常用抗体标记荧光染料

合集下载

抗体标记方式

抗体标记方式

抗体标记方式引言:抗体标记是一种广泛应用于生物医学研究和临床诊断中的方法,通过将抗体与特定的标记物结合,可以实现对目标分子的高度敏感和特异性检测。

本文将介绍几种常见的抗体标记方式,包括荧光标记、酶标记、放射性标记以及磁性标记。

一、荧光标记荧光标记是一种常见的抗体标记方法,通过将荧光染料与抗体结合,可以实现对目标分子的可视化检测。

荧光标记具有高灵敏度、高特异性、实时监测等优点,常用于免疫组织化学、流式细胞术等研究领域。

常见的荧光染料有荧光素、荧光素同工异构体、荧光素同系异构体等。

二、酶标记酶标记是一种常用的抗体标记方式,通过将酶与抗体结合,可以实现对目标分子的间接检测。

酶标记的原理是将酶与底物反应产生可检测的产物,常见的酶标记有辣根过氧化物酶(HRP)、碱性磷酸酶(AP)等。

酶标记具有灵敏度高、信号稳定、操作简便等特点,广泛应用于酶联免疫吸附试验(ELISA)等实验中。

三、放射性标记放射性标记是一种非常敏感的抗体标记方式,通过将放射性同位素与抗体结合,可以实现对目标分子的定量检测。

放射性标记常用的同位素有^125I、^32P等,其辐射可被探测器捕获,从而实现对目标分子的高灵敏度检测。

放射性标记在免疫组织化学、放射免疫分析等领域得到广泛应用。

四、磁性标记磁性标记是一种新兴的抗体标记方式,通过将磁性颗粒与抗体结合,可以实现对目标分子的快速分离和检测。

磁性标记具有操作简便、快速高效、可重复使用等优点,常用于磁性分离、磁共振成像等研究领域。

磁性标记颗粒的大小和形状可以根据需要进行调节,常用的磁性标记颗粒有超顺磁性颗粒、亚顺磁性颗粒等。

结论:抗体标记是一种重要的生物学工具,不同的标记方式具有各自的特点和应用范围。

荧光标记适用于可视化检测,酶标记适用于间接检测,放射性标记适用于高灵敏度定量检测,磁性标记适用于快速分离和检测。

在实际应用中,选择合适的抗体标记方式非常重要,可以根据研究需求和实验条件综合考虑。

未来,随着技术的不断发展和创新,抗体标记方式将更加多样化和精准化,为生物医学研究和临床诊断提供更多可能。

荧光偏振常用荧光标记物

荧光偏振常用荧光标记物

光‎波长范围宽‎,发射光波长‎范围窄,荧光衰变时‎间长,最适合用于‎分辨荧光免‎疫测定。

藻红蛋白(P-phyco‎e ryth‎r in,PE)PE是在红‎藻中所发现‎的一种可进‎行光合作用‎的自然荧光‎色素,分子量为2‎40kD 的‎蛋白,最大吸收峰‎为564 nm,当使用48‎8 nm激光激‎发时其发射‎荧光峰值约‎为576 nm,对于单激光‎器的流式细‎胞仪来说,推荐使用5‎85±21nm的‎带通滤光片‎,双激光器的‎流式细胞仪‎推荐使用5‎75±13nm的‎带通滤光片‎。

FL2探测‎器检测PE‎。

多甲藻叶绿‎素蛋白(PerCP‎)PerCP‎是在甲藻和‎薄甲藻的光‎学合成器中‎发现的,是一种蛋白‎复合物,分子量约为‎35kD,最大激发波‎长的峰值在‎490nm‎附近,当被488‎n m氩离子‎激光激发后‎,发射光的峰‎值约为67‎7nm。

FL3探测‎器检测Pe‎r CP。

碘化丙啶( propi‎d ium iodid‎e,PI)可选择性地‎嵌入核酸(DNA、RNA)的双螺旋碱‎基对中。

在对DNA‎染色时,需用RNa‎s e 对细胞‎进行处理,以排除RN‎A对DNA‎荧光定量精‎度的影响。

在488n‎m波长激发‎下,PI的发射‎光谱为61‎0-620nm‎。

FL2探测‎器检测PI‎。

中间体异硫‎氰酸荧光素‎乙二胺(fluor‎e scei‎n thio‎c arba‎m ylet‎h ylen‎e diam‎i ne,EDF)和异硫氰酸‎荧光素己二‎胺(fluor‎e scei‎n thio‎c arba‎m yl hexyl‎e nedi‎a mine‎,HDF)合成:用甲醇配制‎1%的三乙胺溶‎液,分别将20‎m g(0.3 mmol)乙二胺和3‎4.8 mg(0.3 mmol)己二胺溶于‎5 ml 甲醇三乙胺‎溶液中;再将11.7 mg(0.03mmo‎l)FITC 溶于1 ml 甲醇三乙胺‎溶液中,逐滴加到乙‎二胺和己二‎胺溶液中,室温避光搅‎拌反应1 h,浓缩,硅胶柱层析‎(乙酸乙酯﹕甲醇=3﹕1,v﹕v),得到粉末状的E‎DF 和HDF,电喷雾离子‎化质谱(ESI-MS)鉴定后,备用。

