-CLD145,372 爱多IDALL,IV-620 ,373东芝TOSHIBA,RM-L8,374JVC,RM-RMV5U,375天龙TIANLONG,RC-543,376东鹏DONGPENG,CVD-970,377夏普SHARP,MV-K7000,378彩尼CAINI,VCD,379VICTOM,RM-SVD701,380杂牌机ZAPAIJI,381PHISONEET,382JVC,XL-M705,383RMS,384爱多IDALL ,308 320 330 350 385先锋XIANFENG,CU-DV003,386步步高BBK,AB903K,387金正NINTAUS,GVD-8801 N350D N350,388杂牌机ZAPAIJI,389金正NINTAUS,VCD-J301、J303、J306、J308 390 F100、J7836H.VCD-N135 步步高BBK AB-001A AB-007B 391新科Shinco,RC-007 RC-12E RC-12F RC-005RC-12B VCD-719 ,392 爱多IDALL,IV-361BK 360BK,393索尼SONY,394厦新AMOI,RC-001,395健伍JIANGWU,RC-L0200 RC-L0300,396三星SAMSUNG,397金正NINTAUS ,VCD-J7001H VCD-6803H,398金正NINTAUS,PDVD-N768 DVD-N700 DVD-N701 DVDN926F,399DS6315三合一万能型电视遥控器代码表(续三)DVD部分:新科Shinco 409.460.461.462.463.465.466.467.468.469.470先科XIANKE 402.413.438.471.472.473.474.475步步高BBK 406.412.416.421.440.476.477.478.479.480.481.482 万视达Malata 403.417.419.432.483.484.485金正NINTAUS 404.408.423.428.486.487.488 厦新AMOI 107 114 189 190清华同方TSINGHUA TONGFANG 405.491德赛DEISAI 401.410.492.493.494奇声QiSheng 411.495.496.497.498.499TCL 400.430创维SKYWORTH-RGB 422.424帝禾Dlwa ,433飞乐FEIYUE ,429.492科泰KETAI ,434松鼎SongDing ,431爱浪AILANG,435. 439华宝HUABAO ,437熊猫PANDA,415TOSHIBA,418索尼SONY,456三水SHANSHUI,420SINGER ,425大宇DAYU,426主人ZHUREN ,427巨大JIUDA,436LG,441松下Panasonic ,442三星SAMSUNG ,443先峰XIANFENG,,444JVC,445万能遥控器的代码自定义搜索的方法:1、左手先按住“设置”键不松手,再用右手按一下“电源”键,指示灯变成长亮。
史上最全的红外遥控器编码协议
目录1)MIT-C8D8 (40k)2) MIT-C8D8(33K)3)SC50560-001,003P 4)M504625)M50119P-016)M50119L7)RECS808)M30049)LC7464M10)LC7461-C1311)IRT1250C5D6-01 12)Gemini-C6-A13)Gemini-C614) Gemini-C17(31.36K)-1 15)KONKA KK-Y261 16)PD6121G-F17)DATA-6BIT18)Custum-6BIT19)M9148-120)SC3010 RC-521) M50560-1(40K)22) SC50560-B123)C50560-002P24)M50119P-0125)M50119P-126)M50119P27)IRT1250C5D6-02 28)HTS-C5D6P29)Gemini-C1730)Gemini-C17 -231)data6bit-a32)data6bit-c33)X-Sat34)Philips RECS-8035)Philips RC-MM36)Philips RC-637)Philips RC-538)Sony SIRC39)Sharp40)Nokia NRC1741)NEC42)JVC43)ITT44)SAA3010 RC-5(36K)45)SAA3010 RC-5(38K)46)NEC2-E247) NEC-E348) RC-5x49) NEC1-X250) _pid:$006051) UPD1986C52) UPD1986C-A53) UPD1986C-C54) MV500-0155) MV500-0256) Zenith S101) MIT-C8D8(40K)MIT-C8D8(40K)是一种常见的红外遥控编码格式。
该格式出现在万能遥控器ZC-18A(600-917)中。
Features 基本特点1,8位地址码,8位数据码,结束码;2,脉宽调制方式(PWM);3,载波:40.0 KHZ;4,逻辑位时间长度是1.215ms或2.436 ms。
华宝空调红外遥控编码资料
华宝空调红外遥控编码资料简介华宝空调是一款广泛使用的家用空调品牌,它提供了方便的红外遥控功能,使得用户可以轻松控制空调的各种设置。
本文将介绍华宝空调红外遥控编码资料,包括红外遥控编码的原理、常用编码格式、编码数据的解析和使用方法等。
红外遥控编码原理红外遥控编码是通过发送特定的红外脉冲信号来实现对设备的控制。
华宝空调红外遥控编码原理基于脉冲宽度调制(PWM)技术,即通过调整脉冲信号的宽度来表示不同的控制指令。
常用编码格式华宝空调红外遥控编码使用了一种常见的编码格式,即NEC编码格式。
NEC编码格式是一种广泛应用于红外遥控领域的标准编码格式,它使用了32位二进制数据表示一个完整的红外遥控指令。
NEC编码格式的具体结构如下: - Header:8位数据,用于表示一个遥控指令的开始。
- Address:8位数据,用于表示遥控器的地址。
- Command:8位数据,用于表示具体的遥控指令。
- Inverted Command:8位数据,用于表示Command的反码。
编码数据的解析要解析华宝空调红外遥控编码数据,可以按照以下步骤进行: 1. 接收红外遥控编码数据。
2. 解析Header,判断是否为一个完整的红外遥控指令。
3. 解析Address,获取遥控器的地址。
4. 解析Command,获取具体的遥控指令。
5. 对Command进行处理,执行相应的操作。
使用方法要使用华宝空调红外遥控编码,可以按照以下步骤进行: 1. 获取红外遥控编码数据。
2. 解析编码数据,获取遥控指令。
3. 根据遥控指令,执行相应的操作,如调整温度、风速、模式等。
下面是一个示例代码,演示如何使用华宝空调红外遥控编码进行温度调节:# 导入红外遥控库import infrared_remote_control as irc# 获取红外遥控编码数据data = irc.get_infrared_data()# 解析编码数据header = irc.parse_header(data)address = irc.parse_address(data)command = irc.parse_command(data)# 判断遥控指令类型if command == "temperature_up":# 温度增加temperature = irc.get_current_temperature()irc.set_temperature(temperature + 1)elif command == "temperature_down":# 温度减少temperature = irc.get_current_temperature()irc.set_temperature(temperature - 1)else:# 其他指令pass总结华宝空调红外遥控编码资料介绍了红外遥控编码的原理、常用编码格式、编码数据的解析和使用方法。
史上最全的红外遥控器编码协议(可编辑)
