纯电动乘用车CAN总线通讯协议v1.0

合集下载

基于J1939整车控制器CAN协议说明文档

基于J1939整车控制器CAN协议说明文档

0~255 循环
电机最大转速 电机目标转速,,0~15000,(0~15000)
波特率 500kb/s 发送周期
10ms 分辨率 0.1RPM/位 0.1Nm/位
0.1RPM/位
报文名称
报文1 formVCUtoMCU
发送节点 接收节点
VCU
MCU
字节

0
1
2
3
0
1
2
4
3
4
5
6
7
5
6
7
P
R
6
0
信号名称
6)CAN总线上各部件均有终端电阻(120Ω ),同时,终端电阻同网络线之间通过跳线连接,以便灵活搭配,方便调试使用,装车时去掉;
DC/DC
SA=214 新定义
7)终端电阻头(120Ω )安装在网络线两端,做在线束中;
充电机
SA=229 新定义
8)所有通信电缆应尽量离开动力线(0.5m以上)、离开12V控制线(0.1m以上);
报文名称
报文2 formVCU to Display
发送节点 接收节点
VCU DISPLAY
字节

0
1
0
1
2
2
3
4
5
6
7
3
4
0
1
2
5
3
4
5
6
7
6
7
P
R
3
0
信号名称
MotorSpeed
MCUOverVol MCULowVol MCUOverCurr MCUOverTem MCUDriveFault MotorOverTemp MotorState

新能源汽车TCU通讯协议

新能源汽车TCU通讯协议

新能源汽车CAN总线TCU通讯协议2021.81、通讯协议制定的原则1、1物理层1、本协议的物理层应符合ISO11898-1、SAE J1939-11中关于物理层的规定2、采用屏蔽双绞线通信,节点不能在网络上等间距接入,接入线也不能等长,且接入线的最大长度应小于1m;3、通信电缆应尽量离开动力线(0.5m以上)、离开24V控制线(0.1m以上);4、采用CAN总线进行通讯,各节点之间的接口采用标准CAN2.0B 接口;5、TCU具备三路相互隔离的CAN控制器,缺省状态下TCU与电机控制器分配一路CAN(编号为CAN4,电机控制器安装一个120Ω的终端电阻),另一路CAN 用于TCU 与整车控制器通讯(编号CAN1,电池管理系统与仪表各安装一个120Ω的终端电阻),第三路为TCU标定测试所用(编号为CAN0,缺省状态下不加终端电阻),VCU通过自己内部CAN网络与整车其它控制器通讯;拓扑结构图1、2数据链路层1、本协议数据链路层遵循CAN2.0B 扩展帧格式和J1939协议标准制定:数据帧由7个不同的位场组成:帧起始(Start of Frame)、仲裁场(Arbitration Frame)、控制场(Control Frame)、数据场(Data Frame)、CRC场(CRC Frame)、应答场(ACK Frame)、帧结尾(End of Frame)。

在CAN2.0B中存在两种不同的帧格式,其主要区别在标识符的长度,在标准帧格式里,仲裁场由11位识别符和远程请求位(RTR)组成,在扩展帧格式里,仲裁场包括29位识别符、替代远程请求位(SRR)、识别符扩展位(IDE)和RTR位,具体分配见下表1-1,本协议遵循的扩展帧格式。

SOF 11位标识符SRR IDE 18位标识符RTR r1 r0 DLC1 11 1 1 18 1 1 1 4表1-1扩展帧的标识符的分配表见下表1-2优先级保留位数据页PDU 格式(PF) PDU特性(PS) 源地址(SA)2 8 27262524232221219181716151413121119 8 7 6 5 4 3 2 1 0表1-2优先级(P)长度为3位,可以有8个优先级,仅用于优化报文传输的等待时间,最高级为0;保留位(R)长度为1位,一般固定为0;数据页位(DP)长度为1位,一般固定为0,;PDU 格式(PF) 长度为8位,P为报文的代码;PDU特性(PS) 长度为8位,为目标地址或组扩展;源地址(SA) 长度为8位,SA为发送此报文的源地址。

新国标电动汽车充电CAN报文协议解析

新国标电动汽车充电CAN报文协议解析

新国标电动汽车充电CAN报文协议解析说明:多字节时,低字节在前,高字节在后。

电流方向:放电为正,充电为负。

一、握手阶段:1、ID:1801F456(PGN=256)(充电机发送给BMS请求握手,数据长度8个字节,周期250ms)BYTE0辨识结果(0x00:BMS不能辨识,0xAA:BMS能辨识)BYTE1充电机编号(比例因子:1,偏移量:0,数据范围:0~100)BYTE2充电机/充电站所在区域编码,标准ASCII码BYTE3BYTE4BYTE5BYTE6BYTE72、ID:180256F4(PGN=512)(BMS发送给充电机回答握手,数据长度41个字节,周期250ms,需要通过多包发送,多包发送过程见后文)BYTE0BMS通信协议版本号,本标准规定当前版本为V1.0,表示为:byte2,byte1---0x0001,byte0---0x00BYTE1BYTE2BYTE3电池类型,01H:铅酸电池;02H:镍氢电池;03H:磷酸铁锂电池;04H:锰酸锂电池;05H:钴酸电池;06H:三元材料电池;07H:聚合物锂离子电池;08H:钛酸锂电池;FFH:其它电池BYTE4整车动力蓄电池系统额定容量/A·h,0.1A·h/位,0A·h偏移量,数据范围:0~1000A·hBYTE5BYTE6整车动力学电池系统额定总电压/V,0.1V/位,0V偏移量,数据范围:0~750V BYTE7BYTE8电池生产厂商名称,标准ASCII码BYTE9BYTE10BYTE11BYTE12电池组序号,预留,由厂商自行定义BYTE13BYTE14BYTE15BYTE16电池组生产日期:年(比例:1年/位,偏移量:1985,数据范围:1985~2235)BYTE17电池组生产日期:月(1月/位,偏移量:0月,数据范围:1~12月)BYTE18电池组生产日期:日(1日/位,偏移量:0日,数据范围:1~31日)BYTE19电池组充电次数,1次/位,偏移量:0次,以BMS统计为准BYTE20BYTE21BYTE22电池组产权表示(0:租赁,1:车自有)BYTE23预留BYTE24~40车辆识别码(vin)二、充电参数配置阶段:1、ID:180656F4(PGN=1536)(BMS发送给充电机,动力蓄电池配置参数,数据长度13个字节,周期500ms,需要通过多包发送,多包发送过程见后文)BYTE0单体动力蓄电池最高允许充电电压(比例:0.01V/bit,偏移量:0)BYTE1BYTE2最高允许充电电流(比例:0.1A/bit,偏移量:-400A)BYTE3BYTE4动力蓄电池标称总能量(0.1Kw·h/bit,偏移量:0)BYTE5BYTE6最高允许充电总电压(比例:0.1V/bit,偏移量:0)BYTE7BYTE8最高允许温度(比例:1度/bit,偏移量:-50度)BYTE9整车动力蓄电池荷电状态SOC(比例:0.1%/bit,偏移量:0)BYTE10BYTE11整车动力蓄电池总电压(比例:0.1V/bit,偏移量:0)BYTE122、ID:1807F456(PGN=1792)(充电机发送给BMS,时间同步信息,数据长度7个字节,周期500ms)BYTE0秒(压缩BCD码)BYTE1分(压缩BCD码)BYTE2时(压缩BCD码)BYTE3日(压缩BCD码)BYTE4月(压缩BCD码)BYTE5年(压缩BCD码)BYTE63、ID:1808F456(PGN=2048)(充电机发送给BMS,充电机最大输出能力,数据长度6个字节,周期250ms)BYTE0最高输出电压(比例:0.1V/bit,偏移量:0)BYTE1BYTE2最低输出电压(比例:0.1V/bit,偏移量:0)BYTE3BYTE4最大输出电流(0.1A/bit,偏移量:-400)BYTE54、ID:100956F4(PGN=2304)(BMS发送给充电机,电池充电准备就绪,数据长度1个字节,周期250ms)BYTE0BMS是否充电准备好(0:BMS未准备好,0xAA:BMS完成充电准备)5、ID:100AF456(PGN=2560)(充电机发送给BMS,充电机输出准备就绪,数据长度1个字节,周期250ms)BYTE0充电机是否完成充电准备(0:充电机未完成准备,0xAA:完成准备)三、充电过程:1、ID:181056F4(PGN=4096)(BMS发送给充电机,电池充电需求,数据长度5个字节,周期50ms)BYTE0充电电压需求(0.1V/bit,偏移量:0V)BYTE1BYTE2充电电流需求(0.1A/bit,偏移量:-400A)BYTE3BYTE4充电模式(0x01:恒压充电;0x02:恒流充电)2、ID:181156F4(PGN=4352)(BMS发送给充电机,电池充电总状态,数据长度9个字节,周期250ms,需要通过多包发送,多包发送过程见后文)BYTE0充电电压测量值(0.1V/bit,偏移量:0V)BYTE1BYTE2充电电流测量值(0.1A/bit,偏移量:-400A)BYTE3BYTE4最高单体动力蓄电池电压及其组号(1~12:蓄电池电压,0.01V/bit;13~16:动力蓄电池电池电压所在组号:1/bit,偏移量:1)BYTE5BYTE6当前SOC(1%的比例,偏移量:0)BYTE7估算剩余充电时间(1min/bit,大于600分钟按600分钟发送)BYTE83、ID:1812F456(PGN=4608)(充电机发送给BMS,充电机充电状态,数据长度6个字节,周期50ms)BYTE0充电电压输出值(0.1V/bit,偏移量:0V)BYTE1BTYE2充电电流输出值(0.1A/bit,偏移量:-400A)BYTE3BYTE4累计充电时间(1min/bit,最大为600min)BYTE54、ID:181356F4(PGN=4864)(BMS发送给充电机,电池状态信息,数据长度7个字节,周期250ms)BYTE0最高单体动力蓄电池电压所在编号BYTE1最高动力蓄电池温度(1度/bit,偏移量:-50)BYTE2最高温度检测点编号BYTE3最低动力蓄电池温度(1度/bit,偏移量:-50)BYTE4最低动力蓄电池温度检测点号BYTE5Bit0-bit1单体动力蓄电池电压过高/过低(00:正常;01:过高;10:过低)Bit2-bit3整车动力蓄电池荷电状态SOC过高/过低(00:正常;01:过高;10:过低)Bit4-bit5动力蓄电池充电过电流(00:正常;01:过流;10:不可信)Bit6-bit7动力蓄电池温度过高(00:正常;01:过高;10:不可信)BYTE6Bit0-bit1动力蓄电池绝缘状态(00:正常;01:不正常;10:不可信)Bit2-bit3动力蓄电池组输出连接器连接状态(00:正常,01:不正常,10:不可信)Bit4-bit5充电允许(00:禁止;01:允许)5、ID:181556F4(PGN=5376)(BMS发送给充电机,电池单体电压信息,数据长度不定,周期1s,需要通过多包发送,多包发送过程见后文)BYTE01号单体动力电池电压BYTE1BYTE22号单体动力电池电压BYTE3BYTE43号单体动力电池电压BYTE5、、、、、、、、、、、、BYTE511256号单体动力电池电压6、ID:181656F4(PGN=5632)(BMS发送给充电机,电池温度信息,数据长度不定,周期1s,需要通过多包发送,多包发送过程见后文)BYTE0动力蓄电池1温度信息(比例:1度/bit,偏移量:-50度)BYTE1动力蓄电池2温度信息(比例:1度/bit,偏移量:-50度)BYTE2动力蓄电池3温度信息(比例:1度/bit,偏移量:-50度)BYTE3动力蓄电池4温度信息(比例:1度/bit,偏移量:-50度)BYTE4动力蓄电池5温度信息(比例:1度/bit,偏移量:-50度)BYTE5动力蓄电池6温度信息(比例:1度/bit,偏移量:-50度)、、、、、、、、、、、、BYTEN动力蓄电池N+1温度信息(比例:1度/bit,偏移量:-50度)7、ID:181756F4(PGN=5888)(BMS发送给充电机,电池预留报文,数据长度不定,周期1s,需要通过多包发送,多包发送过程见后文)BYTE0预留BYTE1预留BYTE2预留BYTE3预留BYTE4预留BYTE5预留、、、、、、预留BYTEN预留8、ID:101956F4(PGN=6400)(BMS发送给充电机,BMS中止充电,数据长度4个字节,周期10ms)BYTE0BMS中止充电原因BYTE1BMS中止充电故障原因BYTE2BYTE3BMS中止充电错误原因说明:1、BMS中止充电原因:a)1~2位:达到所需求的SOC目标值(00:未达到,01:达到需求,10:不可信状态);b)3~4位:达到总电压的设定值(00:未达到总电压设定值,01:达到设定值,10:不可信状态);c)5~6位:达到单体电压的设定值(00:未达到,01:达到,10:不可信状态)2、BMS中止充电故障原因:a)1~2位:绝缘故障(00:正常,01:故障,10:不可信状态)b)3~4位:输出连接器过温故障(00:正常,01:故障,10:不可信状态)c)5~6位:BMS原件、输出连接器过温(00:正常,01:故障,10:不可信状态)d)7~8位:充电连接器故障(00:正常,01:故障,10:不可信状态)e)9~10位:电池组温度过高故障(00:正常,01:故障,10:不可信状态)f)11~12位:其它故障(00:正常,01:故障,10:不可信状态)3、BMS中止充电错误原因:a)1~2位:电流过大(00:正常,01:电流超过需求值,10:不可信状态)b)3~4位:电压异常(00:正常,01:电压异常,10:不可信状态)9、ID:101AF456(PGN=6656)(充电机发送给BMS,充电机中止充电,数据长度4个字节,周期10ms)BYTE0充电机中止充电原因BYTE1充电机中止充电故障原因BYTE2BYTE3充电机中止充电错误原因说明:1、充电机中止充电原因:a)1~2位:达到充电机设定的条件中止(00:正常,01:达到设定条件中止,10:不可信状态)b)3~4位:人工中止(00:正常,01:人工中止,10:不可信状态)c)5~6位:故障中止(00:正常,01:故障中止,10:不可信状态)2、充电机中止充电故障原因:a)1~2位:充电机过温故障(00:温度正常,01:充电机过温,10:不可信状态)b)3~4位:充电连接器故障(00:连机器正常,01:故障,10:不可信状态)c)5~6位:充电机内部过温故障(00:内部温度正常,01:内部过温,10:不可信)d)7~8位:所需电量不能传送(00:传送正常,01:不能传送,10:不可信)e)9~10位:充电机急停故障(00:正常,01:急停,10:不可信状态)f)11~12位:其它故障(00:正常,01:故障,10:不可信状态)3、充电机中止充电错误原因:a)1~2位:电流不匹配(00:电流匹配,01:电流不匹配,10:不可信状态)b)3~4位:电压异常(00:正常,01:异常,10:不可信状态)四、充电结束阶段:1、ID:181C56F4(PGN=7168)(BMS发送给充电机,BMS统计数据,数据长度7个字节,周期250ms)BYTE0中止时SOC值(比例:1%,偏移量:0)BYTE1动力蓄电池单体最低电压(比例:0.01,偏移量:0)BYTE2BYTE3动力蓄电池单体最高电压(比例:0.01,偏移量:0)BYTE4BYTE5动力蓄电池最低温度(比例:1,偏移量:-50)BYTE6动力蓄电池最高温度(比例:1,偏移量:-50)2、ID:181DF456(PGN=7424)(充电机发送给BMS,充电机统计数据,数据长度5个字节,周期250ms)BYTE0累计充电时间(比例:1min,偏移量:0,范围:0~600)BYTE1BYTE2累计输出能量(比例:0.1kw·h,偏移量:0,范围:0~1000)BYTE3BYTE4充电机编号五、发生错误:1、ID:081E56F4(PGN=7680)(BMS发送给充电机,BMS统计数据,数据长度4个字节,周期250ms)BYTE0Bit0-Bit1接受SPN2560=0X00充电机辨识报文超时(00:正常,01:超时,10:不可信状态)Bit2-Bit3接受SPN2560=0XAA充电机辨识报文超时(00:正常,01:超时,10:不可信状态)BYTE1Bit0-Bit1接受充电机的时间同步和充电机最大能力报文超时(00:正常,01:超时,10:不可信状态)Bit2-Bit3接受充电机完成充电准备报文超时(00:正常,01:超时,10:不可信状态)BYTE2Bit0-Bit1接受充电机充电状态报文超时(00:正常,01:超时,10:不可信状态)Bit2-Bit3接受充电机中止报文超时(00:正常,01:超时,10:不可信状态)BYTE3Bit0-Bit1接受充电机充电统计报文超时(00:正常,01:超时,10:不可信状态)2、ID:081FF456(PGN=7936)(充电机发送给BMS,充电机中止充电,数据长度4个字节,周期250ms)BYTE0Bit0-Bit1接受BMS和车辆的辨识报文超时(00:正常,01:超时,10:不可信状态)BYTE1Bit0-Bit1接受电池充电参数报文超时(00:正常,01:超时,10:不可信状态)Bit2-Bit3接受BMS完成充电前准备报文超时(00:正常,01:超时,10:不可信状态)BYTE2Bit0-Bit1接受电池充电总状态报文超时(00:正常,01:超时,10:不可信状态)Bit2-Bit3接受电池充电需求报文超时(00:正常,01:超时,10:不可信状态)Bit4-Bit5接受BMS中止充电报文超时(00:正常,01:超时,10:不可信状态)BYTE3Bit0-Bit1接受BMS充电统计报文超时(00:正常,01:超时,10:不可信状态)六、多包发送过程:1、0x1CEC56F4(BMS请求建立多包发送,周期50ms)BYTE0请求控制字0x10BYTE1需要发送的总字节数BYTE2BYTE3需要发送的包数BYTE40XffBYTE5所装载数据的参数组群号,即其PGNBYTE6BYTE72、0x1CECF456(充电机应答多包发送请求,周期50ms)BYTE0回答控制字0x11BYTE1可发送的数据包数BYTE2接下来发送的第一个数据包号BYTE30xFFBYTE40xFFBYTE5所装载数据的参数组群号,即其PGN BYTE6BYTE73、0x1CEB56F4(BMS发送多包信息,周期根据国标定义) BYTE0包序号(1到N)BYTE1需发送的内容BYTE2需发送的内容BYTE3需发送的内容BYTE4需发送的内容BYTE5需发送的内容BYTE6需发送的内容BYTE7需发送的内容4、0x1CECF456(充电机响应完成多包接收,周期50ms) BYTE0请求控制字0x13BYTE1接受到的总字节数BYTE2BYTE3接受到的总包数BYTE40XffBYTE5所装载数据的参数组群号,即其PGN BYTE6BYTE7深圳市聚电新能源科技有限公司武继坤整理。