常用免疫荧光染色抗体

常用免疫荧光染色抗体

常用免疫荧光染色抗体概述免疫荧光染色是一种常用的实验技术,用于检测和定位细胞中的特定蛋白质或其他分子。

它通过结合特异性抗体和荧光染料来实现对目标分子的可视化。

常用的免疫荧光染色抗体是指在科学研究和临床诊断中广泛应用的一类抗体。

抗体的基本原理抗体是一种由机体产生的特异性蛋白质,它可以与特定抗原结合并形成稳定的复合物。

在免疫荧光染色中,选择适当的抗体可以使目标分子与荧光染料结合,从而产生荧光信号。

这种信号可以通过显微镜观察,并且可以提供关于目标分子在细胞或组织中的位置和表达水平的信息。

免疫荧光染色抗体的选择选择适当的抗体对于成功进行免疫荧光染色非常重要。

以下是一些选择抗体时需要考虑的因素:1. 特异性抗体应具有高度特异性,即只与目标分子结合,而不与其他分子发生交叉反应。

这可以通过使用已经经过验证的抗体或进行免疫吸附等方法来确保。

2. 效价抗体的效价是指其与抗原结合的能力。

高效价的抗体可以更好地检测低表达水平的目标分子。

一般来说,选择效价较高的抗体可以提高免疫荧光染色的灵敏度和准确性。

3. 免疫原性选择抗体时需要考虑其免疫原性。

某些抗体可能会引发机体免疫反应,导致实验结果不准确或产生假阳性信号。

因此,在选择抗体时需要注意其是否具有良好的免疫原性。

4. 经济性在实验室中进行大规模实验时,经济性也是选择抗体时需要考虑的因素之一。

一些常用的商业化抗体价格较高,因此需要根据实验需求和预算进行选择。

常用免疫荧光染色技术常用的免疫荧光染色技术包括直接染色和间接染色两种方法。

1. 直接染色直接染色是将荧光标记的抗体直接与目标分子结合。

这种方法简单快速,适用于只需要检测一个目标分子的情况。

直接染色可以通过将荧光染料共价结合到抗体上来实现。

2. 间接染色间接染色是在目标分子与一种未标记的一抗(一级抗体)结合后,使用荧光标记的二抗(二级抗体)来检测。

这种方法可以增强信号强度,提高检测灵敏度。

一般来说,二级抗体是针对一级抗体不同物种来源的抗体。

免疫分析中常用的荧光染料与标记染色

免疫分析中常用的荧光染料与标记染色

(⼀)免疫荧光标记最常⽤的荧光染料
最常⽤的染料有FITC和藻红蛋⽩类(PE)及罗丹明等。

FITC(异硫氰酸荧光素):绿⾊530nm
PE(藻红蛋⽩):橙黄⾊575nm
PerCP(多甲藻黄素叶绿素蛋⽩):深红⾊675nm
PI(碘化丙啶):橙红⾊620nm
488nm波长的氩离⼦激光激发
APC(别藻青蛋⽩):红⾊660nm
630nm波长的氦氖激光或红⾊⼆极管激光激发
(⼆)免疫荧光标记
常⽤的标记染⾊为直接免疫荧光染⾊和间接免疫荧光染⾊。

在进⾏双参数或多参数分析时,常常需要进⾏荧光抗体的组合标记,⽬前已经有双⾊、三⾊以及四⾊标记。

(三)细胞⾃发荧光
⾃发荧光信号为噪声信号,在多数情况下会⼲扰对特异荧光信号的分辨和测量。

在免疫细胞化学等测量中,对于结合⽔平不⾼的荧光抗体来说,如何提⾼信噪⽐是个关键。

⼀般说来,细胞成分中能够产⽣⾃发荧光的分⼦(例如核黄素、细胞⾊素等)的含量越⾼,⾃发荧光越强;培养细胞中死细胞/活细胞⽐例越⾼,⾃发荧光越强;细胞样品中所含亮细胞的⽐例越⾼,⾃发荧光越强。

常见荧光染料及用途

常见荧光染料及用途

常见荧光染料及用途《常见荧光染料及用途》荧光染料是一种能够吸收可见光或紫外光,并在吸收能量的激发下发射可见光的化学物质。

它们的应用非常广泛,涵盖了许多领域,例如生物医学、材料科学、环境监测等。

以下介绍几种常见的荧光染料及其主要用途。

1. 墨水蓝(BR):墨水蓝是一种具有强烈蓝色荧光的染料,常用于生物实验中的DNA染色。

它与DNA结合后能发出强烈的荧光信号,从而在实验中方便地观察和分析DNA的存在和定位。

2. 罗丹明B(RhB):罗丹明B是一种红色荧光染料,广泛用于组织切片和细胞染色。

它能够与细胞核和胞浆中的核酸结合,以显示细胞和组织的结构,帮助科研人员研究细胞分裂和组织结构变化。

3. 草酸罗丹明G(OG):草酸罗丹明G是一种绿色荧光染料,主要应用于蛋白质和核酸的定量分析。

在分光光度计中配合荧光检测器使用,可以精确测定溶液中蛋白质和核酸的浓度。

4. 罗丹明110(Rh110):罗丹明110是一种黄绿色荧光染料,常用于细胞活性检测。

通过与细胞内的酶或细胞膜结合,罗丹明110可以用来评估细胞的活力和存活情况,特别适用于细胞毒性测试和细胞增殖研究。

5. 荧光素(FITC):荧光素是一种与生物相容性极高的荧光染料,常用于免疫染色和分子生物学实验。

它能与抗体特异性结合,在免疫组化和流式细胞术中用于检测蛋白质的表达以及细胞表面标记。

以上只是常见的荧光染料中的几种,它们的应用还远不止于此。

随着科学技术的不断进步,新型的荧光染料不断问世,为各个领域的研究提供了更多更有力的工具。

通过荧光染料的运用,科学家们能够更好地理解和研究生物、物质和环境,进一步推动科学的发展。

常用的免疫标记技术

常用的免疫标记技术

常用的免疫标记技术免疫标记技术是一种用于检测和分析生物分子的方法,其中利用特定的抗体或其他免疫物质标记目标分子,从而使这些分子能够被观察和测量。

以下是一些常用的免疫标记技术:1.免疫荧光技术(Immunofluorescence):在这种技术中,用于检测目标分子的抗体被标记上荧光染料。

通过荧光显微镜观察样本,可以定位和定量目标分子的位置和数量。

2.免疫酶联免疫吸附试验(Enzyme-Linked Immunosorbent Assay,ELISA):这是一种广泛用于检测抗体或抗原的技术。

ELISA 利用酶标记的抗体或抗原与目标分子结合,然后通过酶的底物反应来产生可测量的信号。

3.免疫印迹技术(Western Blot):Western Blot用于检测蛋白质。

蛋白质被电泳分离,然后通过免疫印迹将其转移到膜上。

接着使用特定抗体标记的酶或荧光物质来检测目标蛋白质。

4.免疫组织化学(Immunohistochemistry,IHC):IHC用于在组织切片中检测特定抗原的存在。

切片上的抗原与标记有酶、荧光染料或其他标记的抗体结合,通过显微镜观察抗原的分布。

5.流式细胞仪技术(Flow Cytometry):该技术通过激光照射细胞,测量细胞表面或内部的荧光标记物,以分析细胞的类型、状态和功能。

6.蛋白质质谱法(Mass Spectrometry):将样品中的蛋白质离子化,并通过质谱仪测量质量。

免疫质谱结合了免疫标记和质谱技术,可用于检测和鉴定蛋白质。

7.免疫电镜技术(Immunoelectron Microscopy):在电子显微镜下观察样本,通过标记的抗体来可视化细胞或亚细胞结构中的特定蛋白质。

8.免疫磁珠技术(Immunomagnetic Bead Assay):使用带有磁珠的抗体,通过磁场将目标分子分离出来。

常用于细胞分离和分析。

这些免疫标记技术在生物医学研究、临床诊断和药物开发等领域发挥着关键作用,可以用于检测和定量各种生物分子,如蛋白质、抗体、核酸等。

荧光标记抗体原理

荧光标记抗体原理

荧光标记抗体原理
荧光标记抗体是指将一种荧光物质与抗体结合,使抗体具有荧光性质。

荧光标记抗体原理如下:
1. 选择一种具有良好荧光性质的荧光物质,常用的荧光物质包括荧光素、荧光染料(如荧光同种异构体(FITC)、荧光硫氰酸异硫氰酯(Alexa Fluor)等)等。