史上最全的红外遥控器编码协议目录1MIT-C8D8 40k2 MIT-C8D8 33K3SC50560-001003P4M504625M50119P-016M50119L7RECS808M30049LC7464M10LC7461-C1311IRT1250C5D6-0112Gemini-C6-A13Gemini-C614 Gemini-C17 3136K -115KONKA KK-Y26116PD6121G-F17DATA-6BIT18Custum-6BIT19M9148-120SC3010 RC-521 M50560-1 40K22 SC50560-B123C50560-002P24M50119P-0125M50119P-126M50119P27IRT1250C5D6-02 28HTS-C5D6P29Gemini-C1730Gemini-C17 -231data6bit-a32data6bit-c33X-Sat34Philips RECS-80 35Philips RC-MM36Philips RC-637Philips RC-538Sony SIRC39Sharp40Nokia NRC1741NEC42JVC43ITT44SAA3010 RC-536K45SAA3010 RC-538K46NEC2-E247 NEC-E348 RC-5x49 NEC1-X250 _pid006051 UPD1986C52 UPD1986C-A53 UPD1986C-C54 MV500-0155 MV500-0256 Zenith S101 MIT-C8D840KMIT-C8D840K是一种常见的红外遥控编码格式该格式出现在万能遥控器ZC-18A 600-917 中Features 基本特点18位地址码8位数据码结束码2脉宽调制方式PWM3载波400 KHZ4逻辑位时间com msModulation 调制逻辑0Logical0是由935us的无载波间隔和280us的40KHZ载波组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由280us的40KHZ载波和2156us的无载波间隔组成Protocol 协议从上图中可看到 MIT-C8D840K一帧码序列是由8位地址码8位数据码和结束码组成长按键不放发出的码波形序列如下图即将整个波形以周期4478ms进行重复2 MIT-C8D8 33KMIT-C8D8 33K 是一种常见的编码格式该格式来源于OMEGA万能遥控器码组号为0138及祝成万能遥控器ZC-18A码组号为644735736Features 基本特点18位地址码8位数据码2脉宽调制方式PWM3载波33KHZ4逻辑位的时间comsModulation 调制隔组成图中表示的是有载波和无载波间隔的总长度2逻辑1Logical1是由280us的33KHZ载波和2156us的无载波间隔组成Protocol 协议从上图可以看到MIT-C8D8 33K 一帧码序列是由8位地址码8位数据码长按键不放发出的码波形序列如下图就是将第一帧波形以周期501ms进行重复3 SC50560-001003P 分割码未有数据标注SC50560-001003P是一种常见的红外遥控编码格式该格式出现在CL311URC-8910RM-123CRM-139S的062码组ZC-18A600-917ZC-18A400-481RM-301C VT3620AVT3630RM-402C的TV-012码组Features 基本特点1引导码8位地址码分割码未有数据标注 8位数据码结束码2脉宽调制方式PWM3载波38KHZ4逻辑位时间comModulation 调制逻辑0Logical0是由520us的38KHZ载波和520us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度隔组成Protocol 协议从上图中可看到 SC50560-001003P一帧码序列是由引导码 8ms 的载波和4ms的间隔 8位地址码分割码8位数据码和结束码组成长按键不放发出的码波形序列如下图即将整个波形以周期12002ms进行重复4 M50462M50462是一种常见的红外遥控编码格式该格式出现在RM-123CRM-139SZC-18A600-917RM-301C VT3620AVT3630RM-402C Features 基本特点18位地址码8位数据码结束码2脉宽调制方式PWM3载波38 KHZ4逻辑位时间comModulation 调制逻辑0Logical0是由260us的38KHZ载波和780us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由260us的38KHZ载波和1799us的无载波间隔组成Protocol 协议从上图中可看到 M50462一帧码序列是由8位地址码8位数据码和结束码组成长按键不放发出的码波形序列如下图即将整个波形以周期45ms 进行重复5 M50119P-0142K 分割码未有数据标注M50119P-0142K是一种常见的红外遥控编码格式该格式出现在URC-8910CBL-0009 ZC-18A 600-917 的736码组ZC-18A 400-481 VT3630的SAT-001码组Features 基本特点1数据帧4位地址码6位数据码分割码4位地址码相同码6位数据码相同码结束码重复帧用户码相同码结束码2脉宽调制方式PWM3载波418 KHZ4逻辑位时间comsModulation 调制逻辑0Logical0是由967us的418KHZ载波和967us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由967us的418KHZ载波和2901us的无载波间隔组成Protocol 协议从上图中可看到 M50119P-0142K两帧码序列是由数据帧4位地址码6位数据码分割码4位地址码相同码6位数据码相同码结束码重复帧地址码相同码结束码长按键不放后续发出的波形如下长按键不放发出的码波形序列如下图就是将重复帧波形以周期62855ms进行重复M50119LM50119L是一种常见的红外遥控编码格式该格式出现在万能遥控器CL311URC-8910VCR-0041INTER DIGI-SATVT3630中Features 基本特点13位地址码7位数据码结束码2脉宽调制方式PWM3载波379 KHZ4逻辑位时间comModulation 调制逻辑0Logical0是由260us的379KHZ载波和780us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由260us的379KHZ载波和1820us的无载波间隔组成Protocol 协议从上图中可看到 M50119L一帧码序列是由3位地址码7位数据码和结束码组成长按键不放发出的码波形序列如下图即将整个波形以周期255ms 进行重复7 RECS8068RECS8068是一种常见的红外遥控编码格式该格式来源于URC8910的CD-0764码组Features 基本特点12位控制码 3位地址码6位数据码结束码2脉宽调制方式PWM3载波33KHZ4逻辑位时间comModulation 调制逻辑0Logical0是由160us的33KHZ载波和5600us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由160us的33KHZ载波和8480us的无载波间隔组成Protocol 协议从上图中可看到RECS8068一帧码序列是由2位控制码 3位地址码6位数据码结束码组成的长按键不放发出的码波形序列如下图整个波形以周期1383ms进行重复8 M3004 CarrierM3004 Carrier是一种常见的红外遥控编码格式该格式出现在遥控器CL311 RM-123CRM-139S148ZC-18A600-917ZC-18A400-481RM-301CINTER-DIG I-SAT VT3620AVT3630RM-402CTV-060中Features 基本特点1引导码1位翻转码 3位地址码6位数据码结束码2脉宽调制方式PWM3载波38KHZ4逻辑位时间comModulation 调制逻辑0Logical0是由141us的38KHZ载波和4919us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由141us的38KHZ载波和7449us的无载波间隔组成Protocol 协议从上图中可看到 M3004 Carrier一帧码序列是由1位引导码 1位翻转码 3位地址码6位数据码结束码组成的长按键不放发出的码波形序列如下图整个波形以周期121651ms 进行重复9 LC7464M 校验码怎么算的LC7464M是一种常见的红外遥控编码格式该格式出现在万能遥控器CL311URC-8910 RM-139SZC-18A600-917ZC-18A400-481VT3620AVT3630Features 基本特点1引导码15位地址码4位校验码4位地址码28位数据码8位校验码结束码3载波38KHZ4逻辑位时间comModulation 调制逻辑0Logical0是由420us的38KHZ载波和420us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由420us的38KHZ载波和1260us的无载波间隔组成Protocol 协议从上图中可看到 LC7464M一帧码序列是由引导码 