纯电动客车整车CAN通讯协议

纯电动客车整车CAN通讯协议

0 to1500(0 to 15) 0 to16000(-8000 to 8000) 0 to36666(-5500 to 5500)
0 to250(-40 to 210) 0 to200(0 to 1)
0 to250(0 to 100) 0 to1000(0 to 100) 0 to2000(0 to 200) 0 to255(0 to 510) 0 to250(0 to 50)
0 8000 18333 40
0 0 0 0 0 0
2BYTE 2BYTE 2BYTE 1BYTE 1BYTE 1BYTE 2BYTE 2BYTE 1BYTE 1BYTE
3.5 整车系统控制网络 CAN 通讯机制
根据实验测得 CAN 总线在 250K 速率的通讯情况下,每帧报文的占用时间是 500uS。为了保证通讯的可靠性和稳定性,同时 考虑到控制的实时性,网络通讯周期定为 50mS,整车控制器初始化运行后,每隔 50mS 以广播方式发送数据给各部件,在一个周 期里只发送一次(在收到综合控制器数据后的 50mS 内);
实际电压 18~36V 范围内使用; 4)CAN 总线的通信电缆采用屏蔽双绞线(阻燃 0.5mm),屏蔽层应连接到 CAN_GND,屏蔽线的接地方式由整车布线时选择
合适位置单点接地; 5)网络的接线拓扑为一个尽量紧凑的线形结构以避免电缆反射。ECU 接入总线主干网的电缆要尽可能短。为使驻波最小化,
节点不能在网络上等间距接入,接入线也不能等长,且接入线的最大长度应小于 1m; 6)CAN 总线上各部件均有终端电阻(120Ω),同时,终端电阻同网络线之间通过跳线连接,以便灵活搭配,方便调试使用,
8
3.6 各系统 ECU 参数组定义
3.6.1 CANBus1 中各系统 ECU 参数组定义

纯电动汽车通信协议V

纯电动汽车通信协议V

纯电动汽车通信协议V随着全球环保意识的不断加强,纯电动汽车作为一种绿色出行工具,正逐渐受到人们的关注和青睐。

然而,在纯电动汽车的发展过程中,一个关键的问题是如何实现车辆与充电设备之间的有效通信和智能管理。

为此,各国汽车制造商和科研机构纷纷提出了不同的通信协议,其中最为重要且被广泛应用的是纯电动汽车通信协议V。

本文将介绍该协议的概述和特点,以及其在电动汽车行业中的应用和未来发展。

一、纯电动汽车通信协议V的概述纯电动汽车通信协议V,简称为V2G协议(Vehicle-to-Grid Protocol),是指纯电动汽车与电网之间进行通信和数据交换的标准协议。

它是基于物联网和云计算技术的发展而来,通过车辆与电网之间的通信,实现了智能充电和能源管理。

该协议主要包括两个方面的内容:一是车辆与电网之间的充电通信,即V2G(Vehicle-to-Grid)通信;二是车辆与电网之间的能源管理,即V2H(Vehicle-to-Home)和V2B(Vehicle-to-Building)通信。

通过这些通信方式,纯电动汽车可以与电网相互协作,实现智能充电、储能和能源管理。

二、纯电动汽车通信协议V的特点1. 双向通信能力:V2G协议具有双向通信的能力,可以实现车辆与电网之间的数据传输和指令交换。

这使得电网可以根据车辆的充电需求和电网负荷情况进行智能调度,提高能源利用效率。

2. 多种接口支持:V2G协议支持多种通信接口,包括CAN总线、以太网和无线通信等。

这样可以适应不同类型的车辆和充电设备,提高通信的灵活性和兼容性。

3. 安全性和隐私保护:V2G协议对通信数据进行加密和认证,确保通信的安全性和隐私保护。

这是十分重要的,因为电动汽车作为一种智能移动终端,与外界的通信必须具备高度的安全性。

4. 能源管理和优化:V2G协议通过车辆与电网之间的能源管理,可以实现能源的优化和储能利用。

例如,车辆可以将多余的电能反馈到电网,进而供应给其他用户,或者在需要时将电能反馈到家庭用电系统或商业建筑系统中使用。

纯电动车BMS与整车系统CAN通信协议详情

纯电动车BMS与整车系统CAN通信协议详情

纯电动车BMS与整车系统CAN通信协议详情随着环保意识的增强和电动车市场的迅速发展,纯电动车(Battery Electric Vehicle,BEV)作为零排放、零尾气的新能源汽车正逐渐受到人们的关注和青睐。

