高三数学第一次月考及答案(理科)
2024-2025学年江西省南昌市十中高三上学期第一次月考数学试题及答案
南昌十中2024- 2025学年上学期第一次月考高三数学试题一、单选题:本大题共8个小题,每小题5分,共40分.1. 已知集合4,1P x y y x ⎧⎫==∈⎨⎬+⎩⎭N , {}14Q x x =-≤≤,则P Q = ( )A. {}1,2,4 B. {}0,1,3 C. {}03x x ≤≤ D. {}14x x -≤≤2. 若复数z 满足(1i)i z a +=-(其中i 是虚数单位,R a ∈),则“||1z =”是“1a =”的( )A. 充分不必要条件 B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件3. 若向量()()1,2,1,2a b m =-=+,且()a b a +⊥ ,则m =( )A. −8 B. 8 C. −2 D. 24. 某同学参加学校组织的化学竞赛,比赛分为笔试和实验操作测试,该同学参加这两项测试的结果相互不受影响.若该同学在笔试中结果为优秀的概率为34,在实验操作中结果为优秀的概率为23,则该同学在这次测试中仅有一项测试结果为优秀的概率为( )A.712B.12C.512D.135. 函数()y f x =的图象如图①所示,则如图②所示的函数图象所对应的函数解析式可能为( )A. 112y f x ⎛⎫=-⎪⎝⎭B. 112y f x ⎛⎫=--⎪⎝⎭C. ()42y f x =-D. ()42y f x =--6. 冰箱空调等家用电器使用了氟化物,氟化物的释放破坏了大气上层的臭氧层,使臭氧量Q 呈指数函数型变化.当氟化物排放量维持在某种水平时,臭氧量满足关系式0.00250etQ Q -=⋅,其中0Q是臭氧的初始量,e 是自然对数的底数,t 是时间,以年为单位.若按照关系式0.00250e tQ Q -=⋅推算,经过0t 年臭氧量还保留初始量的四分之一,则0t 的值约为(ln 20.693≈)( )A. 584年B. 574年C. 564年D. 554年7. 已知数列{a n }满足24a =,对m ∀,*n ∈N ,都有m n m n a a a +=⋅,n T 为数列{a n }的前n 项乘积,若54T T <,则101T =( )A. 51512- B. 50502 C. 1012- D. 515128. 已知函数()22e 1xf x =-+,若不等式()12ln 2f ax f x ⎛⎫+≥ ⎪⎝⎭对()0,x ∀∈+∞恒成立,则实数a 的取值范围是( )A. (20,e ⎤⎦ B. (2,e ⎤-∞⎦C. 20,e⎛⎤ ⎥⎝⎦D. 2,e ⎡⎫+∞⎪⎢⎣⎭二、多选题:9. 已知变量x ,y 之间的线性回归方程为 0.710.3y x =-+,且变量x ,y 之间的一组相关数据如表所示,则下列说法正确的是( )A. 变量x ,y 之间呈现负相关关系B. 4m =C. 可以预测,当11x =时,y 约为2.6D. 由表格数据知,该回归直线必过点()9,410. 记ABC V 的内角,,A B C 的对边分别为,,a b c ,且sin sin 5sin ,1a B c A A bc b c +==++,ABC V 的面积为,则ABC V 的周长可能为( )A. 8B. 5+C. 9D. 5+11. 在圆锥PO 中,PO 为高,AB ,母线长为2,点C 为PA 的中点,圆锥底面上点M 在以AO 为直径的圆上(不含A O 、两点),点H 在PM 上,且PA OH ⊥,当点M 运动时,则( )A. 三棱锥M PAO -的外接球体积为定值B. 直线CH 与直线PA 不可能垂直C. 直线OA 与平面PAM 所成的角可能为60oD. 2AH HO +<三、填空题:12. 已知随机变量()2~2,3N ξ,若()()321P a P a ξξ<-=>+,则实数a 的值为________.13. 圆22(1)25-+=x y 的圆心与抛物线22(0)y px p =>的焦点F 重合,A 为两曲线的交点,则原点到直线AF 的距离为______.14. 对于任意的,x y ∈R ,函数()f x 满足()()()()2f x y f x y f x f y ++-=,函数()g x 满足()()()g x y g x g y +=.若()21f =-,()38g =,则()()2024g f =______.四、解答题:15. 在ABC V 中,角A ,B ,C a ,b ,c .已知sin cos 0b A a B -=.(1)求角B 的大小;(2)若c =,求tan A 的值.16. 某工厂生产一种零件,该零件的质量分为三种等级:一等品、二等品和次品.根据历史数据,该工厂生产一等品、二等品和次品的概率分别为0.7,0.2和0.1.现对一批刚生产出来的零件进行质量检测,检测方式分为两种:自动检测和人工抽检,自动检测能将一等品全部正确识别,但有5%的概率将二等品误判为次品,有15%的概率将二等品误判为一等品,也有10%的概率将次品误判为二等品.(1)求在自动检测下,一个被判断为次品的零件实际上就是次品的概率(2)假设零件先经过自动检测,若判断为一等品,则进行人工抽检;若判断为二等品或次品,则直接淘汰.求人工抽检一个零件,该零件恰好是一等品概率.17.如图,在四棱锥P ABCD -中,122,P AD D PC CB BA AD CB =====∥,90CPD ABC ∠∠==︒,平面PCD ⊥平面,ABCD E 为PD中点.的(1)求证:PD ⊥平面PCA ;(2)点Q 在棱PA 上,CQ 与平面PDC,求平面PCD 与平面CDQ 夹角的余弦值.18. 已知点P 为圆 ():2²²4C x y -+=上任意一点, ()2,0,A -线段PA 垂直平分线交直线PC 于点M ,设点M 的轨迹为曲线H .(1)求曲线H 的方程;(2)若过点M 的直线l 与曲线H 的两条渐近线交于S ,T 两点,且M 为线段ST 的中点.(i)证明:直线l 与曲线H 有且仅有一个交点;(ii).19. 给出以下三个材料:①若函数()f x 可导,我们通常把导函数()f x '导数叫做()f x 的二阶导数,记作()f x ''.类似的,函数()f x 的二阶导数的导数叫做函数()f x 的三阶导数,记作()f x ''',函数()f x 的三阶导数的导数叫做函数()f x 的四阶导数……,一般地,函数()f x 的1n -阶导数的导数叫做函数()f x 的n 阶导数,记作()()()'1n n fx f x -⎡⎤=⎣⎦,4n ≥;②若*N n ∈,定义!(1)(2)321n n n n =⨯-⨯-⨯⨯⨯⨯ ;③若函数()f x 在包含0x 的某个开区间(,)a b 上具有任意阶的导数,那么对于任意(),x a b ∈有()()()()()()()()20000000()1!2!!n nf x f x f xg x f x x x x x x x n =+-+-++-+''' ,我们将()g x 称为函数()f x 在点0x x =处的泰勒展开式.例如1()e xf x =在点0x =处的泰勒展开式为2111()12!n g x x x x n =+++++ 根据以上三段材料,完成下面题目:的的的(1)求出()cos f x x =在点0x =处的泰勒展开式()g x ;(2)用()cos f x x =在点0x =处泰勒展开式前三项计算cos 0.3的值,精确到小数点后4位;(3)现已知sin 111111ππ2π2πππx x x x x x x x n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+ ⎪⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ ,试求211n n ∞=∑的值.的南昌十中2024- 2025学年上学期第一次月考高三数学试题一、单选题:本大题共8个小题,每小题5分,共40分.1. 已知集合4,1P x y y x ⎧⎫==∈⎨⎬+⎩⎭N , {}14Q x x =-≤≤,则P Q = ( )A. {}1,2,4 B. {}0,1,3 C. {}03x x ≤≤ D. {}14x x -≤≤【答案】B 【解析】【分析】根据集合P ,知11x +=或2或4,从而得{}0,1,3P =,再结合集合的交集运算性质运算即可.【详解】由4,1P x y y x ⎧⎫==∈⎨⎬+⎩⎭N ,得11x +=或2或4,故{}0,1,3P =.因为{}14Q x x =-≤≤,所以P Q = {}0,1,3.故选:B.2. 若复数z 满足(1i)i z a +=-(其中i 是虚数单位,R a ∈),则“||1z =”是“1a =”的( )A 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】B 【解析】【分析】由复数的运算结合模长公式求出a ,再由充分必要条件定义判断.【详解】由(1i)i z a +=-得,i (i)(1i)11i,||11i (1i)(1i)22a a a a z z ----+===-=++-2211122a a -+⎛⎫⎛⎫∴+-= ⎪ ⎪⎝⎭⎝⎭,解得1a =或1a =-.故“||1z =”是“1a =”的必要不充分条件.故选:B3. 若向量()()1,2,1,2a b m =-=+,且()a b a +⊥ ,则m =( )A. −8B. 8C. −2D. 2【答案】B.