2. 将选择的荧光物质与抗体进行化学反应,常用的偶联试剂包括异硫氰酸酯(Isocyanate)和丙酮醛等。

3. 反应后,荧光物质与抗体结合成荧光标记抗体。

荧光物质的选择要求与抗体具有良好的结合活性和稳定性,且不影响抗体的特异性和亲和性。

4. 荧光标记抗体可用于免疫组化、流式细胞术、免疫印迹等实验中,通过检测其荧光信号来定位和定量分析抗体所结合的目标分子。

荧光标记抗体的优势在于其具有较高的灵敏度、选择性和多色选择性,可用于多重标记和共定位分析等研究。

同时,荧光标记抗体还可以与其他标记抗体(如酶标记抗体)结合使用,以增加信号的稳定性和可见度,从而提高实验结果的可靠性。

组织切片免疫荧光染色

组织切片免疫荧光染色

组织切片免疫荧光染色引言:组织切片免疫荧光染色是一种常用的实验技术,用于研究组织样本中特定抗原的表达和分布情况。

该技术利用特异性抗体与目标抗原结合,并通过荧光染料的发射来可视化抗原的位置。

本文将介绍组织切片免疫荧光染色的原理、步骤以及其在生物医学研究中的应用。

一、原理:组织切片免疫荧光染色的原理基于免疫学的基本原理。

它利用抗原与特异性抗体的特异性结合来实现染色。

在该技术中,首先将待研究组织样本切片,然后使用一种或多种抗体与目标抗原结合。

这些抗体通常标记有荧光染料,如荧光素(fluorochrome)或荧光素同分异构体(fluorescent isothiocyanate, FITC)等。

当用荧光显微镜观察时,这些荧光染料会发射出可见光,从而可视化目标抗原的位置和分布情况。

二、步骤:1. 组织固定:将待研究的组织样本进行固定处理,常用的固定剂包括乙醛、甲醛等。

固定的目的是保持组织结构完整,并防止抗原的损失和降解。

2. 组织切片:使用组织切片机将固定的组织样本切成薄片,通常为5-10微米。

3. 抗原解脱:对于某些抗原,需要进行抗原解脱的处理。

解脱的目的是改变组织样本的结构,使得抗体能够更好地与抗原结合。

4. 阻断非特异性结合:使用非特异性结合的抗体或蛋白质(如牛血清蛋白、羊血清蛋白等)进行处理,以阻断非特异性结合位点,减少假阳性结果。

5. 抗体染色:将特异性的抗体与待研究组织样本进行孵育,使其与目标抗原结合。

这些抗体通常标记有荧光染料。

6. 洗涤:对于非特异性结合的抗体和其他杂质进行洗涤,以减少背景信号。

7. 封片:将组织切片与抗体染色后的结果用封片剂封装,以固定样本并保持免疫荧光染色的稳定性。

三、应用:组织切片免疫荧光染色技术在生物医学研究中具有广泛的应用价值。

以下是几个常见的应用领域:1. 免疫组织学研究:通过免疫荧光染色技术,可以研究组织中特定抗原的表达和分布情况。

这对于研究疾病的发生机制、诊断和治疗具有重要意义。

常用荧光染料的激发和发射波长

常用荧光染料的激发和发射波长

常用荧光染料的激发和发射波长荧光染料广泛应用于生物医学、材料科学、光电子学等领域,其特点是在受到激发后会发出可见光,具有较高的荧光量子产率和灵敏度。

在实际应用中,荧光染料的激发和发射波长显得尤为重要,因此本文将整理常用荧光染料的激发和发射波长,方便读者在实验或研究中的选择。

常用荧光染料1. FITC (荧光同型素-异硫氰酸酯)FITC是一种广泛应用于生物学实验的荧光染料,常用于标记蛋白质、抗体、药物等分子,其最大吸收波长和最大发射波长分别为495 nm和519 nm。

FITC的分子量小,荧光量子产率高,这使得它成为一种理想的荧光标记分子。

2. Rhodamine 123Rhodamine 123是一种阳离子荧光染料,可在细胞中标记线粒体,同时也可在许多生物学应用中标定其他细胞器。

Rhodamine 123的最大吸收波长和最大发射波长分别为507 nm和529 nm,其荧光量子产率高,荧光亮度高。

3. Texas RedTexas Red是一种常用的激发波长长达596 nm的荧光染料,在荧光共振能量转移等实验中被广泛应用。

Texas Red的最大发射波长在610 nm左右,其在荧光共振能量转移实验中能够提供强烈的荧光标记。

4. PE (腺苷酸酰基酯)PE是一种被广泛用于流式细胞仪实验中的荧光染料,其最大激发波长为488 nm,最大发射波长在575 nm左右。

PE作为一种非常亮的荧光染料,可用于标记和鉴定特定类型的细胞。

荧光染料的选择在实验或研究中,需要根据具体的情况选择合适的荧光染料。

对于激发波长和发射波长的选择,一些因素应该被考虑,如:•研究对象的荧光信号贡献;•其他染料的交叉激发和发射波长;•激发和发射波长的设备可用范围。

一般来说,应选择滤光片相对集中并且有较高吸收的荧光染料,以确保设备需要的能量和检测返回信号的量达到最大程度。

总结本文简要介绍了几种常用的荧光染料及其特性,这些荧光染料可以分别从不同角度用于生物学、光学、材料学等领域的研究和实验中。

流式细胞所用试剂配置及荧光特性

流式细胞所用试剂配置及荧光特性

一、流式细胞术常用试剂1、10%NaN3:将10gNaN3溶解于100ml蒸馏水中,室温保存;活体实验或在辣根过氧化酶反应中可不使用NaN3。

2、3%BSA/PBS:100ml PBS中加入3g BSA,使之溶解,再加入0.2ml 10%的NaN3。

3、500mmol/L EDTA:将186g EDTA•Na2•2H2O溶解于400ml蒸馏水中,用NaOH将PH调至8.0,补充蒸馏水至500ml,分装,高压灭菌,室温保存。

4、4%多聚甲醛:在磁力搅拌下,将4g多聚甲醛溶于100ml PBS,加入数滴NaOH,在通风柜中于60度加热,使其溶解,调整PH至7.4,使用前新鲜配制。

5、消化液:0.25%胰蛋白酶(用培养液或PBS配制)或0.25%胰蛋白酶与0.02%EDTA的混合液。

6、红细胞裂解液:NH4Cl 4.16g,KHCO3 0.5g,EDTA•2Na 0.02g,溶于100ml水中,调PH 至7.2,补充蒸馏水至500ml,4度储存,使用时需恢复至室温。