com的间隔15位地址码4位校验码4位地址码28位数据码8位校验码结束码组成长按键不放发出的码波形序列如下图整个波形以8297ms的周期进行重复10 LC7461-C13LC7461-C13是一种常见的红外遥控编码格式该格式出现在万能遥控器CL311URC-8910RM-123CRM-139S101ZC-18A600-917RM-301CVT3630RM-402C的TV-131码组Features 基本特点1数据帧引导码13位地址码13位地址码-反码8位数据码8位数据码反码结束码重复帧3载波38KHZ4逻辑位时间comModulation 调制逻辑0Logical0是由560us的38KHZ载波和560us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由560us的38KHZ载波和1680us的无载波间隔组成Protocol 协议数据帧从上图中可看到 LC7461-C13一帧码序列是由引导码 9-ms的载波和45ms的间隔 13位地址码13位地址码-反码 8位数据码8位数据码反码结束码组成重复帧由结束码组成长按键不放发出的后续波形如下图其发出的整个码波形序列如下图由重复帧开始以周期10811ms 进行重复11 IRT1250C5D6-010HzIRT1250C5D6-010Hz是一种常见的红外遥控编码格式该格式出现在万能遥控器VT3620A中Features 基本特点1引导码5位地址码6位数据码结束码3载波00 KHZ4逻辑位时间comsModulation 调制逻辑0Logical0是由16us的00KHZ载波和160us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由16us的00KHZ载波和368us的无载波间隔组成Protocol 协议从上图中可看到IRT1250C5D6-010Hz一帧码序列是由引导码0016 ms的载波和0545ms的间隔 5位地址码6位数据码结束码16-54316-593136us组成长按键不放发出的码波形序列如下图即将整个波形以周期596208ms进行重复12 Gemini-C6-A40KGemini-C6-A40K是一种常见的红外遥控编码格式该格式出现在万能遥控器VT3630的SAT-034码组Features 基本特点1地址帧引导码7位地址码2结束码数据帧引导码相同码7位数据码结束码地址帧相同帧数据帧相同帧2脉宽调制方式PWM3载波400 KHZ4逻辑位时间长度是105msModulation 调制逻辑0Logical0是由525us的无载波间隔和525us的40KHZ载波组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由525us的40KHZ载波和525us的无载波间隔组成Protocol 协议从上图中可看到 Gemini-C6-A40K由四帧码组成地址帧码序列由引导码 coms的间隔 7位地址码和结束码组成数据帧码序列由引导码相同码 coms的间隔 7位数据码和结束码组成地址帧相同帧同地址帧数据帧相同帧同数据帧长按键不放发出的码波形序列如下其整个码波形序列如下图就是将第三第四帧波形以周期693ms 进行重复13 Gemini-C63136Gemini-C63136是一种常见的红外遥控编码格式该格式出现在万能遥控器CL311与VT3620A中Features 基本特点1引导码7位数据码结束码2脉宽调制方式PWM3载波310 KHZ4逻辑位时间comsModulation 调制逻辑0Logical0是由496us的无载波间隔和496us的31KHZ载波组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由496us的31KHZ载波和496us的无载波间隔组成Protocol 协议从上图中可看到 Gemini-C63136一帧码序列是由引导码 053ms 的载波和265ms的间隔 7位和结束码组成长按键不放发出的码波形序列如下图即将整个波形以周期90724ms进行重复14 Gemini-C17 3136K -1Gemini-C17 3136K -1是一种常见的红外遥控编码格式该格式来源于CL311Features 基本特点1引导帧引导码10位地址码结束码地址帧引导码相同码10位地址码2结束码引导帧相同帧数据帧引导码相同码10位数据码结束码引导帧相同帧2脉宽调制方式PWM3载波304KHZ4逻辑位时间长度是106msModulation 调制逻辑0Logical0是由530us的304KHZ载波和530us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由530us的无载波间隔和530us的304KHZ载波组成Protocol 协议从上图中可看到 Gemini-C17 3136K -1帧码其依次为引导帧码序列是由引导码 com的间隔 10位地址码与结束码206ms组成用户帧码序列是由引导码-相同码 com的间隔 10位地址码2与结束码 1025ms 组成引导帧-相同帧码与引导帧码相同数据帧码序列是由引导码-相同码 com的间隔 10位数据码与结束码 11714ms 组成引导帧-相同帧码与引导帧码相同长按键不放后续发出的波形如下其整个码波形序列如下图就是将第四第五帧波形以周期1653ms 进行重复15 KONKA KK-Y261KONKA KK-Y261是一种常见的红外遥控编码格式该格式来源于RM-123CRM-139S的113码组RM-301C RM-402C的204码组Features 基本特点1引导码8位地址码 8位数据码结束码2脉宽调制方式PWM3载波38KHZ4逻辑位时间长度是3ms或2msModulation 调制逻辑0Logical0是由500us的38KHZ载波和1500us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由500us的38KHZ载波和2500us的无载波间隔组成Protocol 协议从上图中可看到 KONKA KK-Y261一帧码序列是由引导码 3ms的载波和3ms的间隔 8位地址码 8位数据码结束码组成长按键不放发出的码波形序列如下图即将整个波形以周期66ms 进行重复16 PD6121G-FPD6121G-F是一种常见的红外遥控编码格式Features 基本特点1引导码8位地址码8位地址码28位数据码8位数据码反码2脉宽调制方式PWM3载波38KHZ4逻辑位时间comsModulation 调制逻辑0Logical0是由564us的38KHZ载波和564us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由564us的38KHZ载波和1692us的无载波间隔组成Protocol 协议从上图中可看到 PD6121G-F一帧码序列是由引导码 coms的间隔 8位地址码8位地址码2 8位数据码8位数据码反码组成长按键不放发出的码波形序列如下图即将整个波形以周期108ms 进行重复17 DATA-6BITDATA-6BIT是一种常见种常见的红外遥控编码格式该格式来源于RM-301C RM-402C195Features 基本特点16位数据码2脉宽调制方式PWM3载波38KHZ4逻辑位时间comModulation 调制逻辑0Logical0是由440us的38KHZ载波和1540us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由440us的38KHZ载波和3362us的无载波间隔组成Protocol 协议从上图中可看到DATA-6BIT一帧码序列仅是由6位数据码组成长按键不放发出的码波形序列如下图即将第一帧波形以周期28ms进行重复18 CUSTUM6BITCustum-6BIT是一种常见的红外遥控编码格式该格式出现在CL311URC-8910RM-123CRM-139S148ZC-18A600-917ZC-18A400-481RM-301CINTER-DIGI-SAT VT3620AVT3630RM-402CFeatures 基本特点16位数据码2脉宽调制方式PWM3载波38KHZ4逻辑位时间com19 M9148-1M9148-1是一种常见的编码格式Features 基本特点13位地址码1位控制码8位数据码2脉宽调制方式PWM3载波38168KHZ4逻辑位的时间长度是1848msModulation 调制1逻辑0Logical0是由462us的38168KHZ载波和1386us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度2逻辑1Logical1是由1386us的38168KHZ载波和462us的无载波间隔组成Protocol 