【解析】【分析】运用向量的坐标运算,结合垂直的坐标结论计算即可.【详解】由题意得(),4a b m +=.因为()a b a +⊥ ,所以()80a b a m +⋅=-+=,即8m =.故选:B.4. 某同学参加学校组织的化学竞赛,比赛分为笔试和实验操作测试,该同学参加这两项测试的结果相互不受影响.若该同学在笔试中结果为优秀的概率为34,在实验操作中结果为优秀的概率为23,则该同学在这次测试中仅有一项测试结果为优秀的概率为( )A.712B.12C.512D.13【答案】C 【解析】【分析】根据独立事件的概率公式与互斥事件的概率加法公式可求概率.【详解】根据题意可得该同学在这次测试中仅有一项测试结果为优秀的概率为:12315434312⨯+⨯=.故选:C .5. 函数()y f x =的图象如图①所示,则如图②所示的函数图象所对应的函数解析式可能为( )A. 112y f x ⎛⎫=- ⎪⎝⎭B. 112y f x ⎛⎫=-- ⎪⎝⎭C. ()42y f x =-D. ()42y f x =--【答案】A 【解析】【分析】根据给定的函数图象,由(1)0f =推理排除CD ;由①中函数当1x >时,()0f x >分析判断得解.【详解】由图①知,(1)0f =,且当1x >时,()0f x >,由②知,图象过点(0,0),且当0x <时,0y >,对于C ,当0x =时,(4)0y f =>,C 不可能;对于D ,当0x =时,(4)0y f =-<,D 不可能;对于A ,当0x =时,(1)0y f ==,而当0x <时,1112x ->,则1(1)02f x ->,A 可能;对于B ,当0x =时,(1)0y f =-=,而当0x <时,1112x ->,则1(1)02f x --<,B 不可能.故选:A6. 冰箱空调等家用电器使用了氟化物,氟化物的释放破坏了大气上层的臭氧层,使臭氧量Q 呈指数函数型变化.当氟化物排放量维持在某种水平时,臭氧量满足关系式0.00250etQ Q -=⋅,其中0Q 是臭氧的初始量,e 是自然对数的底数,t 是时间,以年为单位.若按照关系式0.00250e tQ Q -=⋅推算,经过0t 年臭氧量还保留初始量的四分之一,则0t 的值约为(ln 20.693≈)( )A. 584年 B. 574年 C. 564年 D. 554年【答案】D 【解析】【分析】根据题意列出方程,指对数互化求解即可.【详解】由题意知,00.0025001e 4t Q Q Q -=⋅=,则00.00251e4t -=,解得()01400ln 4002ln 25544t =-=--≈年.故选:D .7. 已知数列{a n }满足24a =,对m ∀,*n ∈N ,都有m n m n a a a +=⋅,n T 为数列{a n }的前n 项乘积,若54T T <,则101T =( )A. 51512- B. 50502 C. 1012- D. 51512【答案】A 【解析】【分析】依题意,先令1m =,可得11n na a a +=,再令1m n ==,结合54T T <,可得12a =-,进而判断出数列{a n }是以首项为12a =-,公比为2q =-等比数列,最后结合等比数列的通项公式即可求值.【详解】因为对m ∀,*n ∈N ,都有m n m n a a a +=⋅,的所以令1m =,有11n n a a a +=⋅,则有11n na a a +=,令1m n ==,有22111a a a a ==⋅,又因为24a =,所以12a =±,因为()()()6351234512212222114T a a a a a a a a a a a a a a a =⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅=⋅,()()424123412212214T a a a a a a a a a a a =⋅⋅⋅=⋅⋅⋅⋅⋅⋅=⋅,且54T T <,所以63421144a a ⋅<⋅,即1214a <,所以12a =-,则112n na a a +==-,所以数列{a n }是以首项为12a =-,公比为2q =-的等比数列,所以()()()210010112310010112310111111T a a a a a a q a qa q aq +++⋅⋅⋅+=⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅=⋅()()()110010010151512222+⨯=-⨯-=-,故选:A.8. 已知函数()22e 1xf x =-+,若不等式()12ln 2f ax f x ⎛⎫+≥ ⎪⎝⎭对()0,x ∀∈+∞恒成立,则实数a 的取值范围是( )A. (20,e ⎤⎦ B. (2,e ⎤-∞⎦C. 20,e⎛⎤ ⎥⎝⎦D. 2,e ⎡⎫+∞⎪⎢⎣⎭【答案】D 【解析】【分析】根据函数的性质()()2f x f x =--,原不等式可转化为()()2ln f ax f x ≥,利用函数单调性去掉“f ”,分离参数求最值即可.【详解】因为()()e 22e e 2222241111e exx x x xf x f x -+-=-+-=--=++++.则()()2f x f x =--.所以()()()22ln 2ln f ax f x f x ≥--=,易知()22e 1x f x =-+在R 上单调递增,所以有2ln ax x ≥,对()0,x ∀∈+∞恒成立,即ln 2a xx≥,设()ln xh x x=, 则()21ln xh x x-'=,则当()0,e x ∈时,()'0h x >,()h x 单调递增,当()e,x ∈+∞时,()'0h x <,()h x 单调递减,则()()1h x h e e≤=,所以有2e a ≥,即2,e a ⎡⎫∈+∞⎪⎢⎣⎭.故选:D二、多选题:9. 已知变量x ,y 之间的线性回归方程为 0.710.3y x =-+,且变量x ,y 之间的一组相关数据如表所示,则下列说法正确的是( )A. 变量x ,y 之间呈现负相关关系B. 4m =C. 可以预测,当11x =时,y 约为2.6 D. 由表格数据知,该回归直线必过点()9,4【答案】ACD 【解析】【分析】根据回归直线斜率知A 正确;利用回归直线必过样本中心点可构造方程求得m ,可知B 错误,D 正确;将11x =代入回归直线知C 正确.【详解】对于A ,由 0.710.3y x =-+,得0.7b=- ,故,x y 呈负相关关系,故A 正确;对于B ,68101294x +++==,6321144m m y ++++==,110.7910.34m +∴=-⨯+,解得5m =,故B 错误;对于C ,当11x =时,0.71110.3 2.6y =-⨯+=,故C 正确;对于D ,由5m =得4y =,回归直线必过点()x y ,即必过点()9,4,故D 正确.故选:ACD10. 记ABC V 的内角,,A B C 的对边分别为,,a b c ,且sin sin 5sin ,1a B c A A bc b c +==++,ABC V 的面积为,则ABC V 的周长可能为( )A. 8B. 5+C. 9D. 5+【答案】AB 【解析】【分析】由正弦定理得5b c +=,由三角形面积公式得sin A =,进而得出1cos 3A =±,再根据余弦定理求得3a =,即可求解.【详解】由正弦定理得5ab ac a +=,得5b c +=,则16bc b c =++=,由1sin 2ABC S bc A ==,得sin A =,所以1cos 3A ==±,由余弦定理2222cos a b c bc A =+-,得22()22cos 9a b c bc bc A =+--=或17,所以3a =,所以ABC V 的周长为8或5+故选:AB .11. 在圆锥PO 中,PO 为高,AB,母线长为2,点C 为PA 的中点,圆锥底面上点M 在以AO 为直径的圆上(不含A O 、两点),点H 在PM 上,且PA OH ⊥,当点M 运动时,则( )A. 三棱锥M PAO -的外接球体积为定值B. 直线CH 与直线PA 不可能垂直.C. 直线OA 与平面PAM 所成的角可能为60o D 2AH HO +<【答案】AD 【解析】【分析】由条件结合线面垂直判定定理证明AM ⊥平面POM ,由此证明AM PM ⊥,再证明点C 为三棱锥M PAO -的外接球球心,判断A ,证明PA ⊥平面OHC ,由此证明PA CH ⊥,判断B ;证明OH ⊥平面PAM ,由此可得OAH ∠为直线OA 与平面PAM 所成的角,解三角形求其正弦,判断C ,证明OH AH ⊥,解三角形求AH HO +,结合基本不等式求其范围,判断D.【详解】连接,,,,,OM AM AH OC CM CH ,对于A ,易知⊥PO 平面AMB ,AM ⊂平面AMB ,所以AM PO ⊥,因为点M 在以AO 为直径的圆上(不含A 、O ),所以AM OM ⊥,OM PO O = ,OM ⊂平面POM ,PO ⊂平面POM ,所以AM ⊥平面POM ,又PM ⊂平面POM ,所以AM PM ⊥,又PO AO ⊥,C 为PA 的中点,2PA =,所以1CO CA CP CM ====,所以点C 为三棱锥M PAO -的外接球的球心,所以三棱锥M PAO -的外接球的半径为r =1,所以三棱锥M PAO -的外接球体积为定值,A 正确;由已知,PO AO ⊥,2PA =,AO =,所以PO AO ===,所以POA 为等腰直角三角形,连接OC ,又C 为PA 的中点,故PA OC ⊥,又PA OH ⊥,OH OC O ⋂=,OH ⊂平面OHC ,OC ⊂平面OHC ,则PA ⊥平面OHC ,又CH ⊂平面OHC ,所以PA CH ⊥,故B 错误;因为AM ⊥平面POM ,又OH ⊂平面POM ,所以AM OH ⊥,又PA OH ⊥,PA AM A = ,AM ⊂平面PAM ,PA ⊂平面PAM ,则OH ⊥平面PAM ,所以OA 在平面PAM 上的射影为AH ,所以OAH ∠为直线OA 与平面PAM 所成的角,设OMx =,则PM =OH PM OM PO ⋅=⋅,.