7、流式细胞抗体稀释剂:0.1mmol/L PBS液(PH 7.4)+1%BSA+0.1%Na2N3。

8、常用细胞破膜剂:PBS液(PH 7.4)+1%FBS(或BSA)+0.1%NaN3+0.1%saponin(Sigma 的效果不错)。

9、流式细胞染色洗涤液:含2%的BSA、0.1%NaN3的PBS(PH 7.4)。

10、PI染液(保存液,10×,用于细胞周期和凋亡检测):10mg PI溶于10ml PBS,加入2mg 无DNA酶的RNA酶,4度保存备用。

应用时,10倍稀释,每管加0.3ml~0.5ml PI染液。

11、Hanks液的配制(BSS,主要用于培养液、稀释剂和细胞清洗液,不能单独作为细胞、组织培养液)原液ANaCl 160gMgSO4•7H2O 2gKCl 8gMgCl•6H2O 2gCaCl2 2.8g溶于1000ml双蒸水原液B1)Na2HPO4•12H2O 3.04gKH2PO4 1.2g葡萄糖20.0g溶于800ml双蒸水2)0.4%酚红溶液:取酚红0.4g置玻璃研钵中,逐滴加入0.1N NaOH并研磨,直至完全溶解,约加入0.1N NaOH 10ml。

荧光抗体染料大集合

荧光抗体染料大集合

荧光抗体染料大集合染料在生物化学中最早的应用是直接对切片进行染色,然后进行观察。

随着生物技术、计算机技术以及荧光光谱测定技术的不断发展,许多染料尤其是荧光染料在细胞检测、肿瘤基因蛋白分析、毒物分析、临床医疗诊断等方面得到了广泛的应用。

荧光染料泛指吸收某一波长的光波后能发射出另一大于吸收光波长的光波的物质。

利用荧光染料进行抗体标记分析在现代生物免疫学领域中应用广泛,并逐步显示出明显的优越性。

下面简要介绍应用于标记抗体的荧光染料及其种类:1.荧光素类染料,包括异硫氰酸荧光素(FITC)、羟基荧光素(FAM)、四氯荧光素(TET)等及其类似物。

这是一类具有较多苯环的化合物。

应用最广泛的是FITC(如图为FITC标记的组织荧光图),在488nm处由氩离子激光激发,发射525nm的蓝绿色荧光。

FITC能够与各种抗体蛋白结合,并在碱性溶液中稳定呈现蓝绿色荧光。

2.罗丹明类染料,包括红色罗丹明(RBITC)、四甲基罗丹明(TAMRA)、罗丹明B (TRITC)等。

TRITC在550nm处被激发可发射出570nm的黄色荧光。

3.Cy系列菁染料,菁染料通常有两个杂环体系组成,包括Cy2、Cy3、Cy3B、Cy3.5、Cy5、Cy5.5、Cy7及其类似物。

4.Alexa系列染料,它是由Molecular Probes开发的系列荧光染料。

其激发光和发射光光谱覆盖大部分可见光和部分红外线光谱区域,应用广泛。

以高亮度、稳定性、仪器兼容性、多种颜色、pH值不敏感以及水溶性为主要特点。

包括Alexa Fluor350、405、430、488、532、546、555、568、594、610、633、647、680、700、750。

目前市面上Alexa系列染料应用非常广泛,且逐渐替代传统的荧光染料,如Alexa Fluor488可替代FITC、Cy2;Alexa Fluor555可替代Cy3、TAMRA;Alexa Fluor633可替代APC、Cy5等。

常用的细胞器荧光标记方法

常用的细胞器荧光标记方法

常用的细胞器荧光标记方法
常用的细胞器荧光标记方法主要有以下几种:
1.荧光蛋白标记:荧光蛋白适用于标记细胞、病毒、基因等,通常使用的是GFP、EGFP. RFP (DsRed) 等。

2.荧光染料标记:荧光染料标记和体外标记方法相同,常用的有Cy
3. Cy5、Cy5.5 及Cy7.可以用于抗体、多肽、小分子药物等的标记。

3.量子点标记:量子点(quantum dot)是一种能发射荧光的半导体纳米微晶体,具有荧光发光光诺较窄、量子产率高、不易漂白、激发光诺宽颜色可调等优点。

并且光化学稳定性高,不易分解。

量子点作为-类新型的荧光标记材料,可在长时间生命活动监测及活体示踪方面发挥独特的应用优势。

此外。

在流式细胞术检测中,PE标记的抗体适用于所有配备488 nm 氩离子激光器的流式细胞仪。

而干细胞及免疫学研究中,荧光素酶标记干细胞的方法主要有两种: 一种是通过转基因技术将组成性表达的基因做成转基因动物,干细胞就被标记了;另一种是通过慢病毒直接标记干细胞后,再进行移植到体内观测其塔殖、分化及迁徙过程,从而研究其修复、治疗损伤或缺陷部分的的效果,进一步探讨其机制。

请注意,细胞器荧光标记方法的选用取决于具体的实验需求和研究目标,并需要在实验条件允许的条件下,尽量选择发射波长较长的荧光蛋白或染料。

制定:审核:批准:。

荧光素FITC标记抗体方法

荧光素FITC标记抗体方法

荧光素FITC标记抗体方法荧光素(fluorescein isothiocyanate,FITC)是一种常用的荧光染料,广泛应用于细胞和组织标记。

荧光素FITC标记抗体方法是通过将FITC染料与抗体共化合,实现对特定抗原的检测与定位。

下面介绍一种常用的荧光素FITC标记抗体方法。

一、材料准备:1.FITC染料:从商业供应商购买具有高纯度的FITC染料,最好使用高纯度的FITC染料。

2.抗体:选择与目标抗原结合的特异性抗体。

3. 缓冲液:例如0.01 M PBS(phosphate-buffered saline,PBS)等。

4. 交联剂:例如戊二醛(glutaraldehyde)等。

5.离心机:用于离心洗涤步骤。

6.荧光显微镜:用于观察荧光素标记的抗体。

二、FITC标记抗体方法步骤:1. 准备荧光素FITC溶液:根据抗体浓度调整FITC染料浓度。

通常建议使用1 mg/mL的FITC染料溶液。

2.准备抗体溶液:使用适当的缓冲液稀释抗体至所需浓度。

3.将荧光素FITC溶液与抗体溶液按比例混合,使其均匀混合,最好在黑暗条件下进行。

4.在混合物中加入适量的缓冲液,并将其在室温下静置足够时间(通常为1-2小时)。

此步骤是为了保证荧光素FITC与抗体充分反应,形成共价键。

5.添加适量的交联剂(例如戊二醛)进行交联反应。

该步骤有助于稳定化合物。

6.在室温下搅拌1-2小时,然后离心洗涤步骤中的沉淀。

7.使用冷冻离心机将上述混合液离心10分钟以除去未反应的FITC。

8.弃去上清液,用适量的缓冲液洗涤沉淀2-3次,以除去剩余的FITC染料。

9.加入适量的缓冲液使沉淀均匀悬浮,以得到FITC标记抗体的最终溶液。

10.对所得荧光素FITC标记抗体进行质控实验,如免疫组化或细胞标记实验等。

11.在荧光显微镜下观察标记抗体的染色效果,根据实验需要选择适当的显微镜参数进行观察。

总结:荧光素FITC标记抗体方法是一种常用的荧光标记方法,可以用于细胞和组织中的抗原的定位与检测。

CF系列免疫荧光染料选择方案

CF系列免疫荧光染料选择方案

常用抗体标记荧光染料的选择随着免疫荧光技术的不断发展,荧光染料及其标记的抗体偶联物也被广泛的应用于生物学实验中。

目前,市场上抗体及蛋白标记的荧光染料主要有CF TM系列(BIOTIUM, USA); Alexa Fluor®系列(Life technology, USA); DyLight系列; Cy系列; IR Dye系列等等。