协议从上图可以看到M9148-1一帧码序列是由3位地址码1位控制码8位数据码长按键不放发出的码波形序列如下图就是将第一帧波形以周期56023ms进行重复20 SC3010RC-5SC3010 RC-5是一种常见的编码格式该格式来源于众合万能遥控器RM-139S码组号为013208215216218及万能遥控器祝成ZC-18A码组号为682684685854691709Features 基本特点12位控制码1为翻转码5位地址码6位数据码2脉宽调制方式PWM3载波38KHZ4逻辑位的时间长度是1688msModulation 调制1逻辑0Logical0是由844us的38 KHZ载波和844us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度2逻辑1Logical1是由844us的38KHZ载波和844us的无载波间隔组成Protocol 协议从上图可以看到SC3010 RC-5一帧码序列是由2位控制码1位翻转码5位地址码6位数据码长按键不放发出的码波形序列如下图就是将第一帧波形以周期127156ms进行重复21 M50560-1 40KM50560-1 40K 是一种常见的编码格式该格式来源于万能遥控器众合RM139-S码组号为040069076083068125127268及万能遥控器众合RM-33C码组号为0016006700720073Features 基本特点18位地址码8位数据码2脉宽调制方式PWM3载波40KHZ4逻辑位的时间长度是1ms或2msModulation 调制1逻辑0Logical0是由500us的40KHZ载波和500us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度2逻辑1Logical1是由500us的40KHZ载波和1500us的无载波间隔组成Protocol 协议从上图可以看到M50560-1 40K 一帧码序列是由8位地址码8位数据码长按键不放发出的码波形序列如下图就是将第一帧波形以周期678ms进行重复22 SC50560-B1SC50560-B1是一种常见的编码格式Features 基本特点15位数据码2脉宽调制方式PWM3载波38KHZ4逻辑位的时间comModulation 调制1逻辑0Logical0是由520us的38KHZ载波和2080us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度2逻辑1Logical1是由520us的38KHZ载波和4160us的无载波间隔组成Protocol 协议从上图可以看到SC50560-B1一帧码序列是由5位数据码长按键不放发出的码波形序列如下图就是将第一帧波形以周期120ms进行重复23 C50560-002PC50560-002P是一种常见的编码格式该格式来源于视贝万能DVB遥控器码组号为195Features 基本特点18位地址码8位数据码2脉宽调制方式PWM3载波38KHZ4逻辑位的时间comModulation 调制1逻辑0Logical0是由520us的38KHZ载波和520us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度2逻辑1Logical1是由520us的38KHZ载波和1560us的无载波间隔组成Protocol 协议从上图可以看到M50560-002P 一帧码序列是由8位地址码8位数据码长按键不放发出的码波形序列如下图就是将第一帧波形以周期36006ms进行重复24 M50119P-01 38KM50119P-01 38K 是一种常见的编码格式Features 基本特点14位地址码4位地址码的相同码6位数据码6位数据码的相同码2脉宽调制方式PWM3载波38KHZ4逻辑位的时间comsModulation 调制1逻辑0Logical0是由967us的38KHZ载波和967us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度2逻辑1Logical1是由967us的38KHZ载波和2901us的无载波间隔组成Protocol 协议从上图可以看到M50119P-01 38K 一数据帧码序列是由4位地址码6位数据码4位地址码相同码6位数据码相同码一重复帧由4位地址码相同码长按键不放发出的码波形序列如下图就是将第一帧波形以周期385156ms进行重复25 M50119P-1 40KM50119P-1 40K 是一种常见的编码格式该格式来源于OMEGA万能遥控器码组号为0041Features 基本特点13位地址码7位数据码2脉宽调制方式PWM3载波40KHZ4逻辑位的时间长度是1ms或2msModulation 调制1逻辑0Logical0是由500us的40KHZ载波和500us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度2逻辑1Logical1是由500us的40KHZ载波和1500us的无载波间隔组成Protocol 协议从上图可以看到M50119P-1 40K 一帧码序列是由3位地址码7位数据码长按键不放发出的码波形序列如下图就是将第一帧波形以周期275ms进行重复26M50119PM50119P是一种常见的编码格式该格式来源于OMEGA万能遥控器码组号为0384及众合万能遥控器RM-139S码组号为041Features 基本特点13位地址码7位数据码2脉宽调制方式PWM3载波3791KHZ4逻辑位的时间长度是1ms或2msModulation 调制1逻辑0Logical0是由500us的379KHZ载波和500us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度2逻辑1Logical1是由500us的379KHZ载波和1500us的无载波间隔组成Protocol 协议从上图可以看到M50119P一帧码序列是由3位地址码7位数据码长按键不放发出的码波形序列如下图就是将第一帧波形以周期30ms进行重复27IRT1250C5D6-02 0HzIRT1250C5D6-02 0Hz 是一种常见的编码格式Features 基本特点15位地址码6位数据码2脉宽调制方式PWM3载波无载波4逻辑位的时间comsModulation 调制1逻辑0Logical0是由16us的无载波和224us的无载波间隔组成图中表示的是无载波和无载波间隔的总长度2逻辑1Logical1是由16us的36KHZ载波和480us的无载波间隔组成Protocol 协议从上图可以看到IRT1250C5D6-02 0Hz 一帧码序列是由引导码0016ms的无载波和0732ms的间隔5位地址码6位数据码长按键不放发出的码波形序列如下图就是将第一帧波形以周期597251ms进行重复28HTS-C5D6PHTS-C5D6P是一种常见的编码格式该格式来源于OMEGA万能遥控器027*********Features 基本特点15位地址码6位数据码1位校验码2脉宽调制方式PWM3载波38KHZ4逻辑位的时间com4624msModulation 调制1逻辑0Logical0是由136us的38KHZ载波和1360us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度2逻辑1Logical1是由136us的38KHZ载波和2856us的无载波间隔组成3逻辑3Logical3是由136us的38KHZ载波和4488us的无载波间隔组成Protocol 协议从上图可以看到HTS-C5D6P一帧码序列是引导码coms的间隔5位地址码6位用户码1位校验码长按键不放后续发出波形如下长按键不放发出的码波形序列如下图就是将第一帧波形以周期89381ms进行重复29Gemini-C17 3136KGemini-C17 3136K 是一种常见的编码格式该格式主要来源于OMEGA万能遥控器码组号分别为013402250289032203970400045104580859Features 基本特点110位地址码引导码的相同码10位数据码2脉宽调制方式PWM3载波304KHZ4逻辑位的时间长度是106msModulation 调制1逻辑0Logical0是由530us的304KHZ载波和530us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度2逻辑1Logical1是由530us的304KHZ载波和530us的无载波间隔组成Protocol 协议从上图可以看到Gemini-C17 3136K 用户帧码序列是由引导码com的间隔10位地址码数据帧码序列由引导码的相同码10位数据码长按键不放后仍发出如下波形长按键不放出码的波形序列如下图就是将第一帧以周期19997ms 