2007年福建高考理科数学试卷及答案详解(文字版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2007年普通高等学校招生全国统一考试 数学(理工农医类)(福建卷及详解)

第Ⅰ卷(选择题 共60分)

一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数

2

1

(1i)

+等于( ) A .

12

B .12

-

C .

1i 2

D .1i 2

-

解析:

=

.

2.数列{}n a 的前n 项和为n S ,若1

(1)n a n n =+,则5S 等于( )

A .1

B .

56

C .

16

D .

130

解析:

=,所以

,选B.

3.已知集合{}{12}A x x a B x x =<=<<,,且()A B =R R ð,则实数a 的取值范围是( ) A .1a ≤

B .1a <

C .2a ≥

D .2a >

解析:

或,因为,所以,选C.

4.对于向量,,a b c 和实数λ,下列命题中真命题是( )

A .若=0

a b ,则0a =或0b = B .若λ0a =,则0λ=或=0a C .若22

=a b ,则=a b 或-a =b

D .若

a b =a c ,则b =c 解析:

时也有

,故A 不正确;同理C 不正确;由

得不到b=c ,如为零

向量或与b 、c 垂直时,选B.

5.已知函数()sin (0)f x x ωωπ⎛⎫

=+

> ⎪3⎝⎭

的最小正周期为π,则该函数的图象( ) A .关于点0π

⎛⎫ ⎪3⎝⎭,对称

B .关于直线x π

=

4对称 C .关于点0π⎛⎫ ⎪4

⎝⎭

,对称

D .关于直线x π

=

3

对称

由函数的最小正周期为得,由

,对称点为(,0)(),当k=1时为(,0),

选A.

6.以双曲线

22

1916

x y -=的右焦点为圆心,且与其渐近线相切的圆的方程是( ) A .221090x y x +-+= B .2210160x y x +-+= C .2210160x y x +++=

D .221090x y x +++=

右焦点即圆心为(5,0),一渐近线方程为,即

,,圆

方程为

,即A :

,选A.

7.已知()f x 为R 上的减函数,则满足1

(1)f f x ⎛⎫

<

⎪⎝⎭

的实数x 的取值范围是( ) A .(11)

-,

B .(01),

C .(1

0)(01)- ,, D .(1)(1)-∞-+∞ ,

由已知得解得或,选C.

8.已知m n ,为两条不同的直线,αβ,为两个不同的平面,则下列命题中正确的是( ) A .m n m n ααββαβ⊂⊂⇒,,∥,∥∥ B .m n m n αβαβ⊂⊂⇒∥,,∥

C .m m n n αα⇒⊥,⊥∥

D .n m n m αα⇒∥,⊥⊥

A 中m 、n 少相交条件,不正确;

B 中分别在两个平行平面的两条直线不一定平行,不正确;

C 中n 可以在内,不正确,选D.

9.把21(1)(1)(1)n

x x x +++++++ 展开成关于x 的多项式,其各项系数和为n a ,则

21

lim

1n n n

a a ∞-+→等于( )

A .1

4

B .

12

C .1

D .2

令=1得=1+2+22+……+2n=,

,选D.

10.顶点在同一球面上的正四棱柱ABCD A B C D ''''-

中,1AB AA '==,则A C ,两点间的球面距离为( ) A .π

4

B .

π2

C

D

正四棱柱的对角线为球的直径,由

得R=1,

AC=,所以∠AOC=(其中O 为球心)A 、C 两点间的球面距离为,选B.

11.已知对任意实数x ,有()()()(f x f x g x g x -=--=,,且0x >时,

()0()f x g x ''>>,,则0x <时( )

A .()0()0f x g x ''>>,

B .()0()0f x g x ''><,

C .()0()0f x g x ''<>,

D .()0()0f x g x ''<<,

由已知

为奇函数,图像关于原点对称,在对称区间的单调性相同;

为偶函数,在对称区间的单调性相反

,

,递增,

,

递增,

; 递减, ,选B.

12.如图,三行三列的方阵中有9个数(123123)ij a i j ==,,;,,,从中任取三个数,则至少有两个数位于同行或同列的概率是( )

A .3

7 B .

47

C .114

D .1314

从中任取三个数共有种取法,没有同行、同列的取法有,至少有两个

数位于同行或同列的概率是,选D.

第Ⅱ卷(非选择题 共90分)

二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置.

13.已知实数x y ,满足2203x y x y y +⎧⎪

-⎨⎪⎩

≥,≤,≤≤,则2z x y =-的取值范围是________.

画出可行域知

在(-1,3)取得最小值-5,在(5,3)取得最大值7,范围是[-5,

7].

14.已知正方形ABCD ,则以A B ,为焦点,且过C D ,两点的椭圆的离心率为______.

设c=1,则.

15.两封信随机投入A B

C ,,三个空邮箱,则A 邮箱的信件数ξ的数学期望E ξ= .

ξ的取值有0,1,2,

,所以

E ξ=

11121321

222331

3233a a a a a a a a a ⎛⎫ ⎪ ⎪ ⎪

⎝⎭

相关文档
最新文档