所以OH =所以sin OH OAH OA ∠==,令60OAH ∠==,解得x =,即OM =OM OA <矛盾,C 错误;对于D 中,因为OH ⊥平面PAM ,AH ⊂平面PAM ,所以OH AH ⊥,又OH =,OA =所以AH ==,所以AH HO +==,0x <由基本不等式可得2222x +<x +<,所以2AH HO +<,D 正确. 故选:AD【点睛】关键点点睛:解决多面体的外接球问题的关键在于由条件确定其外接球的球心的位置,由此确定外接球的半径.三、填空题:12. 已知随机变量()2~2,3N ξ,若()()321P a P a ξξ<-=>+,则实数a 的值为________.【答案】2【解析】【分析】根据正态分布的对称性求解.【详解】由题意得,32122a a -++=⨯,解得2a =.故答案为:213. 圆22(1)25-+=x y 的圆心与抛物线22(0)y px p =>的焦点F 重合,A 为两曲线的交点,则原点到直线AF 的距离为______.【答案】45##0.8【解析】【分析】先求出圆心坐标,从而可求焦准距,再联立圆和抛物线方程,求A 及AF 的方程,从而可求原点到直线AF 的距离.【详解】圆22(1)25-+=x y 的圆心为()10F ,,故12p=即2p =,由()2221254x y y x⎧-+=⎪⎨=⎪⎩可得22240x x +-=,故4x =或6x =-(舍),故()4,4A ±,故直线()4:13AF y x =±-即4340x y --=或4340x y +-=,故原点到直线AF 的距离为4455d ==,故答案为:4514. 对于任意的,x y ∈R ,函数()f x 满足()()()()2f x y f x y f x f y ++-=,函数()g x 满足()()()g x y g x g y +=.若()21f -,()38g =,则()()2024g f =______.【答案】2【解析】【分析】利用赋值法先判定()f x 的周期性,化()()()()20240g f g f =,再利用赋值法计算即可.【详解】令0y =,得()()()220f x f f x =,则()01f =或()0f x =(与()21f =-矛盾舍去).令1x y ==,得()()()220210f f f +==⎡⎤⎣⎦,则()10f =,则()()110f x f x ++-=,则()()4f x f x +=,则()()202401f f ==.又因为()()()g x y g x g y +=,所以()()()()332118g g g g ⎡⎤===⎣⎦,则()12g =,从而()()()202412g f g ==.故答案为:2【点睛】思路点睛:抽象函数的性质问题通常用赋值法,通过巧妙赋值先判定()f x 的周期性,再利用赋值法计算函数值即可.四、解答题:15. 在ABC V 中,角A ,B ,C 的对边分别为a ,b ,c .已知sin cos 0b A a B -=.(1)求角B 的大小;(2)若c =,求tan A 的值.【答案】(1)π4B = (2)13【解析】【分析】(1)根据正弦定理,将边化为角,再根据三角函数公式,即可求解;(2)方法一:首先根据正弦定理将边化为角,再根据(1)的结果,转化为关于角A 的三角函数关系式,即可求解;方法二:将边的关系代入余弦定理,得到b =,再代入余弦定理求cos A ,即可求解.【小问1详解】由sin cos 0b A a B -=及正弦定理得,sin sin sin cos 0B A A B -=.因为()0,πA ∈,所以sin 0A ≠,则sin cos 0B B -=,即tan 1B =.因为B ∈(0,π),所以π4B =.【小问2详解】方法一:由c =和正弦定理,得sin C A =,即3πsin 4A A ⎛⎫-=⎪⎝⎭.A A A+=A A =,则得1tan 3A =.方法二:根据余弦定理得22222222cos 85b a c ac B a a a =+-=+-=,则b =.222cos 02b c a A bc +-===>,则角A 是锐角,故sin A ==,则sin 1tan cos 3A A A ==.16. 某工厂生产一种零件,该零件的质量分为三种等级:一等品、二等品和次品.根据历史数据,该工厂生产一等品、二等品和次品的概率分别为0.7,0.2和0.1.现对一批刚生产出来的零件进行质量检测,检测方式分为两种:自动检测和人工抽检,自动检测能将一等品全部正确识别,但有5%的概率将二等品误判为次品,有15%的概率将二等品误判为一等品,也有10%的概率将次品误判为二等品.(1)求在自动检测下,一个被判断为次品的零件实际上就是次品的概率(2)假设零件先经过自动检测,若判断为一等品,则进行人工抽检;若判断为二等品或次品,则直接淘汰.求人工抽检一个零件,该零件恰好是一等品的概率.【答案】(1)910(2)7073【解析】【分析】(1)先由互斥事件和的概率与条件概率计算()P B ,再由条件概率计算()P A B 即可;(2)根据条件概率公式求解即可.【小问1详解】设事件A 表示“零件是次品”,B 表示“自动检测判断零件为次品”,事件12,A A 分别表示零件是一等品、二等品,则()()()()()()()2211P B P A P B A P A P B A P A P B A =++0.10.90.20.050.700.1=⨯+⨯+⨯=,则()()()0.10.90.1P AB P A B P B ⨯==所以在自动检测下,一个被判断为次品的零件实际上就是次品的概率为910.【小问2详解】设事件C 表示“零件需要进行人工抽检”,D 表示“人工抽检的零件为一等品”()0.70.20.150.73P C =+⨯=,()0.7P CD =,所以人工抽检一个零件,该零件恰好是一等品的概率为()()()0.7700.7373P CD P D C P C ===.17. 如图,在四棱锥P ABCD -中,122,P AD D PC CB BA AD CB =====∥,90CPD ABC ∠∠==︒,平面PCD ⊥平面,ABCD E 为PD 中点.(1)求证:PD ⊥平面PCA ;(2)点Q 在棱PA 上,CQ 与平面PDC ,求平面PCD 与平面CDQ 夹角的余弦值.【答案】(1)证明见解析(2【解析】【分析】(1)应用面面垂直性质定理证明线面垂直;(2)先应用空间向量法计算线面角得出参数,再计算二面角即可.【小问1详解】由题意:2,90,BC AB ABC AC ==∠=︒∴==,同理CD =,又2224,,AD CD AC AD CD AC =∴+=∴⊥.而CD ==,即PC PD⊥又平面PCD ⊥平面ABCD ,平面PCD 平面,ABCD CD AC =⊂平面ABCD ,AC ∴⊥平面,PCD PD ⊂平面,PCD PD AC ∴⊥,又PC PD ⊥,且PC ⊂面,PCA AC ⊂面,,PCA PC AC C PD =∴⊥ 平面PCA .【小问2详解】以C 为原点,建立如图所示的空间直角坐标系,则()()()0,0,0,,,C A D P,()(,,CD CP PA ∴===,设(01)PQ PA λλ=<<,有)))11CQ CP PA λλλ=+=-- ,取面PCD 的一个法向量()0,1,0m =,则1cos ,2CQ m λ===,故CQ = .令(),,n x y z = 是平面CDQ 的一个法向量,则0n CD n CQ ⎧⋅=⎪⎨⋅=⎪⎩,即00x z ⎧==令1y =,有()0,1,2n =-,则cos ,n m n m n m ⋅==,故平面PCD 与平面CDQ 18. 已知点P 为圆 ():2²²4C x y -+=上任意一点, ()2,0,A -线段PA 的垂直平分线交直线PC 于点M ,设点M 的轨迹为曲线H .(1)求曲线H 的方程;(2)若过点M 的直线l 与曲线H S ,T 两点,且M 为线段ST 的中点.(i)证明:直线l 与曲线H 有且仅有一个交点;(ii)求 21OS OT+的取值范围.【答案】(1)2213y x -=(2)( i )证明见解析,( ii) )+∞【解析】【分析】(1) 由双曲线的定义进行求解;(2) ( i ) 设001122(,),(,),(,)Mx y S x y T x y ,求出03ST x k y =,由直线l 与曲线H 方程进行求解;(ii)由12220034443OS OT x x x y ⋅===⨯=-,则2124OS OS OT OS +=+利用基本不等式求解.