在纯电动车的电池管理系统(Battery Management System,BMS)中,与整车系统之间的通信协议变得尤为重要。

本文将详细介绍纯电动车BMS与整车系统CAN通信协议的相关内容。

一、纯电动车BMS与整车系统的关系纯电动车的BMS作为一套独立的系统,主要用于监测和管理电池组的状态、实时数据采集、故障诊断以及能量管理等功能。

而整车系统则负责电动车的整体控制,包括电机控制、车速控制、动力分配等。

BMS与整车系统之间的通信,可以实现BMS对整车系统的控制和监控,保证电池组和整车系统的协调运行,提高电动车的安全性和性能。

二、CAN通信协议的基本原理控制器局域网络(Controller Area Network,CAN)是一种广泛应用于汽车、工业自动化等领域的通信协议。

CAN总线采用串行通信方式,具有高可靠性、抗干扰能力强的特点,在电动车领域得到了广泛应用。

CAN协议定义了通信的物理层、数据链路层和应用层,保证了数据的可靠传输和节点间的高效通信。

三、CAN通信协议在纯电动车BMS与整车系统中的应用1. 数据交互:CAN通信协议在BMS和整车系统之间实现了数据的双向交互。

BMS可以向整车系统提供电池组的相关信息,如电池电压、电流、温度等。

同时,整车系统也可以向BMS发送指令,如充电指令、功率调节指令等。

2. 故障诊断:CAN通信协议可以实现对电池组和整车系统的故障诊断。

当BMS检测到电池组或整车系统存在异常情况时,会通过CAN总线将故障码发送给整车系统,从而实现故障的定位和诊断。

3. 控制策略:CAN通信协议可以实现BMS对整车系统的控制。

例如,BMS可以根据电池组的状态和整车系统的需求,发送合适的控制策略给整车系统,如调节电机的输出功率、控制充放电速度等。

福特翼虎kuga 整车CAN通讯协议

福特翼虎kuga 整车CAN通讯协议

福特翼虎kuga 整车CAN通讯协议第418-00节目录模块通信网络模块通信网络页码页码418-00-2 418-00-2 418-00-2418-00-19 418-00-19 418-00-21说明与操作通信网络............................................................................ ....................................................................... ...... .............................................概述............................................................................ .............................................................................. ........................................... 系统操作............................................................................ .............................................................................. ...................................诊断与测试通信网络............................................................................ ..................................................................... ........ .............................................症状表............................................................................ .............................................................................. ...................................... 定点测试............................................................................ .............................................................................. ...................................说明与操作说明与操作通信网络概述多路复用是一种通过一条电路同时发送两个或两个以上信号的方法。

H1整车CAN协议V1.0_2013.12.31

H1整车CAN协议V1.0_2013.12.31

ID DP 0 据 PF C0(192)
周期() 100
0.001V/bit,偏移量:0 范围:0 V~4.5V 偏移量:0 范围:0~24 0.001V/bit,偏移量:0 范围:0 V~4.5V 偏移量:0 范围:0~24 1℃/bit 偏移量:-40℃ 范围:-40℃~210 ℃ 偏移量:0 范围:0~24
3.9 报文 9: 单体电压信息 0x10C000F4 (剩余 3 条报文 ID 依次为 0x14C000F4, 0x18C000F4, 0x1CC000F4。 ) OUT IN ID 周期(ms) P R DP PF BMS VMS 100 4 0 0 C0(192) 数 据 位置 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 数据名
Out 电机控制 器 In VMS P 3 Byte 1 bit 1~2 R 0 状态 00 DP 0 ID(0x0cf11f05) PGN PF 241 数据名 电机控制器正常(无短路、断路等, 即电机控制器上绿灯指示状态) 01 10 11 3~4 00 01 10 11 5~6 00 01 10 11 7~8 00 01 CCW 方向(反转) CW 方向(正转) 电机控制器故障(红灯亮) 运行 停止 电容放电状态 MC 准备就绪 电机和电机控制器均未过温 控制器温度 85 C 电机温度 125 C 保留 母线电压正常 母线过压 电机母线电压 90V 10 母线欠压 电机母线电压 65V 11 2 单 位 增 益 未定义,保留 母线电压测量范围:0~90V
新大洋电动车有限公司
Bit1~Bit2 Byte3 Bit3 Bite4 Bit5~Bit8
点火钥匙位置信息 MC 允许启动指令 电容放电指令 预留 reserved

电动汽车通讯协议

电动汽车通讯协议

安徽天康特种车辆装备有限公司纯电动专用车辆通讯协议(VER1.2)编制:______________________审核:______________________批准:______________________ 发布日期:2014年12月22日文件编号:TKC/JS(S)-EV33文件版本号:0/A版实施日期:2014年12月22日安徽天康特种车辆装备有限公司纯电动专用车辆通讯协议(VER1.2)协议参考SAE J1939, CAN2.0B PEV-CANBUS200511等终端电阻说明:组合仪表与BMS终端电阻(120Q),其它零部件不带终电阻总线通信速率:250KBPS1.网络拓扑结构说明CAN2入网。

电动汽车网络采用双CAN互连结构如下图。

蓄电池管理系统(BMS采用三路CANA网,车载充电机系统通过BMS主控 C 1地面充电机SA=243(F3) ■人或充电站=244(F4) SA=230(E6)CAN 2电机控制器SA=208(EF) 组合仪表SA=40(28)车载充电机SA=229(E5)2 . 网络信号数据格式定电动客车网络信号数据格式遵守下表,双行定义遵循首行;电动汽车网络信号数据格式遵守下表,双行定义遵循第二行3.数据链路层应遵循的原则数据链路层的规定主要参考CAN2.0B和J1939的相关规定使用CAN"展帧的29位标识符并进行了重新定义,以下为29标识符的分配表:其中,优先级为3位,可以有8个优先级;R一般固定为0; DP现固定为0; 8位的PF为报文的代码;8位的PS为目标地址或组扩展;8位的SA为发送此报文的源地址4.协议帧定义F表是电池管理系统可能用到的ECU节点名称和分配的地址5.电池管理系统相关协议5.1电池管理系统CAN2与电机控制器BMSC1 0: (ID: 0x1800D0F4)BMSC1_1: (ID: 0x1801D0F4)tus_Flag1注:逻辑1表示事件为真;逻辑0表示事件为假Status_Flag2 :注:逻辑1表示事件为真;逻辑0表示事件为假 5.2电池管理系统CAN2与组合仪表BMSC1_0: (ID: 0x180228F4)yt(故障信息): 当电池包出现”放电电流故障”/ ”电池维护故障” / ”电量过低报警” /”单体电压过低报警” /”电池漏电报警” /”/”总电压过低”时,都认为“高压电池故障”0 Status_Flag4 (电池自检状态)5.3电池管理系统CAN2与车载充电器BMSC1_0: (ID: 0x1806E5F4)报文1 : ( ID:0x1806E5F4)报文2: (ID:0x18FF50E5)tatus_Flag5工作方式:1、BMS固定间隔时间1S发送控制信息(报文1)到充电机,充电机接收到信息以后根据报文数据的电压电流设置来工作,如果5 秒接收不到报文,则进入通信错误状态,关闭输出。

纯电动车BMS与整车系统CAN通信协议

纯电动车BMS与整车系统CAN通信协议

文件类型:技术类密级:保密正宇纯电动车电池管理系统与整车系统CAN通信协议(GX-ZY-CAN-V1.00)版本记录版本制作者日期说明V1.00 用于永康正宇纯电动车系统姓名日期签名拟定审查核准1 范围本标准规定了电动汽车电池管理系统(Battery Management System ,以下简称BMS)与电机控制器(Vehicle Control Unit ,简称VCU)、智能充电机(Intelligent Charger Unit ,简称ICU)之间的通信协议。

本标准适用于电动汽车电池管理系统与整车系统和充电系统的数据交换。

本标准的CAN 标识符为29位,通信波特率为250kbps 。

本标准数据传输采用低位先发送的格式。

本标准应用于正宇纯电动轿车电池管理系统。

2 规范性引用文件下列文件对于本文件的应用是必不可少的。

凡是注日期的版本适用于本文件。

凡不是注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

ISO 11898-1:2006 道路车辆 控制器局域网络 第1部分:数据链路层和物理信令(Road Vehicles – Controller Area Network (CAN) Part 1:Data Link Layer and Physical Signalling). SAE J1939-11:2006 商用车控制系统局域网络(CAN)通信协议 第11部分:物理层,250Kbps ,屏蔽双绞线(Recommanded Practice for a Serial Control and Communications Vehicle Network Part 11:Physical Layer,250Kbps,Twisted shielded Pair). SAE J1939-21:2006商用车控制系统局域网络(CAN )通信协议 第21部分:数据链路层(Recommanded Practice for a Serial Control and Communications Vehicle Network Part 21:Data Link Layer).3 网络拓扑结构说明电动汽车网络采用CAN 互连结构如下所示,CAN1总线为电池管理系统与电机控制器之间的数据通信总线,CAN2总线为电池管理系统与充电机之间的数据通信总线。

can总线通讯协议书

can总线通讯协议书

can总线通讯协议书甲方(以下简称“甲方”):地址:法定代表人:职务:联系电话:乙方(以下简称“乙方”):地址:法定代表人:职务:联系电话:鉴于甲方与乙方就CAN总线通讯技术的应用与合作达成一致,根据《中华人民共和国合同法》及相关法律法规的规定,经双方协商一致,特订立本协议书。