使用最多的为Alexa Fluor®系列和CF TM系列。

CF TM系列染料的核心对比Alexa Fluor®系列具有以下几点优势:1.新型罗丹明核心罗丹明染料以优异的耐光性和良好的荧光量子产量著称。

因此很多Alexa Fluor®染料具有罗丹明核心结构,但是,传统罗丹明的化学结构很难从长波长的荧光染料延伸至远红外区域甚至是更具挑战性的近红外区域,而且生物偶联后其水溶性并不理想。

Biotium 科学家发现从绿色到近红外多色荧光的罗丹明染料的新型化学方法。

该方法被有效的应用于CF染料的产品中,尤其是远红外CF染料,而且通过这种方法制备的染料不仅水溶性极佳而且耐光性极好。

如:(下图)图3. CF系列染料的稳定性,图示为CF633在5min中仍然具有稳定的荧光强度;而AF647 Dy e在1min左右已经淬灭。

2.特异性高的近红外染料近红外染料最大的特点是比可见光范围要大很多,大滴的染料常会导致染料水溶性低、染料聚合体多、荧光量子产量差等问题。

为了解决这些问题,许多商用的近红外染料比如Alexa Fluor®、 DyLight®dyes 和 IRDyes®近红外染料,在制备时吸附了大量的带负电荷的磺化基团,其磺化作用可以在一定程度上会提高染料的溶解性和荧光性,但这样也带来了另一些更加严重的问题,经这种染料标记的生物耦联物的非特异性结合。

例如:与大量负电荷结合后可以显著的改变抗体的等电点,进而影响抗原抗体的特异性结合反应。

常用抗体标记荧光染料的选择

常用抗体标记荧光染料的选择

1、蓝色(350-450nm处激发)CF 350、Alexa Fluor 350、AMCA等----亮蓝和紫外光激发。

CF350是类似于Alexa Fluor 350和传统荧光染料AMCA的蓝色荧光染料,CF350的荧光强度高于Alexa Fluor350、AMCA,吸附在蛋白上的荧光超过50%,水溶性更好,耐光性非常优秀亮,更容易与现有的绿色荧光基团区分。

CF 405S/ CF 405 M、Alexa Fluor 405 ----近乎完美的匹配蓝色二极管激光器。

CF 405S/ CF 405 M、Alexa Fluor 405与近来使用的荧光显微镜和流式细胞仪405nm;谱线的蓝色二极管激光器完美的匹配。

在流式细胞仪上的分析结果显示CF 405S/ CF 405 M荧光信号强度高于Alexa Fluor 405染料1.7倍。

2、绿色(488nm处激发)CF 488A、Alexa Fluor 488、FITC、FAM、DyLight 488、Cy2等----针对488nm 氩离子激光器的绿色荧光染料。

以上染料其标记的抗体蛋白适用于所有配备488nm氩离子激光器的流式细胞仪,流式细胞仪的FL1通道检测,或者可用于荧光显微镜技术。

CF 488A最低限度的带电量降低了与抗体耦联物的非特异性结合,在红色通道溢出少于Alexa Fluor 488,耐光性好、水溶性好和pH 不敏感,良好的稳定性和活性染料的标记率。

Alexa Fluor 488在较宽的PH值范围内保持稳定(PH4~10);FITC激发波长488nm,最大发射波长525nm,缺点:荧光强度易受PH值影响,PH值降低时其荧光强度减弱。

3、橙红色(543-555nm处激发)CF 543、Alexa Fluor 546、ATTO550, Cy 3, DyLight 549, Rhodamine (TRITC) 匹配543nm的橙色荧光染料;CF ™543 荧光条带明亮,耐光,水溶性好,确保了CF 543染料与抗体的耦联物保持优异的水溶性,为该波段最亮的橙色荧光染料。

免疫组化与原位杂交

免疫组化与原位杂交

显色特点: ---深蓝色
---不溶于水及脂类溶剂 ---不扩散 ---永久保存 2.碱性磷酸酶(alkaline phosphatase, AP) 碱性磷酸酶的作用物(底物,substrate) 1)四唑淡蓝 /5-溴-4-氯-3-吲哚-磷酸盐(Nitro-BlueTetrazolium/5-bromo-4-chloro-3-inodlylphosphate, NBT/BCIP) 显色特点: ---紫色 ---不溶于水但溶于脂类溶剂 ---容易扩散 ---不能永久保存
二、常用于标记抗体的标记物
一)酶(enzyme) 1.辣根过氧化物酶(horseradish peroxidase, HRP) 辣根过氧化物酶的作用物(底物,substrate) 1)二氨基联苯胺(3,3'-diaminobenzidine,DAB) 显色特点: --- 棕色 ---不溶于水及脂类溶剂(酒精 ethanol, 二甲苯xylene) ---不扩散 ---永久保存 2)3氨基9乙基卡巴唑(3-Amino-9-Ethylcarbazole,AEC)
5)修快:将包有组织的蜡块用刀切去多余的部分,修成一定形状 的过程。 6)切片:将包有组织的蜡块安装在切片机上进行切割的过程。一 般切3–6μm。 2.冰冻切片的基本步骤: 1)固定:根据所检测组织的抗原性质决定是否先进行固定及选择 适当的固定剂。除非有特殊要求,否则应当先进行固定以防止 抗原破坏及降解。 常用的固定液是4%多聚甲醛(paraformaldehyde) 2)减少组织水分防止冰晶形成:通常采用高渗的30%蔗糖(sucrose) 溶液吸收组织中的水分。
优点:敏感性高,特异性很低。 缺点:极易受内源性生物素影响,假阳性率极高。
五、免疫组织化学的特异性与敏感性