【小问1详解】M 为PA 的垂直平分线上一点, 则MP MA = ,则24MA MC MP MC AC -=-=<=∴点M 的轨迹为以,A C 为焦点的双曲线, 且22,2a c ==,故点M 的轨迹方程为22: 1.3y H x -=【小问2详解】( i ) 设001122(,),(,),(,)Mx y S x y T x y,双曲线的渐近线方程为:y =,如图所示:则11y =①,22y =②,①+②得,)1212y y x x +=- , ①-②得,)1212y y x x -=+ ,=,得()121212123x x y y x x y y -+=+-由题可知MS MT =,则1201202,2x x x y y y +=+=,得()1200123x x y x y y -=-,即003ST x k y =,∴直线ST 的方程为()00003x y y x x y -=-,即22000033x x y y x y -=-,又∵点M 在曲线H 上,则220033x y =- ,得0033x x y y-=,将方程联立22001333y x x x y y ⎧-=⎪⎨⎪-=⎩,得()222200003630y x x x x y -+--=,得22003630x x x x -+-=,由()()()2200Δ64330x x =-⨯-⨯-=,可知方程有且仅有一个解,得直线l 与曲线H 有且仅有一个交点. (ii )由(i)联立0033y x x y y ⎧=⎪⎨-=⎪⎩,可得1x =,同理可得,2x =,则12220034443OS OT x x x y ⋅===⨯=-,故2124OS OS OT OS +=+≥当且仅当24OS OS =,即OS =. 故21OS OT+的取值范围为)+∞.【点睛】关键点点睛:第二问中的第2小问中,先要计算4OS OT ⋅=,再由基本不等式求解范围.19. 给出以下三个材料:①若函数()f x 可导,我们通常把导函数()f x '的导数叫做()f x 的二阶导数,记作()f x ''.类似的,函数()f x 的二阶导数的导数叫做函数()f x 的三阶导数,记作()f x ''',函数()f x 的三阶导数的导数叫做函数()f x 的四阶导数……,一般地,函数()f x 的1n -阶导数的导数叫做函数()f x 的n 阶导数,记作()()()'1n n f x f x -⎡⎤=⎣⎦,4n ≥;②若*N n ∈,定义!(1)(2)321n n n n =⨯-⨯-⨯⨯⨯⨯ ;③若函数()f x 在包含0x 的某个开区间(,)a b 上具有任意阶的导数,那么对于任意(),x a b ∈有()()()()()()()()20000000()1!2!!n nf x f x f xg x f x x x x x x x n =+-+-++-+''' ,我们将()g x 称为函数()f x 在点0x x =处的泰勒展开式.例如1()e x f x =在点0x =处的泰勒展开式为2111()12!n g x x x x n =+++++ 根据以上三段材料,完成下面的题目:(1)求出()cos f x x =在点0x =处的泰勒展开式()g x ;(2)用()cos f x x =在点0x =处的泰勒展开式前三项计算cos 0.3的值,精确到小数点后4位;(3)现已知sin 111111ππ2π2πππx x x x x x x x n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+ ⎪⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ ,试求211n n∞=∑值.【答案】(1)2462(1)cos 162!4!(2)!!n nn x x x x x -=-+-+++(2)0.9553(3)2π6【解析】【分析】(1)利用n 阶泰勒展开式的定义,可求()g x ,(2)由(1)可求cos 0.3;(3)由(1)可得3521(1)sin 511!3!(2)!!n n x x x x n x ---=-+-+-++ ,进而可得24sin 15!3!x x x x =-++++ ,结合已知可得结论.【小问1详解】()cos f x x =,()sin f x x '=-,()''cos f x x =-,L ,所以(0)cos01f ==,(0)sin 00f '=-=,()''cos 01f x =-=-,L ,由()()()2201(1)cos 10001!2!!n nx x x x n --=+-+-++-+ 所以2462(1)cos 162!4!(2)!!n nn x x x x x -=-+-+++【小问2详解】由(1)可得2462240.30.30.3(1)0.30.30.3c !12!o (s 0.316!4!2)4!2!n n n -⨯=-+-+++≈-+ 10.0450.00033750.9553=-+=的【小问3详解】因为sin 111111ππ2π2πππx x x x x x x x n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+ ⎪⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭2222222111π4ππx x x n ⎛⎫⎛⎫⎛⎫=--- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭①,对2462(1)cos 162!4!(2)!!n nn x x x x x -=-+-+++ ,两边求导可得:3521(1)sin 511!3!(2)!!n n x x x x n x ---=-+-+-++ ,所以35121(1)sin 5!1!3!(21)!n n x x x x x n ---=-++-++ ,所以24122sin (1)15!3!(21)!n n n x x x x x ----=-++++ ②,比较①②中2x 的系数,可得:22222)11111(3!π1231n-=-++++ ,所以2222221111π361112n nn ∞==++++=∑ .【点睛】关键点睛:本题考查了导数中的新定义问题,关键是审题时明确n 阶泰勒展开式的具体定义;第三问关键在于用n 阶泰勒展开式表示sin x x .。
2024-2025学年上海曹杨二中高三上学期数学月考试卷及答案(2024.10)
1曹杨二中2024学年第一学期高三年级数学月考2024.10一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分) 1.设a R ∈.若(2)(1)a i i −+为纯虚数(i 为虚数单位),则a =________. 2.函数y =________.3.某校高三年级共有学生525名,其中男生294名,女生231名.为了解该校高三年级学生的体育锻炼情况,从中抽取50名学生进行问卷调查.若采用分层随机抽样的方法,则要抽取男生的人数为________.4.设m R ∈,若圆2240x y y m +−+=的面积为π,则m =________. 5.在无穷等比数列{}n a 中,首项11a =,公比12q =.记222213521n n S a a a a −=++++,则lim n n S →+∞=________.6.设0ω>,()sin f x x =ω.若函数()y f x =,,32ππx ⎡⎤∈−⎢⎥⎣⎦的最大值为1,但最小值不为1−,则ω的取值范围是________.7.已知m 为非零常数.若在7m x x ⎛⎫+ ⎪⎝⎭的二项展开式中,3x 的系数是31x 的系数的8倍,则m =________.8.设(,)P x y 是曲线cos y x =(02πx ≤≤)上一动点,则2x y +的最大值为________. 9.设2()f x x =,(),0,()(),0,f x x g x f x x −−≥⎧=⎨<⎩则不等式()2g x x ≤+的解集为________.10.已知△ABC 是边长为6的等边三角形,M 是△ABC 的内切圆上一动点,则AB AM ⋅的最小值为________.11.若一个正整数的各位数码从左至右是严格增或严格减的,则称该数为“严格单调数”.在不大于4000的四位数中,“严格单调数”共有________个.212.设椭圆2222:1x y Γa b+=(0a b >>)的左、右焦点分别为1F 、2F ,直线l 经过点2F ,且与Γ交于P 、Q 两点.若12PF PF ⊥,且21F Q =,则Γ的长轴长的最小值为________.二、选择题(本大题共有4题,满分18分,第13~14题4分,第15~16题5分) 13.已知x R ∈,则“22πx k π=+(k Z ∈)”是“cos 0x =”的( ). A .充分非必要条件 B .必要非充分条件C .充要条件D .既非充分又非必要条件14.若α、,22ππ⎡⎤β∈−⎢⎥⎣⎦,且sin sin αα>ββ,则( ).A .α>βB .α<βC .22α>βD .22α<β15.在四棱锥P ABCD −中,底面ABCD 是边长为2的正方形,且2PA PB ==,PC = ).ABCD16.已知定义在(0,)+∞上的函数()y f x =满足:对任意(0,)x ∈+∞,都有1()5f f x x ⎛⎫−= ⎪⎝⎭.若函数()5y f x =−的零点个数为有限的n (n N ∈)个,则n 的最大值是( ). A .1B .2C .3D .43三、解答题(本大题共有5题,满分78分)17.(本题满分14分,第1小题6分,第2小题8分)如图,空间几何体由两部分构成,上部是一个底面半径为1的圆锥,下部是一个底面半径为1,高为2的圆柱,圆锥和圆柱的轴在同一直线上,圆锥的下底面与圆柱的上底面重合.