第一条协议目的1.1 本协议旨在明确双方在CAN总线通讯技术领域的合作内容、权利与义务,以及双方应遵守的规范和标准。

第二条合作内容2.1 甲方同意向乙方提供CAN总线通讯技术的相关支持与服务。

2.2 乙方同意按照本协议的规定,使用甲方提供的CAN总线通讯技术,并支付相应的费用。

第三条技术提供与使用3.1 甲方应保证提供的CAN总线通讯技术符合国家相关标准和行业规范。

3.2 乙方应保证在协议约定的范围内使用CAN总线通讯技术,不得用于非法目的。

第四条费用与支付4.1 双方应根据本协议的约定,确定技术使用的费用及支付方式。

4.2 乙方应按照约定的时间和方式向甲方支付相应的费用。

第五条保密条款5.1 双方应对在合作过程中知悉的商业秘密和技术秘密负有保密义务。

5.2 未经对方书面同意,任何一方不得向第三方披露、泄露或允许第三方使用上述保密信息。

第六条知识产权6.1 甲方提供的CAN总线通讯技术及相关知识产权归甲方所有。

6.2 乙方在本协议约定的范围内使用甲方的技术,不得侵犯甲方的知识产权。

第七条违约责任7.1 如一方违反本协议的约定,应承担违约责任,并赔偿对方因此遭受的损失。

7.2 违约方应支付违约金,具体金额由双方协商确定。

第八条协议的变更与解除8.1 本协议的任何变更或补充,应经双方协商一致,并以书面形式确认。

8.2 双方可协商一致解除本协议,但应提前通知对方。

第九条争议解决9.1 本协议在履行过程中发生的任何争议,双方应首先通过友好协商解决。

9.2 如协商不成,双方同意提交甲方所在地人民法院通过诉讼方式解决。

第十条其他10.1 本协议未尽事宜,双方可另行协商解决。

电动汽车充电机通信协议

电动汽车充电机通信协议

目录宁波拜特发送给通讯板CAN1 ......................................................................第一帧0001:宁波拜特发送给充电机 ..............................................................第二帧0002:宁波拜特发送给充电机 ..............................................................第三帧0003:宁波拜特发送给充电机 ..............................................................第四帧0004:宁波拜特发送给充电机 ..............................................................第五帧0005:宁波拜特发送给充电机 ..............................................................第六帧0006:宁波拜特发送给充电机 ..............................................................通讯板CAN1 发送给宁波拜特 ....................................................................第一帧401充电机发送给宁波拜特 ...............................................................第二帧402:充电机发送给宁波拜特 ...............................................................第三帧403:充电机发送给宁波拜特 ...............................................................第四帧404:充电机发送给宁波拜特 ...............................................................第五帧405:充电机发送给宁波拜特 ...............................................................主控板发送给通讯板CAN2 ........................................................................第一帧18A0ABCC:APF侧主控板发送给通讯板 ....................................................第二帧:BiDCDC侧主控板发送给通讯板 ..........................................................第三帧C0:APF侧主控板发送给通讯板 ...........................................................第四帧:APF侧主控板发送给通讯板 ............................................................第五帧:BiDCDC侧主控板发送给通讯板 ..........................................................通讯板发送给主控板CAN2 ........................................................................第一帧C0: 通讯板发送给主控板CAN2 ...........................................................11第二帧C1: 通讯板发送给主控板CAN2 ...........................................................第三帧C2:通讯板发送给主控板CAN2.............................................................1111第四帧404:通讯板发送给主控板CAN2 ..........................................................BiDCDC侧发送给APF侧 ........................................................................第一帧C0: BiDCDC发送给APF侧 CAN2 ......................................................第二帧:BiDCDC侧主控板发送给APF侧 CAN2 ..................................................APF侧发送给BiDCDC侧 .........................................................................第一帧C0: APF发送给BiDCDC侧 CAN2........................................................第二帧: APF发送给BiDCDC侧 CAN2 .........................................................3.1、充电桩CAN1发往充电机A通迅板CAN1:共2帧 ..............................................3.1.1第一帧D1:充电桩对充电机的控制命令 .....................................................3.1.2第二帧D2:充电统计信息数据 .............................................................3.2、充电机A通迅板CAN1发往充电桩协议:共4帧 ................................................3.2.1第一帧C1:充电机运行信息 ...............................................................3.2.2第二帧C2:充电机交流输入信息 ...........................................................3.2.3第三帧C3:充电机APF侧运行信息码与温度 .................................................3.2.4第三帧C4:充电机BiDCDC侧运行信息码与温度 ...........................................3.3、充电机B通迅板CAN3发往上位机协议:共9帧 ..................................................3.3.1第一帧D1:充电机工作信息 ................................................................3.3.2第二帧D2:充电信息统计数据 .............................................................3.3.3第三帧C1:充电机状态信息 ...............................................................3.3.4第四帧C2:充电机交流输入信息 ...........................................................3.3.5第五帧C3:充电机APF侧工作信息码与温度 .................................................3.3.6第六帧C4:充电机BiDCDC侧工作信息码与温度 ...........................................3.3.7第七帧E1:电动汽车电池组单体电压信息1 ................................................3.3.8第八帧E2:电动汽车电池组单体电压信息2 ................................................3.3.9第九帧E3:电动汽车电池组信息 ..........................................................3.4、CAN以太网转换器发往充电机B通迅板CAN3协议: ...........................................3.4.1第一帧C1:监控系统对充电机的控制命令 ..................................................C1:通过CANB板的CAN1发送监控系统对充电机的控制命令 ......................................宁波拜特发送给通讯板CAN1第一帧0001:宁波拜特发送给充电机ID 0x001 周期(ms)PRI (3bit)Resv(2bit)FunctionCode(8bit)DestAddr(8bit)(8bit)SourceAddr(8bit)数 据 域位置 数 据 名 数 据 说 明 BYTE1 保护电压上限低字节 HighestVoltage_Prt BYTE2 保护电压上限高字节 0.025VBYTE3 保护电压下限低字节 LowestVoltage_PrtBYTE4 保护电压下限高字节 0.025VBYTE5 保护电流上限低字节 Charge_MaxCurrent_Prt BYTE6 保护电流上限高字节 0.015ABYTE7 保护电流下限低字节 Discharge_MaxCurrent_Prt BYTE8 保护电流下限高字节 0.015A第二帧0002:宁波拜特发送给充电机ID 0x002 周期(ms)PRI (3bit)Resv(2bit)FunctionCode(8bit)DestAddr(8bit)(8bit)SourceAddr(8bit)数 据 域位置 数 据 名 数 据 说 明 BYTE1 充电运行电压限制低字节 LimitVoltage_Charging BYTE2 充电运行电压限制高字节 0.025VBYTE3 充电运行电流限制低字节 LimitCurrent_Charging BYTE4 充电运行电流限制高字节 0.015ABYTE5 充电运行单体电压上限低字节 LimitCellVoltage_Charging BYTE6 充电运行单体电压上限高字节 0.025VBYTE7BYTE8第三帧0003:宁波拜特发送给充电机ID 0x003 周期(ms)PRI (3bit)Resv(2bit)FunctionCode(8bit)DestAddr(8bit)(8bit)SourceAddr(8bit)数 据 域位置 数 据 名 数 据 说 明 BYTE1 放电运行电压限制低字节 LimitVoltage_Charging BYTE2 放电运行电压限制高字节 0.025VBYTE3 放电运行电流限制低字节 LimitCurrent_Charging BYTE4 放电运行电流限制高字节 0.015A第四帧0004:宁波拜特发送给充电机ID 0x004 周期(ms)PRI (3bit)Resv(2bit)FunctionCode(8bit)DestAddr(8bit)(8bit)SourceAddr(8bit)数 据 域位置 数 据 名 数 据 说 明 BYTE1 主参数低字节 MainParameterBYTE2 主参数高字节 0.025VBYTE3 工作模式 工作模式WorkModeSet_NBT01 恒流充电 02恒压充电03 恒流放电 04 恒功率充电05恒功率放电 06恒阻放电07搁置工作状态WorkStateSet_NBT单体控制 CellCtrl_NBT 第五帧0005:宁波拜特发送给充电机ID 0x005 周期(ms)PRI (3bit)Resv(2bit)FunctionCode(8bit)DestAddr(8bit)(8bit)SourceAddr(8bit)数 据 域位置 数 据 名 数 据 说 明BYTE1 当前最高单体电压低字节 CellBatteryHighestVoltage BYTE2 当前最高单体电压高字节 0.025V第六帧0006:宁波拜特发送给充电机ID 0x006 周期(ms)PRI (3bit)Resv(2bit)FunctionCode(8bit)DestAddr(8bit)(8bit)SourceAddr(8bit)数 据 域位置 数 据 名 数 据 说 明 BYTE1 当前电流电压发送周期低字节 CurrentVolSendCycleBYTE2 当前电流电压发送周期高字节通讯板CAN1 发送给宁波拜特第一帧401充电机发送给宁波拜特ID 0x401 周期(ms)PRI (3bit)Resv(2bit)FunctionCode(8bit)DestAddr(8bit)(8bit)SourceAddr(8bit)数 据 域位置 数 据 名 数 据 说 明 BYTE1 保护电压上限低字节 HighestVoltage_Prt BYTE2 保护电压上限高字节 0.025VBYTE3 保护电压下限低字节 LowestVoltage_PrtBYTE4 保护电压下限高字节 0.025VBYTE5 保护电流上限低字节 Charge_MaxCurrent_Prt BYTE6 保护电流上限高字节 0.015ABYTE7 保护电流下限低字节 Discharge_MaxCurrent_Prt BYTE8 保护电流下限高字节 0.015A第二帧402:充电机发送给宁波拜特ID 0x402 周期(ms)PRI (3bit)Resv(2bit)FunctionCode(8bit)DestAddr(8bit)(8bit)SourceAddr(8bit)数 据 域位置 数 据 名 数 据 说 明 BYTE1 充电运行电压限制低字节 LimitVoltage_Charging BYTE2 充电运行电压限制高字节 0.025VBYTE3 充电运行电流限制低字节 LimitCurrent_Charging BYTE4 充电运行电流限制高字节 0.015ABYTE5 充电运行单体电压上限低字节 LimitCellVoltage_Charging BYTE6 充电运行单体电压上限高字节 0.025VBYTE7BYTE8第三帧403:充电机发送给宁波拜特ID 0x403 周期(ms)PRI (3bit)Resv(2bit)FunctionCode(8bit)DestAddr(8bit)(8bit)SourceAddr(8bit)数 据 域位置 数 据 名 数 据 说 明 BYTE1 放电运行电压限制低字节 LimitVoltage_Charging BYTE2 放电运行电压限制高字节 0.025VBYTE3 放电运行电流限制低字节 LimitCurrent_Charging BYTE4 放电运行电流限制高字节 0.015ABYTE5BYTE6第四帧404:充电机发送给宁波拜特ID 0x404 周期(ms)PRI (3bit)Resv(2bit)FunctionCode(8bit)DestAddr(8bit)(8bit)SourceAddr(8bit)数 据 域位置 数 据 名 数 据 说 明 BYTE1 主参数低字节 MainParameterBYTE2 主参数高字节 0.025VBYTE3 工作模式 工作模式WorkModeSet_NBT01 恒流充电 02恒压充电03 恒流放电 04 恒功率充电05恒功率放电 06恒阻放电07搁置工作状态WorkStateSet_NBT单体控制 CellCtrl_NBT 第五帧405:充电机发送给宁波拜特ID 0x405 周期(ms)PRI (3bit)Resv(2bit)FunctionCode(8bit)DestAddr(8bit)(8bit)SourceAddr(8bit)数 据 域位置 数 据 名 数 据 说 明 BYTE1 运行电压低字节 Voltage_BiDCDCBYTE2 运行电压高字节 0.025VBYTE3 运行电流低字节 Current_BiDCDCBYTE4 运行电流高字节 0.015A主控板发送给通讯板CAN2第一帧18A0ABCC:APF 侧主控板发送给通讯板ID 0x18A0ABCC 周期(ms)PRI (3bit)Resv(2bit)FunctionCode(8bit)DestAddr(8bit)(8bit)SourceAddr(8bit)C1 AB CC数 据 域位置 数 据 名 数 据 说 明 BYTE1 