流式细胞术中应用的荧光染料介绍

流式细胞术中应用的荧光染料介绍

流式细胞术中应⽤的荧光染料介绍当我们在进⾏多⾊流式分析的时候,对分析成功的⼀个关键影响因素是每个抗体选择何种荧光染料标记。

通常会有很多可⾏的结合,我们在做选择的时候有很多的因素需要我们去考虑。

对任何单克隆抗体,其阴性和阳性的信噪⽐相差四到六倍都取决于荧光素的使⽤。

相对的荧光强度也取决于使⽤的仪器。

⾼密度表达的抗原我们可以应⽤任何荧光素标记的抗体来检测,低密度表达的抗原就需要我们应⽤⾼信噪⽐⾼的荧光素,譬如PE或者APC标记的抗体来充分检测分离出阳性表达的细胞与阴性表达的细胞。

⾃发荧光个别的细胞有着他们各⾃特异性⽔平的⾃发荧光(荧光信号产⽣于他们⾃⾝)。

当在全波长荧光通道中进⾏观察的时候,⾃发荧光信号在长波长(>600nm)明显的降低。

对于有较⾼⽔平⾃发荧光类型的细胞,如长期组织培养的细胞,应使⽤较⾼发射波长的荧光染料(APC、APC-Cy7等)标记抗体,通常他们会有⼀个较好信噪⽐的结果。

对于那些不是有较多⾃发荧光类型的细胞,如新鲜的细胞,可以使⽤FITC 标记的抗体了。

以下为各种常⽤荧光素介绍:Alexa Fluor 488 has a spectrum almost identical to that of fluorescein isothiocyanate (FITC), but with extraordinary photostability. Because of this photostability, it has become a choice for fluorescent microscopy applications and has become popular in cytometry applications. It is detected in the FL1 detector of the FACSCalibur or FACScan. Unlike other fluorochromes with similar emission spectra, Alexa Fluor 488 is pH insensitive over a broad range.Alexa Fluor 633 is a practical alternative to APC as well as Cy5. Alexa Fluor 633 conjugates can be used in multi-color flow cytometry with instruments equipped with a second red laser or red diode. It is detected in the FL4 detector of the FACSCalibur. The FACScan cannot be used to detect Alexa Fluor 633 conjugates because the FACScan lacks a red laser or diode. Like other Alexa Fluor dyes, Alexa Fluor 633 exhibits uncommon photostability, making it an ideal choice for fluorescent microscopy.A great number of different Alexa Fluor dyes exist that are beyond the scope of this introductory fluorophore section. Many manufacturers sell directly-conjugated Alexa Fluor antibodies. Know that Molecular Probes' Zenon Antibody Labeling Kits, which are available for all of their Alexa Fluor dyes, make it possible to rapidly and quantitatively label antibodies from a purified antibody fraction or from a crude antibody preparation such as serum, ascites fluid or a hybridoma supernatant. See /servlets/publications?id=150 for specifics.Allophycocyanin (APC) is an accessory photosynthetic pigment found in blue-green algae. APC has 6 phycocyanobilin chromophores per molecule, which are similar in structure to phycoerythrobilin, the chromophore in phycoerythrin or PE. APC tandem dyes, APC-Cy5.5 and APC-Cy7, are also available. APC has a 650-nanometer wavelength absorption maximum and a 660-nanometer fluorescence emission maximum. APC can be used in flow cytometers equipped with dual lasers for multi-color analysis. Like Alexa Fluor 633, APC is excited using the helium-neon red diode laser (633 nanometers) of the FACSCalibur and is detected on the FL4 detector. APC cannot be detected on the FACScan as that instrument is not equipped with a red laser.APC-Cy7 is a tandem conjugate system that combines APC and a cyanine dye (Cy7) and has an absorption maximum at~650 nanometers. This tandem uses the efficiency of the fluorescence light energy transfer between the two fluorochromes. When excited by light from a helium-neon laser, the excited fluorochrome (APC) is able to transfer its fluorescent energy to the cyanine molecule, which then fluoresces at a longer wavelength. The resulting fluorescent emission maximum is in the deep red at approximately 767 nanometers. APC-Cy7 run on a FACSCalibur results in dim expression because the FL4 detector's optical filter is centered for APC emission (660 nanometers) and not the longer red wavelengths excited with the helium-neon diode. It is recommended that special precautions be taken with this conjugate, and cells stained with them, to protect the fluorochrome from long-term exposure to visible light.Carboxyfluorescein Diacetate (CFSE) can be used to track asynchronous cell division. Cell division results in sequential halving of the initial fluorescence, resulting in a cellular fluorescence histogram.The peaks labeled 1, 2, 3, 4 and 5 represent successive generations of CFSE-cultured cells.Cy3 and Cy5 are excited by the 488-nanometer line of an argon laser and the 633-nanometer line of a helium-neon diode or laser, respectively. These conjugates can be used in flow cytometry but typically do not give the fluorescence intensity comparable to that of PE or APC. Applications where a smaller dye is required are more appropriate for these dyes. These fluorochromes are well suited for fluorescent microscopy.Enhanced Cyan Fluorescent Protein (eCFP) cannot be analyzed using the FACScan or FACSCalibur as this molecule requires excitation in the violet range. The protein is easily detected using the violet laser of the LSRII, or the violet lines of the MoFlo's argon or krypton lasers. This molecule has an excitation maximum at 475 nanometers and is best excited using the MoFlo's 457nm line of the argon or argon-krypton mixed gas laser. Use of the 407nm violet laser of the LSRII will result in weak eCFP expression. More detailed discussion of this molecule can be found in the next section of this web site, the section on Fluorescent Proteins.Enhanced Green Fluorescent Protein (eGFP) can be excited at 488 nanometers with a peak emission at 509 nanometers and is detected in the FL1 detector on the FACSCalibur or FACScan. The MoFlo and LSRII are able to distinguish between concurrently expressing eGFP and eYFP cells if the proper optical filters and experimental controls exist. More detailed discussion of this molecule can be found in the next section of this web site, the section on Fluorescent Proteins. Enhanced Yellow Fluorescent Protein (eYFP), a yellow-shifted variant of the eGFP molecule, is also excited at 488 nanometers with a peak emission at 535 nanometers and is also detected in the FL1 detector on the FACSCalibur or FACScan. More detailed discussion of this molecule can be found in the next section of this web site, the section on Fluorescent Proteins.Fluorescein isothiocyanate (FITC) is currently the most commonly used fluorescent dye for flow cytometry analysis. When excited at 488 nanometers, FITC has a green emission that's usually collected at 530 nanometers, the FL1 detector of the FACSCalibur or FACScan. FITC has a high quantum yield (efficiency of energy transfer from absorption to emission fluorescence) and approximately half of the absorbed photons are emitted as fluorescent light. For fluorescent microscopy applications, FITC is seldom used as it photobleaches rather quickly though in flow cytometry applications, its photobleaching effects are not observed due to a very brief interaction at the laser intercept. FITC is highly sensitive to pH extremes.Peridinin chlorophyll protein (PerCP) has a 677 nanometer maximum emission, red, when excited at 488 nanometers and is detected on the FL3 detector of the FACSCalibur or FACScan. A PerCP tandem dye is also available (PerCP-Cy5.5). PerCP is not suited for the high-powered lasing (>150mW) applications, such as on the MoFlo, due to its photobleaching characteristics. PerCP conjugates can only be obtained from Becton Dickinson and its subsidiary, Pharmingen. Phycoerythrin (PE or R-PE) has a huge absorption coefficient and almost perfect quantum efficiency. In vivo, it functions to transfer light energy to chlorophyll during photosynthesis. It is one of the brightest dyes used today and emits in theyellow/orange at about 570 nanometers. Those accustomed to fluorescent microscopy may not be familiar with this fluorochrome as it photobleaches rather quickly under a microscope.Phycoerythrin-Cy5 (PE-Cy5) is a tandem conjugate where PE is coupled to the cyan dye, Cy5. When excited by 488-nanometer light, the excited fluorochrome (PE) is able to transfer its fluorescent energy to the cyanine molecule, which then fluoresces at a longer wavelength in the red at 670 nanometers. This tandem dye is known by a confusing myriad of names to include Becton Dickinson's CyChrome, Caltag and Sigma's Tri-Color, GIBCO's RED670, Coulter's PC5, and probably others. Other PE conjugates exist, e.g., PE-Cy5.5 and PE-Cy7, that will not be discussed in this introductory fluorophore section. It is recommended that special precautions be taken with this conjugate, and cells stained with them, to protect the fluorochrome from long-term exposure to visible light.Phycoerythrin-Texas Red (PE-Texas Red) is a tandem conjugate where PE is coupled to Texas Red. Similar to other tandem conjuates, when excited by 488-nanometer light, the excited fluorochrome (PE) is able to transfer its fluorescent energy to the Texas Red molecule, which then fluoresces at a longer wavelength with a peak in the orange at 612 nanometers. This tandem is also known by other names such as Red 612 and ECD (Electron Coupled Dye). Know that PE-Texas Red conjugates run on the FACScan or FACSCalibur will result in dull expression due to the extant optical filters. This is not observed on the LSRII or MoFlo when equipped with the appropriate optical filters for this conjugate. There is considerable overlap of emission when running PE and PE-Texas Red specimens.Propidium Iodide (PI) is a membrane-impermeant dye that stains by nondiscriminately intercalating into every 4th or 5th nucleic acid base pair, binding both DNA and RNA. Once bound, PI undergoes a conformational change and becomes ~40 times brighter. Propidium iodide has a broad emission spectrum with a peak in the orange at 620 nanometers. A number of assays employ propidium iodide. Cells or nuclei with altered DNA content are identified by staining alcohol-fixed, RNAse-treated cells or nuclei with this dye (see below).The first peak (M1) on the left represents normal diploid cells. The next major peak (M2) represents tumor cells with increased DNA content and DNA index of 1.27. Propidium iodide can be combined with additional fluorescent antibodies that are specific for a unique cell population and allow for more accurate S phase analysis of multiple overlapping populations.Propidium iodide has also been employed for many years as a marker for viability as the disrupted membranes of dead cells allow the dye to pass freely to the nucleic acids. However, this dye is very sticky; it will stick to sample tubing and, given sufficient time exposure to living cells, living cells will appear to be propidium iodide positive. Given this dye's broad emission spectrum and its sticky properties, contemporary flow cytometry labs have replaced propidium iodide with other nucleic acid dyes, e.g., 7-AAD (listed below), TO-PRO-3, or DAPI, among many others, for viability measurements though propidium iodide remains the most commonly used dye for DNA content analysis.Texas Red has an excitation maximum in the yellow-orange range of the color spectrum; consequently, Texas Red cannot be excited on any of the benchtop analyzers in the core facility. It can, however, be detected using one of green laser lines of the MoFlo's argon laser but ideally using the yellow laser line of the MoFlo's krypton laser. When excited, Texas Red has an excitation maximum in the orange at 612 nanometers.7-Aminoactinomycin D (7-AAD), like propidium iodide, is a DNA intercalating dye but 7-AAD is specific for C-G base pairs. It is well suited for viability measurements and also for apoptosis experiments where it's paired with Annexin V. Unlike propidium iodide, this dye has minimal emission bleed from the FL3 detector into the FL2 (PE) detector on the FACSCalibur or FACScan. Whereas PI can be detected in either FL2 or FL3, though it is typically detected in FL2, of the FACScan or FACSCalibur, 7-AAD is detected in FL3.PE:Phycoerythrin 藻红蛋⽩;488nm,575nm(橙红)FITC,异硫氰酸荧光素 488nm,525nm(绿APC:英⽂全名:allophycocyanin,中⽂名:别藻青蛋⽩,最⼤吸收峰:650nm,最⼤发射荧光峰:660nm,适⽤于双激光流式仪,可被600-640nm波长的激光激发。