设P 是圆锥的顶点,AB 是圆柱下底面的一条直径,1AA 、1BB 是圆柱的两条母线,C 是圆弧AB 的中点.(1)若圆锥的侧面积是圆柱的侧面积的12,求该几何体的体积; (2)若圆锥的高为1,求直线1PB 与平面PAC 所成角的大小.18.(本题满分14分,第1小题8分,第2小题6分)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c .设向量(2,cos )m b c C =+−,(,cos )n a A =,已知//m n . (1)求角A 的大小;(2)设D 为BC 边上一点,且AD AB ⊥.若4AC =,AD =,求sin B .19.(本题满分14分,第1小题4分,第2小题4分,第3小题6分)企业经营一款节能环保产品,其成本由研发成本与生产成本两部分构成,生产成本固定为每台130元.根据市场调研,若该产品产量为x万台时,每万台产品的销售收入为()I x万元,其中()220=−(0220I x x<<).x(1)若甲企业独家经营,其研发成本为60万元,求甲企业能获得利润的最大值;(2)若乙企业见有利可图,也经营该产品,其研发成本为40万元.试问:乙企业产量多少万台时获得的利润最大;(假设甲企业按照原先最大利润的产量生产,并未因乙的加入而改变)(3)由于乙企业参与,甲企业将不能得到预期的最大收益,因此会作相应调整,之后乙企业也会随之作出调整……,最终双方达到动态平衡(在对方当前产量不变的情况下,己方达到利润最大).求动态平衡时,两企业各自的产量.4520.(本题满分18分,第1小题4分,第2小题6分,第3小题8分)已知双曲线2222:1x y C a b−=(0a >,0b >)的离心率2e =,左顶点(1,0)A −.过C 的右焦点F 作与x 轴不重合的直线l ,交C 于P 、Q 两点. (1)求双曲线C 的方程;(2)求证:直线AP 、AQ 的斜率之积为定值;(3)设PF FQ =λ.试问:在x 轴上是否存在定点T ,使得()AF TP TQ ⊥−λ恒成立?若存在,求出点T 的坐标;若不存在,说明理由.21.(本题满分18分,第1小题4分,第2小题6分,第3小题8分)给定函数()y f x =,若点P 是曲线()y f x =的两条互相垂直的切线的交点,则称点P 为函数()y f x =的“正交点”.记函数()y f x =的所有“正交点”组成的集合为M . (1)若()ln f x x =,求证:M =∅;(2)若2()f x x =,求证:函数()y f x =的所有“正交点”在一条定直线上,并求出该直线的方程;(3)设a R ∈,32()f x x ax =−,记函数()y f x =的图像上所有点组成的集合为N .若M N =∅,求a 的取值范围.6参考答案一、填空题1.2− 2.(,0]−∞ 3.28 4.3 5.1615 6.31,2⎡⎫⎪⎢⎣⎭7.12 8.6π+ 9.[1,)−+∞ 10.18− 11.112 12.3+二、选择题13.A 14.C 15.C 16.B 三、解答题17.(1)2V ⎛+π =⎝⎭. (2)a r si c . 18.【答案】(1)23πA =(2)sin B =【解析】(1)//m n 即s (o os )c c 2A a C b c =−+.在△ABC 中,由正弦定理得2sin cos sin cos sin cos B A C A A C +=−, 即2sin cos (sin cos sin cos )sin()sin B A A C C A A C B =−+=−+=−. 由于B 为三角形内角,故sin 0B >,上式即cos 12A =−. 由于A 为三角形内角,解得23πA =. (2)在△ADC 中,由余弦定理得2222cos6C πAD AC AD AC D =+−⋅⋅,故CD =再由余弦定理,得222cos 2AD CD AC ADC AD CD +−∠==⋅因此sin cos cos()cos B ADB πADC ADC =∠=−∠=−∠=. 19.【答案】(1)当甲企业的产量为45万台时,其获得的利润取最大值1965万元. (2)当乙企业的产量为452万台时,其获得的利润取最大值18654万元.(3)动态平衡时,甲、乙两企业的产量均为30万台.7【解析】(1)设甲企业的产量为x 万台,利润为()P x 万元, 则2()()130096060P x x x x xI x +==−−−−,(0,220)x ∈. 故当且仅当45x =时,()P x 取最大值1965.因此当甲企业的产量为45万台时,其获得的利润取最大值1965万元. (2)设乙企业的产量为x 万台,利润为()P x 万元,则2()(45)130045440x P x xI x x x =++−−−−=,(0,175)x ∈. 故当且仅当452x =时,()P x 取最大值18654.因此当乙企业的产量为452万台时,其获得的利润取最大值18654万元.(3)设甲、乙两企业的产量分别为a 万台和b 万台,利润分别为1P 万元和2P 万元, 则21()13060(9060)P aI a b a b a a =−=++−−−−, 当1P 最大时,有904522b a b−==−. 22()13040(9040)P bI a b b a b b =−=++−−−−, 当2P 最大时,有904522a b a−==−. 由于达到动态平衡, 故4,2,2455a a b b ⎧=−⎪⎪⎨⎪=−⎪⎩ 解得30a b ==. 因此动态平衡时,甲、乙两企业的产量均为30万台.20.(本题满分18分,第1小题4分,第2小题6分,第3小题8分)已知双曲线2222:1x y C a b−=(0a >,0b >)的离心率2e =,左顶点(1,0)A −.过C 的右焦点F 作与x 轴不重合的直线l ,交C 于P 、Q 两点. (1)求双曲线C 的方程;(2)求证:直线AP 、AQ 的斜率之积为定值;(3)设PF FQ =λ.试问:在x 轴上是否存在定点T ,使得()AF TP TQ ⊥−λ恒成立?若存在,求出点T 的坐标;若不存在,说明理由.8【答案】(1)22:13y C x −= (2)见解析(3)存在定点1,02T ⎛⎫⎪⎝⎭满足题目要求.【解析】(1)设双曲线的半焦距为c .由题意知1a =,2c ea ==. 故2223b c a =−=,因此22:13y C x −=.(2)由题意知(2,0)F .设直线:2l x my =+,与双曲线方程联立得220(931)12m y my −++=. 设11)(,P x y 、22)(,Q x y ,则12212212,319.31y y m y m y m ⎧⎪⎪⎨⎪⎪+=−=⎩−−(*) 故直线AP 、AQ 的斜率之积为12121221212121211(3)(3)3()9y y y y y y x x my my m y y m y y ⋅==+++++++22229311932931311m m m m m m−=−=−+⋅+−−. (3)由题意知1122)(22,)(,y x x y −−−=λ,得12y y λ=−. 设(,0)T t ,则1212(()()),TP TQ x t x t y y −λ=−−λ−−λ. () AF TP TQ ⊥−λ即()0AF TP TQ ⋅−λ=. 由于(3,0)AF =,上式即12()()0x t x t −−λ−=,解得121t x x −λ=−λ.利用(*)式,得12211212121222()9122122x y x y my y y y m y y y y t m +++==⋅=++−=+,因此存在定点1,02T ⎛⎫⎪⎝⎭满足题目要求.21.(本题满分18分,第1小题4分,第2小题6分,第3小题8分)给定函数()y f x =,若点P 是曲线()y f x =的两条互相垂直的切线的交点,则称点P 为函数()y f x =的“正交点”.记函数()y f x =的所有“正交点”组成的集合为M .9(1)若()ln f x x =,求证:M =∅;(2)若2()f x x =,求证:函数()y f x =的所有“正交点”在一条定直线上,并求出该直线的方程;(3)设a R ∈,32()f x x ax =−,记函数()y f x =的图像上所有点组成的集合为N .若M N =∅,求a 的取值范围.【答案】(1)见解析(2)证明见解析,定直线14y =−(3)(2,2)a ∈− 【解析】(1)由题意知函数()y f x =的定义域,)(0D =+∞,且1()f x x'=. 对任意的1x 、2x D ∈,都有12121()()1f x f x x x ''=≠−,因此M =∅. (2)设“正交点”00)(,P x y 是曲线()y f x =在1x x =与2x x =处切线的交点.由于()2f x x '=,故曲线()y f x =在1x x =与2x x =处的切线方程分别为2112x y x x −=与2222x y x x −=.将两直线方程联立,解得120012,.2x x y x x x ⎧=⎪⎨⎪+⎩= 由于曲线()y f x =在1x x =与2x x =处的切线互相垂直,有12122x x ⋅=−,即1214x x =−. 因此014y =−为定值,即点P 在定直线14y =−上.(3)MN =∅即过曲线()y f x =上任意一点00)(),(P x f x 均无法作曲线()y f x =的两条互相垂直的切线. 设曲线()y f x =在x t =处的切线经过点P , 则有00)()()()(f t f f t x x t −='−.将2()32x x ax f '=−代入上式, 并移项整理、因式分解得2000())(2t x t a x −−+=,解得0t x =或02t a x =−. 当两条切线垂直时,有00(12)a x x f f −⎛⎫'⋅'=− ⎪⎝⎭, 整理得22200002)(32)40(3ax x a x ax −−−+=,题目条件即上述关于0x 的方程无解.令2023x x m a =−,则2,3m a ⎡⎫∈−+∞⎪⎢⎣⎭,且关于m 的方程2240a m m −+=在区间2,3a ⎡⎫−+∞⎪⎢⎣⎭10上无解.令22()4m m a m ϕ=−+,则()y m =ϕ的对称轴为22m a =,因此()y m =ϕ在区间2,3a ⎡⎫−+∞⎪⎢⎣⎭上无零点即4160a ∆=−<,解得(2,2)a ∈−.。