工作模式/工作状态 WorkMode_Set WorkMode_APFWorkState_R WorkState_APFdeadband_comBYTE2 WorkMode_Set 0.1.2.3.CtrlMode 4.5Test_Mode 6,7BYTE3 APF侧母线电压低字节 dis_udc APF_udcBYTE4 APF侧母线电压高字节BYTE5 交流输入电流低字节 dis_iaf APF_iafBYTE6 交流输入电流高字节BYTE7 flag_protect_softBYTE8第二帧:BiDCDC 侧主控板发送给通讯板ID 0x18A0CCBB 周期(ms)PRI (3bit)Resv(2bit)FunctionCode(8bit)DestAddr(8bit)(8bit)SourceAddr(8bit)C1 AB CC数 据 域位置 数 据 名 数 据 说 明BYTE1 工作模式/工作状态 WorkMode_Set WorkMode_BiDCDCWorkState_R WorkState_BiDCDCdeadband_comBYTE2 工作状态/工作模式 WorkMode_Set 0.1.2.3.CtrlMode 4.5Test_Mode 6,7BYTE3 充电机输出的充电电压低字节 dis_udc Voltage_BiDCDCBYTE4 充电机输出的充电电压高字节BYTE5 充电机输出的充电电流低字节 disp_IOUTdc Current_BiDCDCBYTE6 充电机输出的充电电流高字节BYTE7 APF侧母线电压低字节 APF_BusVoltageBYTE8 APF侧母线电压高字节第三帧C0:APF侧主控板发送给通讯板ID 0x18A1CCAA 周期(ms)PRI (3bit)Resv(2bit)FunctionCode(8bit)DestAddr(8bit)(8bit)SourceAddr(8bit)C1 AB CC数 据 域位置 数 据 名 数 据 说 明 BYTE1 线电压低字节 APF_u_abBYTE2 线电压高字节BYTE3 A相电流低字节 APF_iafBYTE4 A相电流高字节BYTE5 B相电流低字节 APF_ibfBYTE6 B相电流高字节BYTE7 C相电流低字节 APF_icfBYTE8 C相电流高字节第四帧:APF 侧主控板发送给通讯板ID 0x18F1CCAA 周期(ms)PRI (3bit)Resv(2bit)FunctionCode(8bit)DestAddr(8bit)(8bit)SourceAddr(8bit)数 据 域位置 数 据 名 数 据 说 明 BYTE1 APF运行信息代码1 APF_ERROR[0]BYTE2 APF运行信息代码2 APF_ERROR[1]BYTE3 APF运行信息代码3 APF_ERROR[2]BYTE4 APF运行信息代码4 APF_ERROR[3]BYTE5 APF散热器温度1 APF_Temp[0]BYTE6 APF散热器温度2 APF_Temp[0]BYTE7 APF散热器温度3 APF_Temp[0]BYTE8 APF散热器温度4 APF_Temp[0]第五帧:BiDCDC 侧主控板发送给通讯板ID 0x18F1CCAA 周期(ms)PRI (3bit)Resv(2bit)FunctionCode(8bit)DestAddr(8bit)(8bit)SourceAddr(8bit)数 据 域位置 数 据 名 数 据 说 明 BYTE1 BiDCDC运行信息代码1 BiDCDC_ERROR[0]BYTE2 BiDCDC运行信息代码2 BiDCDC_ERROR[1]BYTE3 BiDCDC运行信息代码3 BiDCDC_ERROR[2]BYTE4 BiDCDC运行信息代码4 BiDCDC_ERROR[3]BYTE5 BiDCDC散热器温度1 BiDCDC_Temp[0]BYTE6 BiDCDC散热器温度2 BiDCDC_Temp[0]BYTE7 BiDCDC散热器温度3 BiDCDC_Temp[0]BYTE8 BiDCDC散热器温度4 BiDCDC_Temp[0]通讯板发送给主控板CAN2第一帧C0: 通讯板发送给主控板CAN2ID 0x18C0ABCC周期(ms)PRI (3bit)Resv(2bit)FunctionCode(8bit)DestAddr(8bit)(8bit)SourceAddr(8bit)C1 AB CC数 据 域位置 数 据 名 数 据 说 明BYTE1 工作模式/工作状态 WorkMode_SetbyCAN 低四位0B0000 静置 0B0001 恒流充电0B0010 恒压充电(限压恒流充电)0B0011 恒功率充电0B0100 恒流放电0B0101 恒压放电(限压恒流放电)0B0110 恒功率放电0B0111 系统调试模式WorkState_Set 4,5位0B00 停止 0B01 运行0B10 暂停 0B11 出错deadband_comHMI_TestMode = 0:为正常工作模式; 1:为系统调试模式BYTE2 充电电压设置低字节 VoltageSet_ChargeBYTE3 充电电压设置高字节 0.1VBYTE4 充电电流设置低字节 CurrentSet_ChargeBYTE5 充电电流设置高字节 0.1ABYTE6 AC侧电流设置低字节 IacSet_HMIBYTE7 AC侧电流设置高字节 0.1ABYTE8 控制模式/调试模式 KM1FANKA3KA4_CtrlHMI_CtrlMode第二帧C1: 通讯板发送给主控板CAN2ID 0x18C1ABCC 周期(ms)PRI (3bit)Resv(2bit)FunctionCode(8bit)DestAddr(8bit)(8bit)SourceAddr(8bit)C1 AB CC数 据 域位置 数 据 名 数 据 说 明 BYTE1 主参数低字节 MainParameterBYTE2 主参数高字节BYTE3 单体最高电压低字节 CellBatteryHighestVoltage BYTE4 单体最高电压高字节BYTE5 单体电压限值低字节 LimitCellVoltage_Charging BYTE6 单体电压限值高字节BYTE7 控制信息 KM2_ENABLE 1吸合 2 断开CellCtrl_NBT 单体控制 BYTE8 故障信息 CCS_ErrorCode第三帧C2:通讯板发送给主控板CAN2ID 0x18C2ABCC 周期(ms)PRI (3bit)Resv(2bit)FunctionCode(8bit)DestAddr(8bit)(8bit)SourceAddr(8bit)数 据 域位置 数 据 名 数 据 说 明 BYTE1 保护电压上限低字节 HighestVoltage_Prt BYTE2 保护电压上限高字节 0.1VBYTE3 保护电压下限低字节 LowestVoltage_PrtBYTE4 保护电压下限高字节 0.1VBYTE5 保护电流上限低字节 Charge_MaxCurrent_Prt BYTE6 保护电流上限高字节 0.1ABYTE7 保护电流下限低字节 Discharge_MaxCurrent_Prt BYTE8 保护电流下限高字节 0.1A第四帧404:通讯板发送给主控板CAN2ID 0x404 周期(ms)PRI (3bit)Resv(2bit)FunctionCode(8bit)DestAddr(8bit)(8bit)SourceAddr(8bit)数 据 域位置 数 据 名 数 据 说 明 BYTE1 主参数低字节 MainParameterBYTE2 主参数高字节 0.025VBYTE3 工作模式 工作模式WorkModeSet_NBT01 恒流充电 02恒压充电03 恒流放电 04 恒功率充电05恒功率放电 06恒阻放电07搁置工作状态WorkStateSet_NBT单体控制 CellCtrl_NBT第五帧F1:通讯板发送给主控板CAN2【新增参数设置】 ID 0x18F1ABCC 周期(ms)PRI (3bit)Resv(2bit)FunctionCode(8bit)DestAddr(8bit)(8bit)SourceAddr(8bit)数 据 域位置 数 据 名 数 据 说 明 BYTE1 直流电压矫正BYTE2 直流电流矫正BYTE3 直流电压偏移低字节BYTE4 直流电压偏移高字节BYTE5 直流电流偏移低字节BYTE6 直流电流偏移高字节BYTE7BYTE8第六帧F2:通讯板发送给主控板CAN2【新增参数设置】 ID 0x18F2ABCC 周期(ms)PRI (3bit)Resv(2bit)FunctionCode(8bit)DestAddr(8bit)(8bit)SourceAddr(8bit)数 据 域位置 数 据 名 数 据 说 明 BYTE1 直流电压比例1低字节BYTE2 直流电压比例1高字节BYTE3 直流电压比例2低字节BYTE4 直流电压比例2高字节BYTE5 直流电压比例3低字节BYTE6 直流电压比例3高字节BYTE7 直流电压比例4低字节BYTE8 直流电压比例4高字节第七帧F3:通讯板发送给主控板CAN2【新增参数设置】 ID 0x18F3ABCC 周期(ms)PRI (3bit)Resv(2bit)FunctionCode(8bit)DestAddr(8bit)(8bit)SourceAddr(8bit)数 据 域位置 数 据 名 数 据 说 明 BYTE1 充电电流比例1低字节BYTE2 充电电流比例1高字节BYTE3 充电电流比例2低字节BYTE4 充电电流比例2高字节BYTE5 放电电流比例1低字节BYTE6 放电电流比例1高字节BYTE7 放电电流比例2低字节BYTE8 放电电流比例2高字节BiDCDC侧发送给APF侧第一帧C0: BiDCDC发送给APF侧 CAN2ID 0x18A0CCBB:周期(ms)PRI (3bit)Resv(2bit)FunctionCode(8bit)DestAddr(8bit)(8bit)SourceAddr(8bit)数 据 域位置 数 据 名 数 据 说 明BYTE1 工作模式/工作状态 BiDCDC_WorkMode 低四位0B0000 静置 0B0001 恒流充电0B0010 恒压充电(限压恒流充电)0B0011 恒功率充电0B0100 恒流放电0B0101 恒压放电(限压恒流放电)0B0110 恒功率放电0B0111 系统调试模式BiDCDC_WorkState 4,5位0B00 停止 0B01 运行0B10 暂停 0B11 出错BYTE2 充电电压设置低字节 Voltage_BiDCDCBYTE3 充电电压设置高字节 0.1VBYTE4 充电电流设置低字节 Current_BiDCDCBYTE5 充电电流设置高字节 0.1A第二帧:BiDCDC侧主控板发送给APF 侧 CAN2ID 0x18F1CCBB 周期(ms)PRI (3bit)Resv(2bit)FunctionCode(8bit)DestAddr(8bit)(8bit)SourceAddr(8bit)数 据 域位置 数 据 名 数 据 说 明 BYTE1 BiDCDC运行信息代码1 BiDCDC_ERROR[0]BYTE2 BiDCDC运行信息代码2 BiDCDC_ERROR[1]BYTE3 BiDCDC运行信息代码3 BiDCDC_ERROR[2]BYTE4 BiDCDC运行信息代码4 BiDCDC_ERROR[3]BYTE5 BiDCDC散热器温度1 BiDCDC_Temp[0]BYTE6 BiDCDC散热器温度2 BiDCDC_Temp[0]BYTE7 BiDCDC散热器温度3 BiDCDC_Temp[0]BYTE8 BiDCDC散热器温度4 BiDCDC_Temp[0]APF侧发送给BiDCDC侧第一帧C0: APF发送给BiDCDC 侧 CAN2ID 0x18A0CCBB:周期(ms)PRI (3bit)Resv(2bit)FunctionCode(8bit)DestAddr(8bit)(8bit)SourceAddr(8bit)数 据 域位置 数 据 名 数 据 说 明BYTE1 工作模式/工作状态 APF_WorkMode 低四位0B0000 静置 0B0001 恒流充电0B0010 恒压充电(限压恒流充电)0B0011 恒功率充电0B0100 恒流放电0B0101 恒压放电(限压恒流放电)0B0110 恒功率放电0B0111 系统调试模式APF_WorkState 4,5位0B00 停止 0B01 运行0B10 暂停 0B11 出错BYTE2 APF侧母线电压低字节 APF_BusVoltageBYTE3 APF 侧母线电压高字节 0.1V第二帧: APF发送给BiDCDC侧 CAN2ID 0x18F1CCAA 周期(ms)PRI (3bit)Resv(2bit)FunctionCode(8bit)DestAddr(8bit)(8bit)SourceAddr(8bit)数 据 域位置 数 据 名 数 据 说 明 BYTE1 APF运行信息代码1 APF_ERROR[0]BYTE2 APF运行信息代码2 APF_ERROR[1]BYTE3 APF运行信息代码3 APF_ERROR[2]BYTE4 APF运行信息代码4 APF_ERROR[3]BYTE5 APF散热器温度1 APF_Temp[0]BYTE6 APF散热器温度2 APF_Temp[0]BYTE7 APF散热器温度3 APF_Temp[0]BYTE8 APF散热器温度4 APF_Temp[0]3.1、充电桩CAN1发往充电机A通迅板CAN1:共2帧3.1.1第一帧D1:充电桩对充电机的控制命令ID 0x0FD1CCDD 周期(ms)20PRI (3bit)Resv(2bit)FunctionCode(8bit)DestAddr(8bit)(8bit)SourceAddr(8bit)011 11 D1 CC DD数 据 域位置 数 据 名 数 据 说 明BYTE1 充电模式 0x00 :高频整流0x01 :恒流限压充电,0x02 :恒压限流充电,0x03 :恒功率充电,0x04 :容性无功输出0x05 :感性无功输出0x06 :恒流限压放电,0x07 :恒阻放电0x08 :恒功率放电,BYTE2 工作命令 0x00 : 停机 0x01 :运行0x02 :恢复 0x03 :故障BYTE3 控制方式 0x00 :手动 0x01: 国网BMS模式0x02: 充电桩控制0x03: 监控系统控制0x04: 国标BMS模式BYTE4 工作模式 0x00 :正常工作模式0x01 :系统调试模式BYTE5 充电电压设定低字节 0.1V/bit 偏移量:0例:V =3201,对应电压为320.1v BYTE6 充电电压设定高字节BYTE7 充电电流设定低字节 0.1A/bit 偏移量:0例:I =582 ,对应电流为58.2A BYTE8 充电电流设定高字节3.1.2第二帧D2:充电统计信息数据ID 0x0FD2CCDD 周期(ms)1000 PRI Resv FunctionCode DestAddr(8bit) SourceAddr(3bit) (2bit) (8bit) (8bit) (8bit) 011 11 D2 CC DD数 据 域位置 数 据 名 数 据 说 明BYTE1 充电起始时间_低字节 充电起始时间为:时分秒BYTE2 充电起始时间_高字节BYTE3 充电时长低字节 单位:分钟,偏移量:0例:V =65535,对应费用为65535分钟 BYTE4 充电时长高字节BYTE5 充电电量低字节 单位:0.01度,偏移量:0例:V =65535,对应费用为655.35度 BYTE6 充电电量高字节BYTE7 充电费用低字节 单位:0.01元,偏移量:0例:V =65535,对应费用为655.35元 BYTE8 充电费用高字节3.2、充电机A通迅板CAN1发往充电桩协议:共4帧3.2.1第一帧C1:充电机运行信息ID 0x07C1DDCC 周期(ms) 20PRI (3bit)Resv(2bit)FunctionCode(8bit)DestAddr(8bit)(8bit)SourceAddr(8bit)001 11 C1 DD CC数 据 域位置 数 据 名 数 据 说 明BYTE1 充电模式 0x00 :高频整流0x01 :恒流限压充电,0x02 :恒压限流充电,0x03 :恒功率充电,0x04 :容性无功输出0x05 :感性无功输出0x06 :恒流限压放电,0x07 :恒阻放电0x08 :恒功率放电,BYTE2 工作命令 0x00 : 停机 0x01 :运行0x02 :恢复 0x03 :故障BYTE3 控制方式 0x00 :手动 0x01: 国网BMS模式0x02: 充电桩控制0x03: 监控系统控制0x04: 国标BMS模式BYTE4 工作模式 0x00 :正常工作模式0x01 :系统调试模式BYTE5 充电电压低字节 0.1V/bit 偏移量:0例:V =3201,对应电压为320.1v BYTE6 充电电压高字节BYTE7 充电电流低字节 0.1A/bit 偏移量:0例:I =582 ,对应电流为58.2A BYTE8 充电电流高字节3.2.2第二帧C2:充电机交流输入信息ID 0x07C2DDCC 周期(ms)20PRI (3bit)Resv(2bit)FunctionCode(8bit)DestAddr(8bit)(8bit)SourceAddr(8bit)001 11 C2 DD CC数 据 域位置 数 据 名 数 据 说 明BYTE1 交流输入电压低字节 0.1V/bit 偏移量:0例:V =3201,对应电压为320.1v BYTE2 交流输入电压高字节BYTE3 三相电流Ia低字节 0.1A/bit 偏移量:0例:I =582 ,对应电流为58.2A BYTE4 三相电流Ia高字节BYTE5 三相电流Ib低字节 0.1A/bit 偏移量:0例:I =582 ,对应电流为58.2A BYTE6 三相电流Ib高字节BYTE7 三相电流Ic低字节 0.1A/bit 偏移量:0例:I =582 ,对应电流为58.2A BYTE8 三相电流Ic 高字节3.2.3第三帧C3:充电机APF侧运行信息码与温度ID 0x07C3DDCC 周期(ms)20PRI (3bit)Resv(2bit)FunctionCode(8bit)DestAddr(8bit)(8bit)SourceAddr(8bit)001 11 C3 DD CC数 据 域位置 数 据 名 数 据 说 明BYTE1 APF信息码1 Error_1, 16进制数,具体数值含义,参阅充电机相关操作文件BYTE2 APF信息码2 Error_2, 16进制数,具体数值含义,参阅充电机相关操作文件BYTE3 APF信息码3 Error_3, 16进制数,具体数值含义,参阅充电机相关操作文件BYTE4 APF信息码4 Error_4, 16进制数,具体数值含义,参阅充电机相关操作文件BYTE5 APF充电机温度1 PWM整流侧机箱温度。