进行重复30Gemini-C17 3136K -2Gemini-C17 3136K -2是一种常见的编码格式该格式主要来源于OMEGA万能遥控器码组号分别为01350376Features 基本特点116位地址码 16位数据码2脉宽调制方式PWM3载波31KHZ4逻辑位的时间长度是106msModulation 调制1逻辑0Logical0是由530us的31KHZ载波和530us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度2逻辑1Logical1是由530us的31KHZ载波和530us的无载波间隔组成Protocol 协议从上图可以看到Gemini-C17 3136K -2用户帧码序列是由引导码com的间隔16位地址码数据帧码序列由引导码com的间隔16位数据码长按键不放后仍发出如下波形长按键不放出码的波形序列如下图就是将第一帧以周期21609ms 进行重复31data6bit-adata6bit-a是一种常见的编码格式该格式来源于祝成万能遥控器ZC-18A码组号673Features 基本特点16位数据码2脉宽调制方式PWM3载波333KHZ4逻辑位的时间comsModulation 调制1逻辑0Logical0是由576us的333KHZ载波和1820us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度2逻辑1Logical1是由576us的333KHZ载波和4200us的无载波间隔组成Protocol 协议从上图可以看到data6bit-a一帧码序列是6位数据码长按键不放发出的码波形序列如下图就是将第一帧波形以周期58092ms进行重复32data6bit-cFeatures 基本特点16位数据码2脉宽调制方式PWM3载波20KHZ4逻辑位的时间长度是2 ms或4msModulation 调制1逻辑0Logical0是由1000us的20KHZ载波和1000us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度2逻辑1Logical1是由1000us的20KHZ载波和3000us的无载波间隔组成Protocol 协议从上图可以看到data6bit-c一帧码序列是6位数据码构成长按键不放发出的码波形序列如下图就是将第一帧波形以周期725ms进行重复33X-Sat ProtocolX-Sat ProtocolI call this the X-Sat protocol because it is used in the X-Sat CDTV 310 Satellite receiver made by the French company Xcom This protocol is probably also used in other X-Sat receivers but I have no means to verify that I havent seen this protocol anywhere else but that doesnt guarantee that it is unique to the X-Sat brandFeatures8 bit address and 8 bit command lengthPulse distance modulationCarrier frequency of 38kHzBit time of 1ms or 2msModulationThe X-Sat protocol uses pulse distance encoding of the bits Each pulse is a 526祍 long 38kHz carrier burst about 20 cycles A logical "1" takes 20ms to transmit while a logical"0" is only 10ms The recommended carrier duty cycle is 14 or 13ProtocolThe picture above shows a typical pulse train of the X-Sat protocol With this protocol the LSB is transmitted first In this case Address 59 and Command 35 is transmitted A message is started by a 8ms AGC burst which was used to set the gain of the earlier IR receivers This AGC burst is then followed by a 4ms space which is then followed by the Address and Command A peculiar property of the X-Sat protocol is the 4ms gap between the address and the command The total transmission time is variable because the bit times are variableAn IR command is repeated 60ms for as long as the key on the remote is held down34Philips RECS-80 Protocol 38kHz carrierThis protocol is designed by Philips and transmitters are produced by Philips SAA3008 and ST M3004 Personally I have never seen this protocol being used in real applications All information on this page is derived from the data sheet of the Philips SAA3008 and the ST M3004 10624pdfThere are 2 small differences between the two competitor ICs The Philips IC has two modes of operation one which iscompatible with the ST chip and one which can handle up to 20 sub-system addresses The ST chip has the capability of switching the modulation carrier offFeatures7 or 20 sub-system addresses 64 commands per sub-system address1 or2 toggle bits to avoid key bouncePulse distance modulationCarrier frequency of 38kHz or unmodulatedBit time logic "0" is 51ms logic "1" is 76ms 455kHz OscillatorCommand repetition rate 1215ms 55296 periods of the main oscillatorManufacturer Philips STModulation 13 duty cycleNormal Protocol The drawing below shows a typical pulse train of a normal RECS-80 message This example transmits command 36 to address 4Usually the first pulse is a reference pulse with a value of "1" The receiver may use this bit to determine the exact bit lengthThe next bit is a toggle bit Its value is toggled whenever akey is released which results in a different code every time a new key is pressed This allows the receiver to discriminate between new key presses