2020届江西省信丰中学高三上学期第一次月考数学(理)试题(解析版)
2020届江西省信丰中学高三上学期第一次月考数学(理)试题一、单选题1.全集U =R ,集合{}1,2,3,4,5A =,[)3,B =+∞,则图中阴影部分所表示的集合为( )A .{}0,1,2B .{}0,1C .{}1,2D .{}1【答案】C【解析】根据图中阴影部分所表示的集合为RAB ,然后根据全集U =R ,[)3,B =+∞,求得B R ,再利用交集运算求解.【详解】由图知:图中阴影部分所表示的集合为RA B ,因为全集U =R ,[)3,B =+∞, 所以(),3RB =-∞,又集合{}1,2,3,4,5A =, 所以{}1,2RA B ⋂=,所以图中阴影部分所表示的集合为{}1,2, 故选:C 【点睛】本题主要考查ven 图以及集合的基本运算,还考查了数形结合的思想,属于基础题. 2.直线:1l y kx =+与圆22:1O x y +=相交于,A B 两点,则"1"k =是“OAB ∆的面积为12”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分又不【答案】A【解析】试题分析:由1k =时,圆心到直线:1l y x =+的距离2d =..所以11222OAB S ∆=⨯=.所以充分性成立,由图形的对成性当1k =-时, OAB ∆的面积为12.所以不要性不成立.故选A. 【考点】1.直线与圆的位置关系.2.充要条件.3.已知集合{}|A x x a =<,{}|12B x x =≤<,且()RA B R =,则实数a 的取值范围是( ) A .1a ≤ B .1a < C .2a ≥ D .2a >【答案】C【解析】先由题意,求出B R,根据()RAB R =,即可得出结果.【详解】因为{}|12B x x =≤<,所以{1RB x x =<或}2x ≥,又{}|A x x a =<,()RA B R =,所以,只需2a ≥. 故选:C. 【点睛】本题主要考查由并集和补集的结果求参数,属于基础题型. 4.已知i 是虚数单位,若32i 2ii i 12iz ++=+-所对应的点位于复平面内 A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】D【解析】由题意计算可得13z i =-,据此确定其所在的象限即可. 【详解】 因为232i 2i (32i)i (2i)(12i)i i 23i i i 13i i 12i i (12i)(12i)z +++++=+=+=-+⋅=---+, 所以该复数位于第四象限,故选D .复数的代数形式的运算主要有加、减、乘、除及求低次方根.除法实际上是分母实数化的过程.5.已知命题p :若x >y ,则-x <-y ;命题q :若x >y ,则x 2>y 2.在命题①p ∧q ;②p ∨q ;③p ∧(⌝q );④(⌝p )∨q 中,真命题是( ) A .①③ B .①④ C .②③ D .②④【答案】C【解析】试题分析:根据不等式的基本性质知命题p 正确,对于命题q ,当,x y 为负数时22x y >不成立,即命题q 不正确,所以根据真值表可得,(p q p ∨∧q )为真命题,故选C.【考点】1、不等式的基本性质;2、真值表的应用.6.已知集合{}2|4120A x x x =--<,(){}2|log 10B x x =-<,则AB =( )A .{}|6x x <B .{}|12x x <<C .{}|62x x -<<D .{}|2x x <【答案】B【解析】先解不等式,化简两集合,再求交集,即可得出结果. 【详解】因为{}{}2|4120|26A x x x x x =--<=-<<,(){}{}{}2|log 10|011|12B x x x x x x =-<=<-<=<<,所以{}|12A B x x ⋂=<<. 故选:B. 【点睛】本题主要考查求集合的交集,涉及一元二次不等式的解法,以及对数不等式的解法,属于基础题型.7.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( ) A .0.8 B .0.75C .0.6D .0.45【答案】A【解析】【详解】试题分析:记A =“一天的空气质量为优良”,B =“第二天空气质量也为优良”,由题意可知()()0.75,0.6P A P AB==,所以()()()4|5P ABP B AP A==,故选A.【考点】条件概率.8.如图,正方形ABCD内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称,在正方形内随机取一点,则此点取自黑色部分的概率是A.14B.8πC.12D.4π【答案】B【解析】设正方形边长为a,则圆的半径为2a,正方形的面积为2a,圆的面积为2π4a.由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半.由几何概型概率的计算公式得,此点取自黑色部分的概率是221ππ248aa⋅=,选B.点睛:对于几何概型的计算,首先确定事件类型为几何概型并确定其几何区域(长度、面积、体积或时间),其次计算基本事件区域的几何度量和事件A区域的几何度量,最后计算()P A.9.设m,n是不同的直线,α,β,γ是三个不同的平面,有以下四个命题:()①若mα⊥,nβ⊥,则//m n;②若mαγ=,nβγ=,//m n,则//αβ;③若//αβ,//βγ,mα⊥,则mγ⊥;A .①③B .②③C .③④D .①④【答案】A【解析】根据空间线面位置关系的性质和判定定理判断或举出反例说明. 【详解】对①,由于垂直于同一个平面的两条直线平行,故①正确;对②,设三棱柱的三个侧面分别为,,αβγ,其中两条侧棱为,m n ,显然//m n ,但α与β不平行,故②错误.对③,∵////αβγ,当m α⊥时,m γ⊥,故③正确.对④,当三个平面,,αβγ两两垂直时,显然结论不成立,故④错误. 故选:A. 【点睛】本题考查空间线面位置关系的判断,属于中档题.10.设映射f :22x x x →-+是实数集M 到实数集P 的映射,若对于实数t P ∈,t 在M 中不存在原象,则t 的取值范围是( )A .()1,+∞B .[)1,+∞C .(),1-∞D .(],1-∞【答案】A【解析】根据二次函数的性质,求出22y x x =-+的值域,再由题意,即可求出结果. 【详解】因为映射f :22x x x →-+是实数集M 到实数集P 的映射, 由22y x x =-+,x ∈R 可得()2111y x =--+≤,即集合P 要包含(],1-∞,又对于实数t P ∈,t 在M 中不存在原象, 所以(],1t ∉-∞,因此1t >. 故选:A. 【点睛】本题主要考查映射的相关计算,考查二次函数的值域,属于基础题型.11.已知0a >且1a ≠,函数()(log a f x x =在区间(),-∞+∞上既是奇函A .B .C .D .【答案】A【解析】根据奇函数求出1b =,根据增函数可知1a >,进而判断函数()g x 的图象. 【详解】 解:函数()(2log a f x x x b =++在区间(),-∞+∞上是奇函数,∴()00f =,则1b =,又函数()(2log a f x x x b =+在区间(),-∞+∞上是增函数,∴1a >.所以()log 1a g x x =-,当1x >时,()()log 1a g x x =-为增函数,排除B ,D 选项;当01x <<时,()()log 1a g x x =-为减函数,排除C . 故选:A. 【点睛】本题考查奇函数的特性,复合函数的增减性,对数函数的性质,考查数形结合的思想,分析问题能力,属于基础题.12.设()221x f x x =+,()()520g x ax a a =+->,若对于任意[]10,1x ∈,总存在[]00,1x ∈,使得()()01g x f x = 成立,则a 的取值范围是( )555【答案】C【解析】先对函数()f x 分0x =和0x ≠,运用二次函数的值域求法,可得()f x 的值域,运用一次函数的单调性求出函数()g x 的值域,由题意可得()f x 的值域包含在()g x 的值域内,可得a 的不等式组,解不等式可得a 的取值范围.【详解】∵()221x f x x =+,当0x =时,()0f x =,当0x ≠时,()22111112422x xx f x ==⎛⎫++- ⎪⎝⎭,由01x <≤,即11x ≥,所以2111224x ⎛⎫+-≥ ⎪⎝⎭, ∴()01f x <≤,故()01f x ≤≤, 又因为()()520g x ax a a =+->,且()052g a =-,()15g a =-. 