国外多层共挤吹塑薄膜关键设备状况
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
国外多层共挤吹塑薄膜关键设备状况
多层复合薄膜的优点是可以根据需要,把不同性能的材料进行复合,使其具有各种性能。例如为了防止薄膜外层在热封过程中与热封装置相粘连, 薄膜外层应采用熔点较高的材料如LDPE、HDPE、MDPE或PA。对于热封和包装机械来说,它需要被加工的薄膜具有良好的机械加工性能,多层复合膜中采用MDPE或HDPE,可以提高复合膜的强度和坚挺性,确保其有良好的机械加工性能。多层共挤吹塑薄膜为一步工艺制成,不需要许多传统的复合及涂覆等后加工。相应地,复合用的半成品储存及每次复合所进行的反复修边工艺均可省去,使原料费用和生产费用明显降低。薄膜产品所需的一些功能性添加剂,如色母粒、滑爽剂等,仅加入到所需的表层中,而内层无此功能的要求,则不加。在阻隔性多层共挤吹塑薄膜生产中,节省材料费用显得尤为突出。根据市场中不同树脂的价格,通过设计不同的共挤结构,厂家可以选择生产最优化的产品。例如,某一多层共挤复合膜的结构为LDPE/HV(粘结层)/PA6/HV(粘结层)/EVA,其阻隔层PA6厚度为70μm,当采用5μm厚的EVOH材料替代时,其阻隔氧气的能力基本相同。虽然EVOH的价格比PA6贵很多,但是在功能不变的前提下,EVOH材料的消耗远低于PA6,材料的综合成本就得到降低。
多层共挤复合薄膜在国内的包装上已经用的相当广泛,但是用于多层复合膜成型的先进多层共挤出吹膜设备大多依赖进口或者合资公司的设备。多层共挤吹膜设备的核心技术掌握在国外的几个公司如Battenfeld、Gloucester、Dabisstandard、W&H、Be等。国内的多层共挤吹膜设备在很大程度上落后于国外设备。主要表现在产量不高,薄膜的厚薄均匀性差。尽管多层共挤设备非常复杂,但是真正的核心的部件主要有三个:螺杆,多层共挤模头,风环(内
风环和外风环)。
螺杆
螺杆是多层共挤吹膜设备的塑化部件,它关系到设备的产量、多层复合薄膜的表观质量塑化和混色效果。国内设备的产量赶不上进口设备一个主要原因就是螺杆设计不好。例如对于多层薄膜中的支撑层材料,国外设备的螺杆基本上采用的是分离型螺杆,再在计量段中间加上一个混炼元件以保证混炼混色效果。图1所示为国外公司采用的典型的分离型螺杆。
图1: 分离型螺杆
分离型螺杆的优点
1、螺杆的适应性广。美国XALOY公司称,他们的通用型螺杆除PVC外,可以加工大多数塑料。分离型螺杆在熔融段通过Barrier螺纹把螺槽分成了熔体床和固体床,,固体床的宽度和深度逐渐变小,熔体床的宽度和深度逐渐变大,最终变为计量段的宽度和深度。固体床的
体积逐渐减小,保证了气体的排出,这不像单螺纹螺杆需要一定的压缩比才能排出塑料中的气体。固体床的深度逐渐变小,熔体越过螺纹进入熔体床,未塑化的固体床直接与机筒接触,能吸收更多的热量,同时固体床受到的剪切也大,越来越多的剪切热将提供给固体料使其塑,
这种塑化好的熔体跑到熔体床。
熔体床的宽度和深度都是变大的,剪切变小,保证了熔体温度不会继续升高。这样的过程一直到固体床结束。这种熔融机理使分离型螺杆塑化效果好,保持低熔体的温度,所以它适用
多种非热敏性塑料。