and key repetitionsOnly the ST chip M3004 can disable its carrier in which case the REF pulse is interpreted as a second toggle bit The 2-bit toggle value is incremented every time a key is released Thus only in this mode there is no real REF pulseThe next 3 pulses S2 to S0 represent the sub-system address bits sent with MSB first This would allow for 8 different sub-system addresses but both the SAA3008 and the M3004 can only generate 7 sub-system addresses in normal mode Next come the 6 command bits F to A also sent with MSB first allowing for 64 different commands per sub-system addressThe pulse train is terminated by a last pulse otherwise there is no way to know the duration of bit AThe entire command is repeated with unchanged toggle bits for as long as the key is held down The repetition rate is 1215ms 55296 periods of the oscillatorAddress assignments are a bit odd with this protocol You can not simply convert the binary value to a decimal value Below you see a table explaining the relationship between the binary and decimal sub-system address valuesExtended Protocol If you need more than 7 sub-system addresses you can use the extended protocol which allows 13 additional sub-system addresses only if you use the SAA3008 The drawing below shows an extended message This example transmits command 36 to address 10The first two pulses are a special start sequence The total duration of these pulses is equal to a normal "1" period The next bit is a toggle bit Its value is toggled whenever a key is released which results in a different code every time a new key is pressed This allows the receiver to discriminate between new key presses and key repetitionsThe next 4 pulses S3 to S0 represent the sub-system address bits This would allow for an additional 16 different sub-system addresses although the SAA3008 can only generate 13 additional sub-system addresses in this mode Next come the 6 command bits F to A also sent with MSB firstThe pulse train is terminated by a last pulse otherwise there is no way to know the duration of bit AThe entire command is repeated with unchanged toggle bits for as long as the key is held down The repetition rate is 1215ms 55296 periods of the oscillatorAddress assignments are a bit odd with this protocol Youcan not simply convert the binary value to a decimal value Below you see a table explaining the relationship between the binary and decimal sub-system address values35 Philips RC-MM ProtocolRC-MM was defined by Philips to be a multi-media IR protocol to be used in wireless keyboards mice and game pads For these purposes the commands had to be short and have low power requirementsWhether the protocol is actually used for these purposes today is unknown to me What I do know is that some Nokia digital satellite receivers use the protocol 9800 series Features 12 bits or 24 bits per messagePulse position coding sending 2 bits per IR pulseCarrier frequency of 36kHzMessage time ranges from 35 to 65 ms depending on data contentRepetition time 28 ms 36 messages per secondManufacturer PhilipsTransmission timingIn this diagram you see the most important transmission times The message time is the total time of a message counting form the beginning of the first pulse until the end of the lastpulse of the message This time can be 35 to 65 ms depending on the data content and protocol usedThe signal free time is the time in which no signal may be sent to avoid confusion with foreign protocols on the receivers side Philips recommends 1 ms for normal use or 336 ms when used together with RC-5 and RC-6 signals Since you can never tell whether a user has other remote controls in use together with an RC-MM controlled device I would recommend always to use a signal free time of 336 msThe frame time