由()g x 递增,可得()525a g x a -≤≤-,对于任意[]10,1x ∈,总存在[]00,1x ∈,使得()()01g x f x =成立, 可得[][]0,152,5a a ⊆--,可得52051a a -≤⎧⎨-≥⎩∴5,42a ⎡⎤∈⎢⎥⎣⎦. 故选:C . 【点睛】本题主要考查函数恒成立问题以及函数值域的求法,注意运用转化思想,是对知识点的综合考查,属于中档题.二、填空题13.已知集合{}1,2aA =,{},B a b =.若12A B ⎧⎫=⎨⎬⎩⎭,则A B =______.【答案】11,,12⎧⎫-⎨⎬⎩⎭【解析】根据交集的定义得,a b 的值,即可得答案; 【详解】12A B ⎧⎫=⎨⎬⎩⎭,∴112122a A a ∈⇒=⇒=-,∴12b =,∴{}111,21,,1,22aA B ⎧⎫⎧⎫===-⎨⎬⎨⎬⎩⎭⎩⎭, ∴11,,12AB ⎧⎫=-⎨⎬⎩⎭,故答案为:11,,12⎧⎫-⎨⎬⎩⎭. 【点睛】本题考查集合的并运算,考查运算求解能力,属于基础题.14.从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为________. 【答案】16【解析】十个数中任取七个不同的数共有C 种情况,七个数的中位数为6,那么6只有处在中间位置,有C 种情况,于是所求概率P ==.15.二项式6(2x x展开式中含2x 项的系数是________. 【答案】192-【解析】试题分析:通项为()6116322166212rrr r r r r r T C x x C x ----+⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,所以1r =,系数为()151612192C -=-.【考点】二项式展开式.16.若函数()()y f x x R =∈满足()()2f x f x +=且[]1,1x ∈-时,()21f x x =-,函数()()()7log 010x x g x x x ⎧>⎪=⎨-<⎪⎩,则函数()()()h x f x g x =-在区间[]7,7-内零点的个数有_______个. 【答案】12【解析】先由题意,将函数零点个数问题,转化为函数()y f x =与函数()()()7log 010x x g x x x ⎧>⎪=⎨-<⎪⎩图像在区间[]7,7-内交点的个数问题;画出图像,由图像,即可得出结果. 【详解】由()()()0h x f x g x =-=得()()f x g x =,因此函数()()()h x f x g x =-在区间[]7,7-内零点的个数,即为函数()y f x =与函数()()()7log 010x x g x x x ⎧>⎪=⎨-<⎪⎩图像在区间[]7,7-内交点的个数;因为函数()()y f x x R =∈满足()()2f x f x +=,所以()f x 以2为周期; 又[]1,1x ∈-时,()21f x x =-,在同一直角坐标系内,画出()y f x =与()()()7log 010x x g x x x ⎧>⎪=⎨-<⎪⎩的图像如下,由图像可得,函数()y f x =与函数()()()7log 010x x g x x x ⎧>⎪=⎨-<⎪⎩图像共有12个交点,则函数()()()h x f x g x =-在区间[]7,7-内零点的个数有12个.【点睛】本题主要考查判定函数零点的个数,根据数形结合的方法求解即可,属于常考题型.三、解答题17.设命题p :实数x 满足()()30x a x a --<,其中0a >,命题q :实数x 满足302x x -≤-. (1)若1a =,且p q ∧为真,求实数x 的取值范围; (2)若p ⌝是q ⌝的充分不必要条件,求实数a 的取值范围. 【答案】(1)()2,3;(2)12a <≤.【解析】(1)若1a =,分别求出p ,q 成立的等价条件,利用且p q ∧为真,求实数x 的取值范围;(2)利用p ⌝是q ⌝的充分不必要条件,即q 是p 的充分不必要条件,求实数a 的取值范围. 【详解】解:由()()30x a x a --<,其中0a >,得3a x a <<,0a >,则p :3a x a <<,0a >.由302x x -≤-解得23x <≤.即q :23x <≤. (1)若1a =,则p :13x <<,若p q ∧为真,则p ,q 同时为真,即2313x x <≤⎧⎨<<⎩,解得23x <<,∴实数x 的取值范围()2,3.(2)若p ⌝是q ⌝的充分不必要条件,即q 是p 的充分不必要条件, ∴332a a >⎧⎨≤⎩,即12a a >⎧⎨⎩,解得12a <≤.【点睛】本题主要考查复合命题与简单命题之间的关系,利用逆否命题的等价性将p ⌝是q ⌝的充分不必要条件,转化为q 是p 的充分不必要条件是解决本题的关键,属于基础题. 18.选修4-4:坐标系与参数方程 在直角坐标系xOy 中,曲线1cos ,:{sin ,x t C y t αα== (t 为参数,且0t ≠ ),其中0απ≤<,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线23:2sin ,:23cos .C C ρθρθ== (Ⅰ)求2C 与3C 交点的直角坐标;(Ⅱ)若1C 与2C 相交于点A,1C 与3C 相交于点B,求AB 最大值.【答案】(Ⅰ)()330,0,,2⎛⎫ ⎪ ⎪⎝⎭;(Ⅱ)4. 【解析】(Ⅰ)曲线2C 的直角坐标方程为2220x y y +-=,曲线3C 的直角坐标方程为22230x y x +-=.联立222220,{230,x y y x y x +-=+-=解得0,{0,x y ==或3,2{3,2x y ==所以2C 与1C 交点的直角坐标为(0,0)和33(,)2. (Ⅱ)曲线1C 的极坐标方程为(,0)R θαρρ=∈≠,其中0απ≤<.因此A 得到极坐标为(2sin ,)αα,B 的极坐标为.所以2sin 23AB αα=-4()3sin πα=-,当56πα=时,AB 取得最大值,最大值为4.【考点】1、极坐标方程和直角坐标方程的转化;2、三角函数的最大值.19.已知函数()3f x x a x =--+,a R ∈.(1)当1a =-时,解不等式()1f x ≤;(2)若对于[]0,3x ∈时,()4f x ≤恒成立,求a 的取值范围.【答案】(1)5|2x x ⎧⎫≥-⎨⎬⎩⎭;(2)77a -≤≤.【解析】(1)当1a =-时,不等式为131x x +-+≤,分三段3x <-,31x -≤≤-,1x >-分别讨论求解不等式; (2)当[]0,3x ∈时,原问题转化为772a x -≤≤+对于[]0,3x ∈恒成立,由不等式的恒成立思想可得答案.【详解】解:(1)当1a =-时,不等式为131x x +-+≤,当3x <-时,()()131x x -+--+≤⎡⎤⎣⎦,即21≤,所以x ∈∅;当31x -≤≤-时,()()131x x -+-+≤,即241x --≤,解得52x ≥-,∴512x -≤≤-; 当1x >-时,()()131x x +-+≤,即21-≤,所以1x >-; ∴不等式的解集为5|2x x ⎧⎫≥-⎨⎬⎩⎭.(2)当[]0,3x ∈时,()4f x ≤即437a x x x -≤++=+,即()77x a x x -+≤-≤+对于[]0,3x ∈恒成立,即772a x -≤≤+对于[]0,3x ∈恒成立,而当[]0,3x ∈时,77213x ≤+≤,∴77a -≤≤.【点睛】本题考查绝对值不等式的解法,由不等式恒成立求参数的范围,属于中档题.20.已知函数()4log f x x =,1,416x ⎡⎤∈⎢⎥⎣⎦的值域为集合A ,关于x 的不等式()3122x a xa R +⎛⎫>∈ ⎪⎝⎭的解集为B ,集合501x C x x ⎧⎫-=≥⎨⎬+⎩⎭,集合{}()|1210D x m x m m =+≤<->.(1)若A B B ⋃=,求实数a 的取值范围;(2)若D C ⊆,求实数m 的取值范围.【答案】(1)(),4-∞-;(2)(]0,3.【解析】(1)根据指数函数性质,先求出[]2,1A =-,解指数不等式,求出,4a B ⎛⎫=-∞- ⎪⎝⎭,根据A B B ⋃=得A B ⊆,由此列出不等式求解,即可得出结果; (2)先解分式不等式,求出(]1,5C =-,根据D C ⊆,分别讨论121m m +≥-,121m m +<-两种情况,即可得出结果.【详解】(1)由对数函数的单调性可得,()4log f x x =在1,416⎡⎤⎢⎥⎣⎦上单调递增, 所以其值域()[]1,42,116A f f ⎡⎤⎛⎫==- ⎪⎢⎥⎝⎭⎣⎦, 又由()3122x a x a R +⎛⎫>∈ ⎪⎝⎭可得:()322x a x -+>,即:3x a x -->,所以4a x <-, 所以,4a B ⎛⎫=-∞-⎪⎝⎭, 又A B B ⋃=所以可得:A B ⊆, 所以14a ->,所以4a ,即实数a 的取值范围为(),4-∞-. (2)因为501x x -≥+,所以有501x x -≤+,所以15x -<≤,所以(]1,5C =-, 对于集合{}|121D x m x m C =+≤<-⊆有:①当121m m +≥-时,即02m <≤时D =∅,满足D C ⊆;②当121m m +<-时,即2m >时D ≠∅,所以有:1123215m m m +>-⎧⇒-<≤⎨-≤⎩, 又因为2m >,所以23m <≤,综上:由①②可得:实数m 的取值范围为(]0,3.