PerCP-Cy5

PerCP-Cy5

PerCP-Cy5.5串联染料解决方案常见流式抗体荧光染料介绍:1) 藻红蛋白(phycoerythrin,PE):PE是从红藻中分离纯化获得的一种常见染料,经激光激发后发出橙黄色荧光,最大发射波长为575 nm。

PE具有吸光性能好和光量子产率高的特点,可用于标记表达水平较低的蛋白。

在流式细胞术检测中,PE标记的抗体适用于所有配备488 nm氩离子激光器的流式细胞仪。

2) PE-Cy5:PE-Cy5是一种复合染料,属于藻红蛋白偶联物,在此类复合染料中,激发能量可从PE传递到Cy5上,最大发射波长为667 nm。

由于PE-Cy5与FITC、PE在光谱上重叠范围较少,荧光干扰少,因此实验中常将PE-Cy5与FITC、PE搭配使用。

需注意,PE-Cy5不适合与APC搭配使用,两者荧光重叠大。

3)PE-Cy5.5:PE-Cy5.5也是一种复合染料,能量从PE传递到Cy5.5上,最大发射波长为694 nm。

同PE-Cy5不一样,PE-Cy5.5与FITC、PE、APC间荧光干扰小,可搭配使用,且其荧光强度要优于PE-Cy5。

4) PE-Cy7:复合染料,最大发射波长为785 nm。

PE-Cy7与FITC无光谱重叠,与APC重叠也较少,因此其可与FITC、PE、APC搭配使用。

在实验中需要注意,PE-Cy7的光淬灭性很强,需要绝对避光环境。

5) PerCP-Cy5.5:复合染料,最大发射波长为695 nm。

PerCP-Cy5.5光量子产率高,可用于表达水平较低物质的检测,与PerCP-Cy5.5相反,PerCP的光量子产率较低,适用于表达水平较高物质的检测,在双激光管仪器上与APC共同检测时,需要做补偿调节,但比PerCP补偿少。

6) PI/7-AAD:碘化丙啶(propidium iodide,PI)和7-AAD(7-amino-actinomycin D)的最大发射波长分别为617 nm和647 nm,是常见的荧光染料,常用于细胞凋亡检测,可用于鉴别死、活细胞。