is the sum of the message time and the signal free time which can add up to just about 10 ms per message Finally the repetition time is the recommended repetition time of 27778 ms which allows 36 messages per second This is only a recommendation and is mainly introduced to allow other devices to send their commands during the dead times No provision is made for data collisions between two or more remote controls This means that there is no guarantee that the messages get acrossModulationWith this protocol a 36 kHz carrier frequency is used to transmit the pulses This helps to increase the noise immunity at the receiver side and at the same time it reduces powerdissipated by the transmitter LED The duty cycle of the pulses is 13 or 14Each message is preceded by a header pulse with the duration of 4167 μs 15 pulses of the carrier followed by a space of 2778 μs 10 periods of the carrier This header is followed by 12 or 24 bits of dataBy changing the distance between the pulses two bits of data are encoded per pulse Below you find a table with the encoding timesProtocol RCMM comes in 3 different flavours called modes Each mode is intended for a particular purpose and differs mainly in the number of bits which can be used by the application All data is sent with MSB firstThe 12 bit mode is the basic mode and allows for 2 address bits and 8 data bits per device family There are 3 different device families defined keyboard mouse and game pad The 2 address bits provide for a way to use more than 1 device simultaneously The data bits are the actual payload data The 24 bit mode also know as extended mode allows more data to be transmitted per message For instance for multi-lingual keyboards or a high resolution mouseIn the OEM mode the first 6 bits are always 0 0 0 0 1 1 The。
红外遥控器编码
关于红外遥控的一点资料整理最近发现家里遥控器老是弄混(唉,遥控器多了,也是一件麻烦事)。
如果有一种可对家中各种红外遥控器发射的控制信号进行识别、存储和再现的智能型红外遥控器,用这样一个遥控器控制家中所有电器该多好。
这就是大家称作的学习型红外遥控器。
于是,下了不少工夫查找了许多资料,对红外遥控也做了一点表面研究,现总结一点文档,与大家一同探讨(有不对之处,请大家指正!);另外由于本人愚顿还未开窍,还有部分东西想不太明白,在此也向专家们请教,请知道的老兄支点招,在此小弟先谢过了!!!一、红外遥控概述红外遥控系统一般都是由发射部分和接收部分组成。
1、发射部分的主要元件为红外发光二极管。
它实际上是一只特殊的发光二极管,由于其内部材料不同于普通发光二极管,因而在其两端施加一定电压时,它发出的便是红外线而不是可见光。
目前大量使用的红外发光二极管发出的红外线波长为940nm左右,外形与普通Φ5发光二极管相同,只是颜色不同。
2、接收部分主要元件是红外接收管,它是一种光敏二极管(实际上是三极管,基极为感光部分)。
在实际应用中要给红外接收二极管加反向偏压,它才能正常工作,亦即红外接收二极管在电路中应用时是反向运用,这样才能获得较高的灵敏度。
由于红外发光二极管的发射功率一般都较小(100mW左右),所以红外接收二极管接收到的信号比较微弱,因此就要增加高增益放大电路。
前些年常用μPC1373H、CX20106A等红外接收专用放大电路。
最近几年不论是业余制作还是正式产品,大多都采用成品红外接收头。
成品红外接收头的封装大致有两种:一种采用铁皮屏蔽;一种是塑料封装(如图中的HS0038),均有三只引脚,即电源正(VDD)、电源负(GND)和数据输出(VO或OUT)。
红外接收头的引脚排列因型号不同而不尽相同,可参考厂家的使用说明。
成品红外接收头的优点是不需要复杂的调试和外壳屏蔽,使用起来如同一只三极管,非常方便。
但在使用时注意成品红外接收头的载波频率。
史上最全的红外遥控器编码协议
目录1)MIT-C8D8 (40k)2) MIT-C8D8(33K)3)SC50560-001,003P 4)M504625)M50119P-016)M50119L7)RECS808)M30049)LC7464M10)LC7461-C1311)IRT1250C5D6-01 12)Gemini-C6-A13)Gemini-C614) Gemini-C17(31.36K)-1 15)KONKA KK-Y261 16)PD6121G-F17)DATA-6BIT18)Custum-6BIT19)M9148-120)SC3010 RC-521) M50560-1(40K)22) SC50560-B123)C50560-002P24)M50119P-0125)M50119P-126)M50119P27)IRT1250C5D6-02 28)HTS-C5D6P29)Gemini-C1730)Gemini-C17 -231)data6bit-a32)data6bit-c33)X-Sat34)Philips RECS-8035)Philips RC-MM36)Philips RC-637)Philips RC-538)Sony SIRC39)Sharp40)Nokia NRC1741)NEC42)JVC43)ITT44)SAA3010 RC-5(36K)45)SAA3010 RC-5(38K)46)NEC2-E247) NEC-E348) RC-5x49) NEC1-X250) _pid:$006051) UPD1986C52) UPD1986C-A53) UPD1986C-C54) MV500-0155) MV500-0256) Zenith S101) MIT-C8D8(40K)MIT-C8D8(40K)是一种常见的红外遥控编码格式。
该格式出现在万能遥控器ZC-18A(600-917)中。
Features 基本特点1,8位地址码,8位数据码,结束码;2,脉宽调制方式(PWM);3,载波:40.0 KHZ;4,逻辑位时间长度是1.215ms或2.436 ms。
红外遥控器参考代码
{
unsigned char i, j, k;
unsigned char cord,value;
if(irdata[0]>=47&&irdata[0]<=50)
{
k=1;
for(i=0;i<4;i++) //处理4个字节
{
for(j=1;j<=8;j++) //处];
if(cord>7)//大于某值为1,这个和晶振有绝对关系,这里使用12M计算,此值可以有一定误差
{
if(startflag)
{