纯电动乘用车CAN总线通讯协议v0

纯电动乘用车CAN总线通讯协议v0

0x02—电机转速输出请求 0x03——电机空转请求 0x10——AMT换挡请求 (2)VCU响应AMT报文 附表:Bytel定义 AMT请求反应字 x。——拒绝AMT请求 0x01——接受人乂丁请求 0x02——延迟接收AMT请求 0x10——当前换挡禁止 其余——无效 (3)AMT工作状态报文 附表:Bytel定义 AMT当前工作状态
三、纯电动乘用车ECU节点定义
、CAN报文说明
4.1电机限制器报文
⑴电机限制器报文1
限制器状态:
电机限制器故障代码:
要田4俗即值WVYJK片非水苴山YVYV伟田-I-癖制新伯先去
(2)电机限0
8
数据
⑶人机发送Y3报文
电机及限制器状态〔1表示有效,。表示无效〕
42电池治理系统〔BMS〕通讯报文
BMS报文1 数据 Word精品文档,可编辑,欢送下载 故障报警1: 故障报警2: 故障报警3: BMS状态: VCU通讯报文 (I)Y3发送电机限制报文1 电机工作模式指令(1表示有效或正常,。表示无效或故障〕 注: 1)对直流电压限制值,驱开工况下为最低工作电压限制值,制开工况下为最高制动电压限制值. 2)对直流电流限制值,驱开工况下为最大输出电流限制值,制开工况下为最大回馈电流限制值. (2)VCU发送BMS报文2
纯电动乘用车CAN总线通讯协议v0
纯电动乘用车CAN总线通讯协议
(V1.0)
李冬明
日期:2021.11.21.
靛7 _
日期:

广东陆地方舟新能源汽车电驱动系统
2021年11月
版本历史
一、通讯协议说明
1、CAN通讯协议符合」1939;
2、波特率:250K;
3、CAN据长度:8Bytes;

纯电动车BMS与整车系统CAN通信协议书范本

纯电动车BMS与整车系统CAN通信协议书范本

纯电动车BMS与整车系统CAN通信协议书范本【注意:以下协议书范本仅为演示用途,实际情况可根据具体需求进行相应调整】一、引言本协议书旨在规范纯电动车电池管理系统(BMS)与整车系统之间的通信协议,确保两个系统之间的数据交换和信息传输的稳定和准确。

该通信协议基于控制器局域网(Controller Area Network,CAN)技术,并遵循相关国际标准。

本协议书适用于车辆制造商、BMS供应商以及相关技术人员。

二、通信协议规范1. CAN通信协议a. CAN通信速率:根据实际车辆需求确定,一般为250kbps或500kbps。

b. CAN物理层:遵循ISO 11898标准。

c. CAN帧格式:使用标准CAN 2.0A或CAN 2.0B帧格式。

d. CAN标识符:根据车辆厂商约定进行分配。

e. BMS节点:BMS设备在CAN总线上作为一个节点存在,使用独立的CAN标识符进行通信。

2. 数据格式a. 数据长度:BMS与整车系统之间交换的数据长度为8字节,每个字节包含8位。

b. 数据格式:BMS与整车系统采用统一的数据格式,包括数据类型、数据单位等信息。

具体格式由车辆制造商和BMS供应商协商确定。

3. 数据交互a. 数据采集:BMS负责采集电池相关参数,如电压、温度、电流等。

b. 数据传输:BMS将采集到的数据通过CAN总线传输给整车系统。

c. 故障诊断:整车系统可向BMS发送命令以获取电池状态、报警信息等。

d. 数据解析:整车系统根据协议定义解析接收到的数据,以确保准确读取和使用。

4. 错误处理a. 数据校验:BMS和整车系统使用CRC校验确保数据传输的准确性。

b. 异常处理:BMS和整车系统应具备异常处理机制,对通信错误和故障进行处理和报警。

5. 通信安全性a. 数据加密:可根据实际需求采用加密技术,确保通信数据的安全性。

b. 认证授权:BMS与整车系统之间的通信可采用认证和授权机制,确保只有合法的系统才能进行通信。

纯电动车BMS与整车系统CAN通信协议

纯电动车BMS与整车系统CAN通信协议

文件类型:技术类密级:保密正宇纯电动车电池管理系统与整车系统CAN通信协议(GX-ZY—CAN-V1.00)版本记录版本制作者日期说明V1。

00 用于永康正宇纯电动车系统姓名日期签名拟定审查核准1 范围本标准规定了电动汽车电池管理系统(Battery Management System,以下简称BMS)与电机控制器(Vehicle Control Unit,简称VCU)、智能充电机(Intelligent Charger Unit,简称ICU)之间的通信协议。

本标准适用于电动汽车电池管理系统与整车系统和充电系统的数据交换.本标准的CAN标识符为29位,通信波特率为250kbps。

本标准数据传输采用低位先发送的格式。

本标准应用于正宇纯电动轿车电池管理系统。

2 规范性引用文件下列文件对于本文件的应用是必不可少的。

凡是注日期的版本适用于本文件。

凡不是注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

ISO 11898-1:2006 道路车辆控制器局域网络第1部分:数据链路层和物理信令(Road Vehicles – Controller Area Network (CAN)Part 1:Data Link Layer and Physical Signalling).SAE J1939-11:2006 商用车控制系统局域网络(CAN)通信协议第11部分:物理层,250Kbps,屏蔽双绞线(Recommanded Practice for a Serial Control and Communications Vehicle Network Part 11:Physical Layer,250Kbps,Twisted shielded Pair)。

SAE J1939-21:2006商用车控制系统局域网络(CAN)通信协议第21部分:数据链路层(Recommanded Practice for a Serial Control and Communications Vehicle Network Part 21:Data Link Layer).3 网络拓扑结构说明电动汽车网络采用CAN 互连结构如下所示,CAN1总线为电池管理系统与电机控制器之间的数据通信总线,CAN2总线为电池管理系统与充电机之间的数据通信总线。

纯电动乘用车CAN总线通讯协议v1.0

纯电动乘用车CAN总线通讯协议v1.0

纯电动乘用车CAN总线通讯协议(V1.0)编制:李冬明日期:2014.11.21.审核:日期:_批准:日期:_广东陆地方舟新能源汽车电驱动系统有限公司2014年11月版本历史一、通讯协议说明1、CAN通讯协议符合J1939;2、波特率:250K;3、CAN数据长度:8 Bytes;二、网络拓扑结构三、纯电动乘用车ECU节点定义四、CAN报文说明4.1 电机控制器报文(1)电机控制器报文1控制器状态:电机控制器故障代码:采用4位数值xxxx形式表示,其中xxxx使用十进制数值表示。

(2)电机控制器报文2(3)电机发送VCU报文电机及控制器状态(1表示有效,0表示无效)4.2、电池管理系统(BMS)通讯报文BMS报文1BMS报文2BMS报文3故障报警1:故障报警2:故障报警3:BMS状态:4.3、VCU通讯报文(1)VCU发送电机控制报文1电机工作模式指令(1表示有效或正常,0表示无效或故障)注:1)对直流电压限制值,驱动工况下为最低工作电压限制值,制动工况下为最高制动电压限制值。

2)对直流电流限制值,驱动工况下为最大输出电流限制值,制动工况下为最大回馈电流限制值。

(2)VCU发送BMS报文2电池工作模式指令(3)整车控制器报文3(3)整车控制器报文4附表:Byte3定义驾驶员操作状态Bit1 脚刹开关0 表示断开;1 表示闭合;Bit2 驻车开关0 表示断开;1 表示闭合;Bit3 手刹开关0 表示断开;1 表示闭合;Bit4~5 座椅安全带00B 表示断开;11B 表示全部闭合;01B表示驾驶员处未闭合;10B 表示乘员处未闭合附表:Byte4定义换挡器状态Bit1 AMT工作模式:0表示自动模式;1表示手自一体模式;Bit2:经济/运动模式开关:0表示经济模式;1表示运动模式;Bit3~4:保留Bit5~8:0000B:空挡;0001B:一档;0010B:二档;(0011B:三档;0100B:四档;0101B:五档… 以此类推)1111B:倒档。