2、产量大。分离型螺杆与传统的单螺纹三段式螺杆有很大的不同。压缩比对于分离型螺杆已经没有多大的意义,它不是象传统的螺杆通过一定的压缩比、传热和计量段的剪切来塑化。分离型螺杆的塑化如上面所述是通过固体床的更有效的热传递和强剪切进行塑化。计量段只是计量和稳定挤出的作用。所以计量段的深度可以设计的很深, 保证了高产量。例如Battenfeld公司用于加工聚烯烃的65分离型螺杆,加料段螺槽深度H1为12.62mm,计量段螺槽H3为9.6mm,由于加料段与计量段螺纹导程不同,压缩比不等于H1/H3(1/3),计算得到加料段一个螺槽体积与计量段一个螺槽体积比为1.5126,这种设计参数对于传统型的单螺纹螺杆不可能将塑料塑化好。深的加料段和计量段的深度,保证了高产量,熔融段的正确分离型设计保证了塑化质量。所以分离型螺杆是产量大,塑化效果好的螺杆。
根据国外资料报道,分离型螺杆设计的难点有一下几个方面:1、副螺陵与机筒的间隙是变化的,如何设计能够让熔体一定速度通过到熔体床,这个速度不能太慢,太慢了使固体床还有熔体,影响了固体料的塑化。2、副螺陵的导程设计和固体床深度的变化。固体床的体积是随着副螺纹导程的变化和固体床深度减小而缩小的。实际固体料体积与固体床体积相一致, 这是最好的。因为固体床体积缩小量超过了固体料体积的缩小量,很容易造成卡料;固体床体积大于实际固体料的体积,固体床内有熔体,影响了塑化效率。
由于塑料在螺杆内熔融过程太复杂,涉及的方程和变量太多,还没有很好的分析软件。所以现在螺杆的设计大部分都是靠经验,完全符合塑料的熔融过程的螺杆设计是不可能的,因为塑料熔融过程随着加工参数和添加的填充料不同而不同。所以螺杆设计在一定范围内符合塑
料的熔融过程, 那就是好螺杆。
多层共挤吹膜模头
多层模头是多层薄膜的成型部件, 它是整台多层共挤吹膜设备的心脏。多层共挤吹膜模头按照叠加的方式分,笔者认为主要有两种形式:一种是高度方向叠加;另一种是径向方向叠加。
高度方向叠加式
平面叠加
这种模头以加拿大BramptonEngineering公司为代表,如图2所示。一般采用侧进料,熔体以中心轴线对称,在每层的叠加面流动,而不是传统的筒状流动。它的优点是机头层数可以任意组合,结构简单,且每层的温度可以单独控制,这样可以根据不同的物料的需要单独控制每层的温度,也有效的防止物料的分解。叠加型模头一层层的叠加,熔体在每层流道中流动,
层数的变化不会影响机头内外径的大小。笔者认为这种模头由于流道在平面或斜面上,熔体
的压力无法平衡,使得熔体的密封困难。
图2: 叠加吹膜模头
锥形叠加
锥形叠加共挤机头的设计思路与平面叠加机头一样,只不过采用了锥形模块单元化结构,每个单元都由一对短锥形模块组成。流道在锥形圆柱面上,基本体强度高于平面叠加机头,承受的熔体的压力更高,密封性更好。锥形叠加共挤机头分为两种, 即上斜叠加型和下斜叠加型。上斜锥形叠加是加拿大Macro公司推出的,主要用于直径10mm~100mm的机头。这种设计的特点是机头每层由下到上斜面叠加,每层之间相互吻合,从而不易溢料。熔体从每层机头进料,一次分流。这种设计一般适用于较小尺寸的共挤机头。下斜锥形叠加机头也是加拿大Macro公司的专利,设计特点是每层机头由上到下斜面叠加,每层机头之间相互吻合,从而不易溢料。熔体从机头底部同一平面侧进料并流到相应机头层进行一次分流,减少熔体的停滞,机头易于清洗。并得到好的厚度分布。另外,同其它机头相比,每层的熔体流道数量不受限制,视直径不同,每层可以设计为16条及以上数量螺旋流道。
径向方向叠加式
这种模头以Battenfeld Gloucester Engineer公司为代表,如图3所示。图4是9层共挤模头机构图,这种模头的特点是低中心,模头的高度不会随着层数的增加而增大。由于熔体的压力是在流道圆周方向平衡掉,所以密封性能比叠加型机头好。缺点是熔体的温度不能单独控
制,特别是中间层的温度。
图3: Battenfeld公司低中心模头
无论是叠加型还是螺旋芯棒式的,它的工作原理都是熔融物料从一个中心进料孔进入后首先