if(irtime<50&&irtime>=47)//引导码 TC9012的头码,9ms+4.5ms
i=0;
irdata[i]=irtime;//存储每个电平的持续时间,用于以后判断是0还是1
/* 变量声明 */
/******************************************************************/
unsigned char irtime;//红外用全局变量
{
if(irpro_ok)
{
switch(IRcord[2])//判断第三个数码值
{
case 0x1D:P1=0xFE;break;//1 显示相应的按键值
} irpro_ok=1;//处理完毕标志位置1
}
}
//主程序
void main(void)
{
IT0 = 1; //指定外部中断0下降沿触发,INT0 (P3.2)
红外遥控编码格式
红外遥控编码格式红外遥控器的编码格式通常有两种格式:NEC与RC5NEC格式的特征:1:使用38 kHz载波频率2:引导码间隔就是9 ms + 4、5 ms3:使用16位客户代码4:使用8位数据代码与8位取反的数据代码下面的波形就是从红外接收头上得到的波形:(调制信号转变成高低电平了)不过需要将波形反转一下才方便分析:NEC 协议通过脉冲串之间的时间间隔来实现信号的调制(英文简写PPM)。
逻辑“0”就是由0、56ms的38KHZ载波与0、560ms的无载波间隔组成;逻辑“1”就是由0、56ms的38KHZ载波与1、68ms的无载波间隔组成;结束位就是0、56ms的38K载波。
下面实例就是已知NEC类型遥控器所截获的波形:遥控器的识别码就是Address=0xDD20;其中一个键值就是Command=0x0E;注意波形先就是发低位地址再发高位地址。
所以0000,0100,1011,1011反转过来就就是1101,1101,0010,000十六进制的DD20;键值波形如下:也就是要将0111,0000反转成0000,1110得到十六进制的0E;另外注意8位的键值代码就是取反后再发一次的,如图0111,0000 取反后为1000,1111。
最后一位就是一个逻辑“1”。
RC5编码相对简单一些:下面的遥控器地址就是1A,键值就是0D的波形同样由于取自红外接收头的波形需要反相一下波形以便于分析:反相后的波形:根据编码规则:得到一组数字:110,11010,001101 根据编码定义第一位就是起始位S 通常就是逻辑1第二位就是场位F通常为逻辑1,在RC5扩展模式下它将最后6位命令代码扩充到7位代码(高位MSB),这样可以从64个键值扩充到128个键值。
第三位就是控制位C 它在每按下了一个键后翻转,这样就可以区分一个键到底就是一直按着没松手还就是松手后重复按。
如图所示就是同一按键重复按两次所得波形,只有第三位就是相反的逻辑,其它的位逻辑都一样。
红外遥控器编码方法
(PC)立即装入这一首地址,然后一条指令接一 条指令地执行此程序,每执行一步PC自动加l, 直到程序结束。
这种方法可以不把各种功能的编码程序搬 到RAM中来,而直接去ROM中调用。把RAM 腾出给控制过程的中间操作使用。
(4)处理 执行编码程序,得到相应控制功能的编码, 最后将编码转换成485信号后发送出去。 5结束语 本文着重介绍了红外遥控器系统的基本原 理及红外控制器的编码设计。这种编码方法在基 于AT89C51单片机的红外控制器的设计中得到 了应用,取得了良好的效果,应用前景广阔。 参考文献: 1.胡汉才.单片机原理及其接1:7技术.北京: 清华大学出版社. 2.记宗南.红外线遥控发生器的原理及应用. 国外电子元器件,1999.10. 3.聂诗良,李磊民.采用单片机发送并接收 红外遥控信号的方法.信息技术,2004.2. 作者简介: 王建跃,男(1982-),中国矿业大学信息与 电气工程学院2004级硕士研究生,专业为通信 与信息系统。主要研究方向为信息处理与传输。
系统码可以使用延时程序跳过去。但剩下这 部分码仍然较长,试了好多种方法。比如隔一位 取一位,隔两位取一位,隔三位取一位.隔一位取 两位等,采集的结果总是有重码。最后发现这些
万方数据
.240.
工矿自动化
码中是由三种码组构成,即1010、1011、1110。因 此可以用00、01、10来代替它们,原来的键值码
A2H
24H 9蠲 52H A9H i蛆 8AIi 4AH ASH 2AH 95H AAH
00H MO观 0001010010 1 4lI
00H V
1000101001 8^H
00H ^
0l∞101001 蛆H
00H 亮度+ 0101000000 50li
nec码红外遥控完整编码
nec码红外遥控完整编码红外遥控编码程序如下:NEC .SECTION 'DATA'a_REM_CODE DB ? ;KEY DATA CODEa_CUSTOMER_1 DB ? ;遥控器头码(客户码)低八位a_CUSTOMER_2 DB ? ;遥控器头码(客户码)高八位#define CUS_6221_1 00110100b ;1234H#define CUS_6221_2 00010010b ;@------------------------------------------------NEC_CODE .SECTION 'CODE';@************* SUBROUTINE[xx]: Send Remote Code ************;;遥控码发送:SEND_REMOTE_CODE:clr WDT ;清除进位标志,检测遥控发送的有效的按键SZ fg_SendActive ;SZ表示以0结尾的字符串JMP READY_SEND ;跳转到READY_SEND模块retREADY_SEND:NEC_CODE:mov A,a_KEY_NUM ;将数值发送到寄存器A中,直接寻址mov M_TBLP,ATABRDL a_REM_CODE ;查表专用指令;读取遥控头码(客户码)低八位数值 MOV A,CUS_6221_1MOV a_CUSTOMER_1,AMOV A,CUS_6221_2MOV a_CUSTOMER_2,A以上为READY_SEND运行模块,同时是为后面NEC码发送的准备;首先将一个按键的数值已以直接寻址方式发送到寄存器A中,将寄存器A的是发送到M_TBLP 中,然后查表a_REM_CODE,将CUS_6221_1的值发送到寄存器中,在赋值给遥控器头码(客户码)低八位a_CUSTOMER_1,同理,将CUS_6221_2赋值给遥控器头码(客户码)低八位a_CUSTOMER_2,随后即开始发送NEC遥控码。
红外遥控代码
红外遥控代码红外线遥控器软件解码原理和程序(C语言)UPD6121G产生的遥控编码是连续的32位二进制码组,其中前16位为用户识别码,能区别不同的电器设备,防止不同机种遥控码互相干扰。
该芯片的用户识别码固定为十六进制01H;后16位为8位操作码(功能码)及其反码。
UPD6121G 最多额128种不同组合的编码。
遥控器在按键按下后,周期性地发出同一种32位二进制码,周期约为108ms。
一组码本身的持续时间随它包含的二进制“0”和“1”的个数不同而不同,大约在45~63ms之间,图4为发射波形图。
当一个键按下超过36ms,振荡器使芯片激活,将发射一组108ms的编码脉冲,这108ms发射代码由一个起始码(9ms),一个结果码(4.5ms),低8位地址码(9ms~18ms),高8位地址码(9ms~18ms),8位数据码(9ms~18ms)和这8位数据的反码(9ms~18ms)组成。
如果键按下超过108ms仍未松开,接下来发射的代码(连发代码)将仅由起始码(9ms)和结束码(2.5ms)组成。
代码格式(以接收代码为准,接收代码与发射代码反向)①位定义②单发代码格式③连发代码格式注:代码宽度算法:16位地址码的最短宽度:1.12×16=18ms 16位地址码的最长宽度:2.24ms×16=36ms易知8位数据代码及其8位反代码的宽度和不变:(1.12ms+2.24ms)×8=27ms 所以32位代码的宽度为(18ms+27ms)~(36ms+27ms)1.解码的关键是如何识别“0”和“1”,从位的定义我们可以发现“0”、“1”均以0.56ms的低电平开始,不同的是高电平的宽度不同,“0”为0.56ms,“1”为1.68ms,所以必须根据高电平的宽度区别“0”和“1”。
如果从0.56ms低电平过后,开始延时,0.56ms以后,若读到的电平为低,说明该位为“0”,反之则为“1”,为了可靠起见,延时必须比0.56ms长些,但又不能超过1.12ms,否则如果该位为“0”,读到的已是下一位的高电平,因此取(1.12ms+0.56ms)/2=0.84ms最为可靠,一般取0.84ms左右均可。
矿产
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。