纯电动车BMS和整车系统CAN通信协议书模板

纯电动车BMS和整车系统CAN通信协议书模板

纯电动车BMS和整车系统CAN通信协议书模板引言:BMS(电池管理系统)是一种用于监控和管理纯电动车辆电池状况的重要系统。

而CAN(Controller Area Network)通信协议则是一种用于在车辆内部各个控制模块之间进行高效通信的标准。

本文将针对纯电动车BMS和整车系统之间的CAN通信协议书进行模板的设计,以便更好地实现系统之间的数据交换和协作。

一、协议目的本协议的目的在于规范纯电动车的BMS与整车系统之间的CAN通信方式,并确保两者之间的数据传输准确、可靠,以实现整车系统的高效运行和保证行驶安全。

二、协议范围本协议适用于装配了BMS和整车系统的纯电动车辆。

三、通信协议1. CAN总线参数设置- 位率:根据系统要求设定合适的通信位率。

- 通信模式:采用标准模式(11位标识符)和扩展模式(29位标识符)根据具体需求进行选择。

- 传输层:采用CAN2.0B标准。

- 物理层:采用高速CAN物理层规范。

2. 帧格式- 纯电动车BMS与整车系统之间的CAN通信采用数据帧和远程帧。

- 数据帧分为标准帧和扩展帧,标识符按照具体应用场景进行定义。

3. 数据传输- 数据传输采用帧、命令和回复的方式进行。

- 帧:数据帧中包含需要传输的数据信息。

- 命令:整车系统向BMS发送指令,比如请求电池状态、请求电池温度等。

- 回复:BMS接收到命令后进行处理,并回复整车系统相应数据。

四、通信协议规范1. 标识符分配- 整车系统和BMS应进行标识符的分配,以确保通信双方能够正确识别和解析数据。

2. 命令与数据格式定义- 整车系统发送给BMS的命令应包含命令标识符和数据字段。

- BMS接收到命令后处理并回复数据给整车系统。

3. 错误处理- 在通信过程中,如出现通信错误或数据错误,应有相应的错误处理机制进行处理。

可以采用重传机制或其他错误处理方式。

五、状态转移图- 在整车系统和BMS通信中,可以使用状态转移图来描述不同状态间的转换关系,以及在每个状态下的数据交互过程。

新国标电动汽车充电CAN报文协议解析.

新国标电动汽车充电CAN报文协议解析.

新国标电动汽车充电CAN报文协议解析说明:多字节时,低字节在前,高字节在后。

电流方向:放电为正,充电为负。

一、握手阶段:1、ID:1801F456(PGN=256(充电机发送给BMS请求握手,数据长度8个字节,周期250msBYTE0辨识结果(0x00:BMS不能辨识,0xAA:BMS能辨识BYTE1充电机编号(比例因子:1,偏移量:0,数据范围:0~100BYTE2充电机/充电站所在区域编码,标准ASCII码BYTE3BYTE4BYTE5BYTE6BYTE72、ID:180256F4(PGN=512(BMS发送给充电机回答握手,数据长度41个字节,周期250ms,需要通过多包发送,多包发送过程见后文BYTE0BMS通信协议版本号,本标准规定当前版本为V1.0,表示为: byte2,byte1---0x0001,byte0---0x00BYTE1BYTE2BYTE3电池类型,01H:铅酸电池;02H:镍氢电池;03H:磷酸铁锂电池;04H:锰酸锂电池;05H:钴酸电池;06H:三元材料电池;07H:聚合物锂离子电池;08H:钛酸锂电池;FFH:其它电池BYTE4整车动力蓄电池系统额定容量/A·h,0.1A·h/位,0A·h偏移量,数据范围:0~1000A·hBYTE5BYTE6整车动力学电池系统额定总电压/V,0.1V/位,0V偏移量,数据范围:0~750V BYTE7BYTE8电池生产厂商名称,标准ASCII码BYTE9BYTE10BYTE11BYTE12电池组序号,预留,由厂商自行定义BYTE13BYTE14BYTE15BYTE16电池组生产日期:年(比例:1年/位,偏移量:1985,数据范围:1985~2235 BYTE17电池组生产日期:月(1月/位,偏移量:0月,数据范围:1~12月 BYTE18电池组生产日期:日(1日/位,偏移量:0日,数据范围:1~31日 BYTE19电池组充电次数,1次/位,偏移量:0次,以BMS统计为准BYTE20BYTE21BYTE22电池组产权表示(0:租赁,1:车自有BYTE23预留BYTE24~40车辆识别码(vin二、充电参数配置阶段:1、ID:180656F4(PGN=1536(BMS发送给充电机,动力蓄电池配置参数,数据长度13个字节,周期500ms,需要通过多包发送,多包发送过程见后文BYTE0单体动力蓄电池最高允许充电电压(比例:0.01V/bit,偏移量:0 BYTE1BYTE2最高允许充电电流(比例:0.1A/bit,偏移量:-400ABYTE3BYTE4动力蓄电池标称总能量(0.1Kw·h/bit,偏移量:0BYTE5BYTE6最高允许充电总电压(比例:0.1V/bit,偏移量:0BYTE7BYTE8最高允许温度(比例:1度/bit,偏移量:-50度BYTE9整车动力蓄电池荷电状态SOC(比例:0.1%/bit,偏移量:0BYTE10BYTE11整车动力蓄电池总电压(比例:0.1V/bit,偏移量:0BYTE122、ID:1807F456(PGN=1792(充电机发送给BMS,时间同步信息,数据长度7个字节,周期500ms BYTE0秒(压缩BCD码BYTE1分(压缩BCD码BYTE2时(压缩BCD码BYTE3日(压缩BCD码BYTE4月(压缩BCD码BYTE5年(压缩BCD码BYTE63、ID:1808F456(PGN=2048(充电机发送给BMS,充电机最大输出能力,数据长度6个字节,周期250ms BYTE0最高输出电压(比例:0.1V/bit,偏移量:0BYTE1BYTE2最低输出电压(比例:0.1V/bit,偏移量:0BYTE3BYTE4最大输出电流(0.1A/bit,偏移量:-400BYTE54、ID:100956F4(PGN=2304(BMS发送给充电机,电池充电准备就绪,数据长度1个字节,周期250ms BYTE0BMS是否充电准备好(0:BMS未准备好,0xAA:BMS完成充电准备5、ID:100AF456(PGN=2560(充电机发送给BMS,充电机输出准备就绪,数据长度1个字节,周期250ms BYTE0充电机是否完成充电准备(0:充电机未完成准备,0xAA:完成准备三、充电过程:1、ID:181056F4(PGN=4096(BMS发送给充电机,电池充电需求,数据长度5个字节,周期50msBYTE0充电电压需求(0.1V/bit,偏移量:0VBYTE1BYTE2充电电流需求(0.1A/bit,偏移量:-400ABYTE3BYTE4充电模式(0x01:恒压充电;0x02:恒流充电2、ID:181156F4(PGN=4352(BMS发送给充电机,电池充电总状态,数据长度9个字节,周期250ms,需要通过多包发送,多包发送过程见后文BYTE0充电电压测量值(0.1V/bit,偏移量:0VBYTE1BYTE2充电电流测量值(0.1A/bit,偏移量:-400ABYTE3BYTE4最高单体动力蓄电池电压及其组号(1~12:蓄电池电压,0.01V/bit;13~16:动力蓄电池电池电压所在组号:1/bit,偏移量:1BYTE5BYTE6当前SOC(1%的比例,偏移量:0BYTE7估算剩余充电时间(1min/bit,大于600分钟按600分钟发送BYTE83、ID:1812F456(PGN=4608(充电机发送给BMS,充电机充电状态,数据长度6个字节,周期50msBYTE0充电电压输出值(0.1V/bit,偏移量:0VBYTE1BTYE2充电电流输出值(0.1A/bit,偏移量:-400ABYTE3BYTE4累计充电时间(1min/bit,最大为600minBYTE54、ID:181356F4(PGN=4864(BMS发送给充电机,电池状态信息,数据长度7个字节,周期250msBYTE0最高单体动力蓄电池电压所在编号BYTE1最高动力蓄电池温度(1度/bit,偏移量:-50BYTE2最高温度检测点编号BYTE3最低动力蓄电池温度(1度/bit,偏移量:-50BYTE4最低动力蓄电池温度检测点号BYTE5Bit0-bit1单体动力蓄电池电压过高/过低(00:正常;01:过高;10:过低Bit2-bit3整车动力蓄电池荷电状态SOC过高/过低(00:正常;01:过高;10:过低Bit4-bit5动力蓄电池充电过电流(00:正常;01:过流;10:不可信Bit6-bit7动力蓄电池温度过高(00:正常;01:过高;10:不可信 BYTE6Bit0-bit1动力蓄电池绝缘状态(00:正常;01:不正常;10:不可信 Bit2-bit3动力蓄电池组输出连接器连接状态(00:正常,01:不正常,10:不可信Bit4-bit5充电允许(00:禁止;01:允许5、ID:181556F4(PGN=5376(BMS发送给充电机,电池单体电压信息,数据长度不定,周期1s,需要通过多包发送,多包发送过程见后文BYTE01号单体动力电池电压BYTE1BYTE22号单体动力电池电压BYTE3BYTE43号单体动力电池电压BYTE5、、、、、、、、、、、、BYTE511256号单体动力电池电压6、ID:181656F4(PGN=5632(BMS发送给充电机,电池温度信息,数据长度不定,周期1s,需要通过多包发送,多包发送过程见后文BYTE0动力蓄电池1温度信息(比例:1度/bit,偏移量:-50度BYTE1动力蓄电池2温度信息(比例:1度/bit,偏移量:-50度BYTE2动力蓄电池3温度信息(比例:1度/bit,偏移量:-50度BYTE3动力蓄电池4温度信息(比例:1度/bit,偏移量:-50度BYTE4动力蓄电池5温度信息(比例:1度/bit,偏移量:-50度BYTE5动力蓄电池6温度信息(比例:1度/bit,偏移量:-50度、、、、、、、、、、、、BYTEN动力蓄电池N+1温度信息(比例:1度/bit,偏移量:-50度7、ID:181756F4(PGN=5888(BMS发送给充电机,电池预留报文,数据长度不定,周期1s,需要通过多包发送,多包发送过程见后文BYTE0预留BYTE1预留BYTE2预留BYTE3预留BYTE4预留BYTE5预留、、、、、、预留BYTEN预留8、ID:101956F4(PGN=6400(BMS发送给充电机,BMS中止充电,数据长度4个字节,周期10msBYTE0BMS中止充电原因BYTE1BMS中止充电故障原因BYTE2BYTE3BMS中止充电错误原因说明:1、BMS中止充电原因:a1~2位:达到所需求的SOC目标值(00:未达到,01:达到需求,10:不可信状态; b3~4位:达到总电压的设定值(00:未达到总电压设定值,01:达到设定值,10: 不可信状态;c5~6位:达到单体电压的设定值(00:未达到,01:达到,10:不可信状态2、BMS中止充电故障原因:a1~2位:绝缘故障(00:正常,01:故障,10:不可信状态b3~4位:输出连接器过温故障(00:正常,01:故障,10:不可信状态c5~6位:BMS原件、输出连接器过温(00:正常,01:故障,10:不可信状态d7~8位:充电连接器故障(00:正常,01:故障,10:不可信状态e9~10位:电池组温度过高故障(00:正常,01:故障,10:不可信状态f11~12位:其它故障(00:正常,01:故障,10:不可信状态3、BMS中止充电错误原因:a1~2位:电流过大(00:正常,01:电流超过需求值,10:不可信状态b3~4位:电压异常(00:正常,01:电压异常,10:不可信状态9、ID:101AF456(PGN=6656(充电机发送给BMS,充电机中止充电,数据长度4个字节,周期10ms BYTE0充电机中止充电原因BYTE1充电机中止充电故障原因BYTE2BYTE3充电机中止充电错误原因说明:1、充电机中止充电原因:a1~2位:达到充电机设定的条件中止(00:正常,01:达到设定条件中止,10:不可信状态b3~4位:人工中止(00:正常,01:人工中止,10:不可信状态c5~6位:故障中止(00:正常,01:故障中止,10:不可信状态2、充电机中止充电故障原因: a 1~2 位:充电机过温故障(00:温度正常,01:充电机过温,10:不可信状态) b 3~4 位:充电连接器故障(00:连机器正常,01:故障,10:不可信状态) c 5~6 位:充电机内部过温故障(00:内部温度正常,01:内部过温,10:不可信) d 7~8 位:所需电量不能传送(00:传送正常,01:不能传送,10:不可信) e 9~10 位:充电机急停故障(00:正常,01:急停,10:不可信状态) f 11~12 位:其它故障(00:正常,01:故障,10:不可信状态)3、充电机中止充电错误原因: a 1~2 位:电流不匹配(00:电流匹配,01:电流不匹配,10:不可信状态) b 3~4 位:电压异常(00:正常,01:异常,10:不可信状态)四、充电结束阶段: 1、ID:181C56F4 (PGN=7168 (BMS 发送给充电机,BMS 统计数据,数据长度 7 个字节,周期 250ms) BYTE0 BYTE1 BYTE2 BYTE3 BYTE4 BYTE5 BYTE6 动力蓄电池最低温度(比例:1,偏移量:-50)动力蓄电池最高温度(比例:1,偏移量:-50)动力蓄电池单体最高电压(比例:0.01,偏移量:0)中止时 SOC 值(比例:1%,偏移量:0)动力蓄电池单体最低电压(比例:0.01,偏移量:0) 2、ID:181DF456 (PGN=7424 (充电机发送给 BMS,充电机统计数据,数据长度 5 个字节,周期 250ms) BYTE0 BYTE1 BYTE2 BYTE3 BYTE4 充电机编号累计输出能量(比例:0.1kw·h,偏移量:0,范围:0~1000)累计充电时间(比例:1min,偏移量:0,范围:0~600)五、发生错误: 1、ID:081E56F4 (PGN=7680 (BMS 发送给充电机,BMS 统计数据,数据长度 4 个字节,周期 250ms) BYTE0 Bit0-Bit1 Bit2-Bit3 BYTE1 Bit0-Bit1 Bit2-Bit3 BYTE2 Bit0-Bit1 接受 SPN2560=0X00 充电机辨识报文超时(00 :正常,01 :超时,10:不可信状态)接受 SPN2560=0XAA 充电机辨识报文超时(00:正常,01 :超时,10:不可信状态)接受充电机的时间同步和充电机最大能力报文超时( 00:正常,01:超时,10:不可信状态)接受充电机完成充电准备报文超时(00:正常, 01:超时, 10:不可信状态)接受充电机充电状态报文超时(00:正常,01:超时, 10:不可信状态)Bit2-Bit3 BYTE3 Bit0-Bit1 接受充电机中止报文超时( 00:正常,01:超时,10:不可信状态)接受充电机充电统计报文超时(00:正常,01:超时, 10:不可信状态) 2、ID:081FF456 (PGN=7936 (充电机发送给 BMS,充电机中止充电,数据长度 4 个字节,周期 250ms) BYTE0 BYTE1 Bit0-Bit1 Bit0-Bit1 Bit2-Bit3 BYTE2 Bit0-Bit1 Bit2-Bit3 Bit4-Bit5 BYTE3 Bit0-Bit1 接受 BMS 和车辆的辨识报文超时(00:正常,01:超时,10:不可信状态)接受电池充电参数报文超时(00:正常, 01:超时,10:不可信状态)接受 BMS 完成充电前准备报文超时(00:正常,01:超时, 10:不可信状态)接受电池充电总状态报文超时(00:正常,01:超时, 10:不可信状态)接受电池充电需求报文超时(00:正常,01:超时,10:不可信状态)接受 BMS 中止充电报文超时(00:正常,01:超时,10:不可信状态)接受 BMS 充电统计报文超时(00:正常,01:超时,10:不可信状态)六、多包发送过程: 1、0x1CEC56F4(BMS 请求建立多包发送,周期 50ms BYTE0 BYTE1 BYTE2 BYTE3 BYTE4 BYTE5 BYTE6 BYTE7 2、0x1CECF456(充电机应答多包发送请求,周期 50ms BYTE0 BYTE1 BYTE2 BYTE3 BYTE4 回答控制字 0x11 可发送的数据包数接下来发送的第一个数据包号 0xFF0xFF 需要发送的包数 0Xff 所装载数据的参数组群号,即其 PGN 请求控制字 0x10 需要发送的总字节数BYTE5 BYTE6 BYTE7 所装载数据的参数组群号,即其 PGN 3、0x1CEB56F4(BMS 发送多包信息,周期根据国标定义 BYTE0 BYTE1 BYTE2 BYTE3 BYTE4 BYTE5 BYTE6 BYTE7 包序号(1 到 N)需发送的内容需发送的内容需发送的内容需发送的内容需发送的内容需发送的内容需发送的内容 4、0x1CECF456(充电机响应完成多包接收,周期 50ms BYTE0 BYTE1 BYTE2 BYTE3 BYTE4 BYTE5 BYTE6 BYTE7 接受到的总包数 0Xff 所装载数据的参数组群号,即其 PGN 请求控制字 0x13 接受到的总字节数深圳市聚电新能源科技有限公司武继坤整理。