常用荧光染料及应用领域

常用荧光染料及应用领域

617nm 461nm 500-550nm 570-620nm 509nm/540nm —— —— —— —— ——
2
3
蛋白质、酶、 RITC(四甲基异硫氰基罗丹明) 抗体的检测 绿色荧光蛋白(GFP) 6-羧基荧光乙酰乙酸(CFDA), FITC JC-1、Rhodamine123、SPMI NBD ceramide、BODIPY ceramide 细胞结构检测 Dil DAMP、neutral red
常用荧光染料及应用领域
序号 应用领域 燃料名称 吖啶橙(AO) 1 DNA和 RNA检 测 激发波长 492nm 发射波长 530/640nm
碘化丙啶(PI) Hoechst/DAPI FITC(异硫氰酸荧光素)
536nm 325nm 488nm 561nm 395nm/479nm —— —— —— —— ——
料及应用领域
特性 用激光共聚焦显微镜双通道观察可见;活细胞的胞核呈黄绿色荧 光,胞质呈绿色荧光;死细胞呈红色荧光 PI不能进入完整的细胞膜,常用于检测膜损伤、细胞凋亡、细胞 核定位、核酸定量等。 对细胞毒性小,特异性强。不与DNA特异性结合 能够结合细胞内总蛋白质,是检测蛋白质最常用的荧光探针,它 还能广泛地结合各种特异性的配体。光照下易淬灭。 常用的共价标记探针,稳定性高 跟踪活组织或细胞内基因表达及蛋白质定位的标记物 FRAP技术 线粒
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常用抗体标记荧光染料的特性及其应用
1、FITC:激发波长488nm,最大发射波长525nm。

1)其标记的抗体适用于所有配备488nm氩离子激光器的流式细胞仪;
2)在流式细胞仪的FL1通道检测;
3)可用于荧光显微镜技术
4)荧光强度易受PH值影响,PH值降低时其荧光强度减弱。

2、Alexa Fluor 488:激发波长488nm,最大发射波长519nm。

1)其标记的抗体适用于所有配备488nm氩离子激光器的流式细胞仪;
2)在流式细胞仪的FL1通道检测;
3)具有超乎寻常的光稳定性,非常适用于荧光显微镜技术;
4)在较宽的PH值范围内保持稳定(PH4~10)。

3、Cy3:激发波长488nm,最大发射波长570nm。

1)其标记的抗体适用于所有配备488nm氩离子激光器的流式细胞仪;
2)在流式细胞仪的FL2通道检测;
3)适用于荧光显微镜技术;
4)为小分子染料,非常适合需小分子染料的流式细胞术,荧光强度低于PE。

4、Cy5:激发波长633/635nm,最大发射波长670nm。

1)其标记的抗体适用于所有配备633nm氩离子激光器的流式细胞仪;
2)在流式细胞仪的FL4通道检测;
3)适用于荧光显微镜技术;
4)同样为小分子染料,非常适合需小分子染料的流式细胞术,荧光强度低于APC。

5)与单核和粒细胞非特异性结合多,易出现假阳性结果。

5、PE:激发波长488nm,最大发射波长575nm。

1)其标记的抗体适用于所有配备488nm氩离子激光器的流式细胞仪;
2)在流式细胞仪的FL2通道检测;
3)其荧光泯灭性强,不适用于传统的荧光显微镜技术,但适用于激光共聚焦显微镜技术。

6、PE-TR:激发波长488nm,最大发射波长615nm。

1)在Beckman Coulter流式细胞仪的FL3通道检测;
2)可适用于小功率激光器的流式细胞仪,也可使用于大功率激光器的大流式细胞仪。

7、PE-Alexa Fluor 610:激发波长488nm,最大发射波长628nm。

1)在Beckman Coulter流式细胞仪的FL3通道检测;
2)荧光强度高;
3)可适用于小功率激光器的流式细胞仪,也可使用于大功率激光器的大流式细胞仪。

8、PE-Alexa Fluor 647:激发波长488nm,最大发射波长668nm。

1)在Beckman Coulter流式细胞仪的FL4通道检测,BD细胞仪FL3通道检测;
2)不易湮灭;
3)可适用于小功率激光器的流式细胞仪,也可使用于大功率激光器的大流式细胞仪。

9、PE-Cy5:激发波长488nm,最大发射波长670nm。

1)在Beckman Coulter流式细胞仪的FL4通道检测,BD细胞仪FL3通道检测;
2)可适用于大、小功率的流式细胞仪;
3)淬灭性强,不适用于传统的荧光显微镜技术;
4)可与FITC、PE搭配,荧光干扰小、补偿小,但不宜与APC搭配。

5)与单核细胞和粒细胞非特异性结合多。

10、PE-Cy5.5:激发波长488nm,最大发射波长694nm。

1)在Beckman Coulter流式细胞仪的FL4通道检测,BD细胞仪FL3通道检测;
2)可适用于大、小功率的流式细胞仪;
3)淬灭性强,不适用于传统的荧光显微镜技术;
4)可与FITC、PE、APC搭配,荧光干扰小、补偿小,是APC比较理想的搭配。

11、PE-Alexa Fluor 700:激发波长488nm,最大发射波长723nm。

1)在Beckman Coulter流式细胞仪的FL4通道检测,BD细胞仪FL3通道检测;
2)光淬灭性很强,要绝对避光。

12、PE-Cy7:激发波长488nm,最大发射波长767nm。

1)在Beckman Coulter流式细胞仪的FL4通道检测,BD细胞仪FL3通道检测;
2)可适用于大、小功率的流式细胞仪;
3)光淬灭性很强,要绝对避光;
4)可与FITC、PE搭配,与FITC无光谱重叠,与APC搭配荧光干扰小,补偿小,是比较理想的搭配。

13、TR:激发波长595nm,最大发射波长615nm。

1)其标记的抗体适用于配备Texas Red激光器的流式细胞仪;
2)荧光不易淬灭,可用于荧光显微镜。

14、APC:激发波长633/635nm,最大发射波长660nm。

1)其标记的抗体适用于所有配备氦氖激光器的流式细胞仪;
2)在BD细胞仪的FL4通道检测,在Beckman Coulter细胞仪只有配备双激光器的FC500才能检测到。

15、APC-Cy5.5:激发波长633/635nm,最大发射波长668nm。

1)其标记的抗体适用于所有配备氦氖激光器的流式细胞仪;
2)主要用于四色以上的流式细胞术。

16:PerCP:激发波长488nm,最大发射波长677nm。

1)在Beckman Coulter流式细胞仪的FL4通道检测,BD细胞仪FL3通道检测;
2)可于FITC、PE搭配,荧光光谱重叠少,对随细胞的特异性结合少,但量子产量较低,适用于较高表达物的检测。

相关文档
最新文档