纯电动车BMS与整车系统CAN通信协议

纯电动车BMS与整车系统CAN通信协议

纯电动车BMS与整车系统CAN通信协议随着电动车领域的快速发展,纯电动车的电池管理系统(BMS)和整车系统之间的通信协议变得越发重要。

BMS负责监控电池状态、控制充放电过程,并将相关信息传递给整车系统,以实现对纯电动车的全面控制和管理。

而整车系统则负责接收和解析BMS传递的信息,并作出相应的调控。

CAN通信协议,即控制器局域网通信协议(Controller Area Network),是一种广泛应用于汽车电子系统中的标准通信协议。

它采用差分信号传输,在高速和抗干扰性能方面优于其他通信协议,因此成为了纯电动车BMS与整车系统之间通信的首选协议。

CAN通信协议通过一对不同电压的差分信号来传递信息。

在CAN总线上,整车系统和BMS通过CAN节点来实现通信。

CAN节点可以是控制器、传感器、执行器等。

CAN通信协议有两种工作模式:基本帧格式(Standard Frame Format)和扩展帧格式(Extended Frame Format)。

基本帧格式用于低速通信,帧ID为11位;扩展帧格式用于高速通信,帧ID为29位。

CAN总线的通信速率可根据具体的需求设置,一般可达到1 Mbps。

在纯电动车中,BMS和整车系统之间的通信通过CAN总线进行。

BMS将电池相关信息(如电池状态、电流、电压等)发送给整车系统,以供整车系统做出相应的控制和管理。

而整车系统也可以向BMS发送指令,如设置电池充电电流、放电电流等。

为了确保通信的安全可靠,CAN通信协议还支持错误检测和纠正。

每个CAN节点都有一个唯一的地址(节点ID),用于识别发送和接收的信息。

在发送信息时,节点会将信息打包成帧,并附上CRC(循环冗余校验)码以进行错误检测。

接收节点在接收到信息后会进行CRC校验,若校验失败,则说明信息发生错误,可以进行相应的错误处理。

另外,纯电动车的BMS和整车系统之间的通信协议还应考虑一些特殊需求。

例如,BMS需要监测电池的温度和故障状态,并将这些信息传递给整车系统。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

纯电动乘用车CAN总线通讯协议
(V1.0)
编制:李冬明
日期:2014.11.21.
审核:日期:_
批准:日期:_
广东陆地方舟新能源汽车电驱动系统有限公司
2014年11月
版本历史
一、通讯协议说明
1、CAN通讯协议符合J1939;
2、波特率:250K;
3、CAN数据长度:8 Bytes;
二、网络拓扑结构
三、纯电动乘用车ECU节点定义
四、CAN报文说明
4.1 电机控制器报文
(1)电机控制器报文1
控制器状态:
电机控制器故障代码:
采用4位数值xxxx形式表示,其中xxxx使用十进制数值表示。

(2)电机控制器报文2
(3)电机发送VCU报文
电机及控制器状态(1表示有效,0表示无效)
4.2、电池管理系统(BMS)通讯报文BMS报文1
BMS报文2
BMS报文3
故障报警1:
故障报警2:
故障报警3:
BMS状态:
4.3、VCU通讯报文
(1)VCU发送电机控制报文1
电机工作模式指令(1表示有效或正常,0表示无效或故障)
注:
1)对直流电压限制值,驱动工况下为最低工作电压限制值,制动工况下为最高制动电压限制值。

2)对直流电流限制值,驱动工况下为最大输出电流限制值,制动工况下为最大回馈电流限制值。

(2)VCU发送BMS报文2
电池工作模式指令
(3)整车控制器报文3
(3)整车控制器报文4
附表:Byte3定义
驾驶员操作状态
Bit1 脚刹开关0 表示断开;1 表示闭合;
Bit2 驻车开关0 表示断开;1 表示闭合;
Bit3 手刹开关0 表示断开;1 表示闭合;
Bit4~5 座椅安全带00B 表示断开;11B 表示全部闭合;01B表示驾驶员处未闭合;10B 表示乘员处未闭合
附表:Byte4定义
换挡器状态
Bit1 AMT工作模式:0表示自动模式;1表示手自一体模式;
Bit2:经济/运动模式开关:0表示经济模式;1表示运动模式;
Bit3~4:保留
Bit5~8:0000B:空挡;0001B:一档;0010B:二档;(0011B:三档;0100B:四档;
0101B:五档… 以此类推)1111B:倒档。

附表:Byte5定义
附表:Byte6定义
4.4、AMT通讯报文(1)AMT发送VCU报文
附表:Byte5定义
电机控制请求类型
0x00——无请求
0x01——电机力矩输出请求
0x02——电机转速输出请求
0x03——电机空转请求
0x10——AMT换挡请求
(2)VCU响应AMT报文
附表:Byte1定义
AMT请求反馈字
0x00——拒绝AMT请求
0x01——接受AMT请求
0x02——延迟接收AMT请求0x10——当前换挡禁止
其余——无效
(3)AMT工作状态报文
附表:Byte1定义
AMT当前工作状态
Bit1 AMT当前工作模式:0表示自动模式;1表示手自一体模式;Bit2:经济/运动模式:0表示经济模式;1表示运动模式;
Bit3~4:保留
Bit5~8:AMT当前档位0000B:空挡;0001B:一档;0010B:二档;(0011B:三档;0100B:四档;0101B:五档… 以此类推)1111B:倒档。

附表:Byte2定义
AMT换挡意图
Bit1~4:AMT切换前档位0000B:空挡;0001B:一档;0010B:二档;(0011B:三档;0100B:四档;0101B:五档… 以此类推)
Bit5~8:AMT切换后档位0000B:空挡;0001B:一档;0010B:二档;(0011B:三档;0100B:四档;0101B:五档… 以此类推)
注:AMT切换前档位与AMT切换后档位相同表示AMT无换挡意图
(4)AMT车速与里程报文。

相关文档
最新文档