【点睛】本题主要考查由并集的结果求参数,考查由集合的包含关系求参数,涉及指数函数与对数函数的性质,以及分式不等式解法,属于常考题型.21.生产某种产品的年固定成本为250万元,每生产x 千件,需要另投入成本为()C x ,当年产量不足80千件时,()3120360C x x x =+(万元),当年产量不小于80千件时,()10000511450C x x x=+-(万元),通过市场分析,每件商品售价为0.05万元时,该商品能全部售完.(1)写出年利润()L x (万元)关于年产量x (千件)的函数解析式(利润=销售额-成本);(2)年产量为多少千件时,生产该商品获得的利润最大.【答案】(1)3130250080360()10000120080x x x L x x x x ⎧-+-≤<⎪⎪=⎨⎛⎫⎪-+≥ ⎪⎪⎝⎭⎩;(2)100 千件. 【解析】(1)根据题意,得到x 千件..商品销售额为0.051000x ⨯万元,分别求出080x ≤<和80x ≥两种情况,即可求出函数解析式;(2)根据(1)的结果,用导数的方法和基本不等式,分别求出两段的最值,即可得出结果.【详解】(1)因为每件..商品售价为0.05万元,则x 千件..商品销售额为0.051000x ⨯万元,依题意得,当080x ≤<时,()()310.05100020250360L x x x x =⨯---3130250360x x =-+-; 当80x ≥时,1000010000()(0.051000)5114502501200L x x x x x x ⎛⎫=⨯--+-=-+ ⎪⎝⎭. 即3130250080360()10000120080x x x L x x x x ⎧-+-≤<⎪⎪=⎨⎛⎫⎪-+≥ ⎪⎪⎝⎭⎩. (2)当080x ≤<时,()3130250360L x x x =-+-. ()21'300120L x x =-+=,60x =±. 此时,当60x =时,()L x 取得最大值()60950L =(万元).当80x ≥时,10000()120012001000L x x x ⎛⎫=-+≤-= ⎪⎝⎭, 当且仅当10000x x=,即100x =时,()L x 取得最大值1000(万元). 因为9501000<,所以当年产量为100千件时,生产该商品获利润最大.答:当年产量为100 千件时,生产该商品获利润最大.【点睛】本题主要考查函数模型的应用,考查导数的应用,涉及基本不等式求最值,属于常考题型.22.从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下图频率分布直方图:(I )求这500件产品质量指标值的样本平均值x 和样本方差2s (同一组的数据用该组区间的中点值作代表);(II )由直方图可以认为,这种产品的质量指标Z 服从正态分布()2,N μσ,其中μ近似为样本平均数x ,2σ近似为样本方差2s .(i )利用该正态分布,求()187.8212.2P Z <<;(ii )某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值位于区间()187.8,212.2的产品件数.利用(i )的结果,求EX .15012.2≈若()2~,Z N μσ则()0.6826P Z μσμσ-<<+=,()220.9544P Z μσμσ-<<+=.【答案】(I )200,150;(II )(i )0.6826;(ii )68.26. 【解析】试题分析:(I )由频率分布直方图可估计样本特征数众数、中位数、均值、方差.若同一组的数据用该组区间的中点值作代表,则众数为最高矩形中点横坐标.中位数为面积等分为12的点.均值为每个矩形中点横坐标与该矩形面积积的累加值.方差是矩形横坐标与均值差的平方的加权平均值.(II )(i )由已知得,Z ~(200,150)N ,故()187.8212.2P Z <<(20012.2200P Z =-<<12.2)0.6826+=;(ii )某用户从该企业购买了100件这种产品,相当于100次独立重复试验,则这100件产品中质量指标值位于区间()187.8,212.2的产品件数(100,0.6826)X B ~,故期望1000.682668.26EX =⨯=.试题分析:(I )抽取产品的质量指标值的样本平均值x 和样本方差2s 分别为1700.021800.091900.22x =⨯+⨯+⨯+2000.332100.242200.08⨯+⨯+⨯+2300.02⨯200=,2222222(30)0.02(20)0.09(10)0.2200.33100.24200.08300.02s =-⨯+-⨯+-⨯+⨯+⨯+⨯+⨯150=.(II )(i )由(I )知,Z 服从正态分布(200,150)N ,从而()187.8212.2P Z <<(20012.2200P Z =-<<12.2)0.6826+=.(ii )由(i )可知,一件产品的质量指标值位于区间()187.8,212.2的概率为0.6826,依题意知(100,0.6826)X B ~,所以1000.682668.26EX =⨯=.【考点定位】1、频率分布直方图;2、正态分布的3σ原则;3、二项分布的期望.。
高三数学第一次月考试卷及解答试题
卜人入州八九几市潮王学校2021届一中高三第一次月考数学试卷〔理科〕本套试卷总分值是150分,考试时间是是120分钟.一.选择题:本大题一一共8小题,每一小题5分,一共40分.在每一小题给出的四个选项里面, 只有一项为哪一项哪一项符合题目要求的.请把答案填在答卷页的表格内.}6,5,4,3,2,1,0{=U ,集合}4,3,1,0{=A ,集合}6,5,3,1{=B ,那么)(B C A U =〔〕A.}3,1{ B.}4,0{ C.}4,1,0{ D.}4,3,2,1,0{1:+x p ≤4,条件65:2+-x x q ≤0,那么p ⌝是q ⌝的〔〕 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.假设011<<b a ,那么以下结论中,不正确的选项是〔〕A .2b ab<B .22b a<C .2>+b a a bD .||||||b a b a -=-“,R x ∈∀x 2cos ≤x 2cos 〞的否认为()A.,R x ∈∀x 2cos x 2cos >B.,R x ∈∃x 2cos x 2cos >C.,R x ∈∀x 2cos <x 2cos D.,R x ∈∃x 2cos ≤x 2cos0>a ,假设关于x 的不等式2+ax ≥bx +2的解集为R ,那么b 的取值范围是〔〕A.<b2B.b ≤2 C.0<b ≤2D.0<<b 26.在极坐标系中,直线1cos =θρ与圆θρcos =的位置关系为〔〕A .相切B .相离C .直线过圆心D .直线与圆相交但不过圆心7.现从甲、乙、丙等6名学生中安排4人参加4×100m 接力赛跑。
第一棒只能从甲、乙两人中安排1人,第四棒只能从甲、丙两人中安排1人,那么不同的安排方案一共有〔〕A .24种B .36种C .48种D .72种α+=+n 2009)310(,其中n 是正整数,α是小数,且10<<α,那么n 的值是〔〕A.αα-1B.21αα- C.αα21- D.αα-1二.填空题:〔只要求写出最后结果,并把结果写在答卷页的相应位置上,每一小题5分,一共35分〕x x x f 2666)(-+-=的最大值为nxx )1(+的展开式中,只有第6项的系数最大,那么,nx x )2(+展开式中2x 项的 系数为22cos lg(9)cos lg(9)x x x x +-<+-的解集为12.有10名同学先站成了前排3人后排7人来照毕业纪念像,但如今摄影师要从后排7人中抽2人 调整到前排,并使另外8个人的相对顺序不变,那么不同调整方法的总数是〔用数字答题〕13.假设参数方程⎩⎨⎧-=+=--θθsin )(cos )(t t t t e e y e e x (其中t 为参数,θ为常数,且θ为锐角)所表示的是离心率为2的双曲线,那么锐角θ的值是11)(--+=x x x f ,那么使)2()12(+=+x f x f 成立的x 取值范围是Rt △ABC 中,CA ⊥CB ,斜边AB 上的高为h1,那么有:2221111CB CA h +=;类比此性质,在四面体P —ABC 中,假设PA ,PB ,PC 两两垂直,底面ABC 上的高为h , 那么得到的正确结论为:一.选择题答案卡:〔每一小题5分,一共40分.〕二、填空题答案卡:〔每一小题5分,一共35分.〕10.18011.)22,2()2,22(ππ --;12013π4.),0[]3,(+∞--∞ ;15.22221111PC PB PA h++= 三、解答题:〔本大题一一共6小题,总分值是75分.解容许写出文字说明、证明过程或者演算步骤.〕 16.〔此题总分值是12分〕p :[]21,2,0x x a ∀∈-≥.q :x ∃∈R ,使得2(1)10x a x +-+<.假设p 或者q 为真,p 且q 为假,求a 的取值范围.解:假设p 真,那么2x 的最小值≥a ,即1≥a ;(2分)假设q 真,那么04)1(2>--=∆a ,即,3>a 或者1-<a ;(2分) 假设p 或者q 为真,p 且q 为假,那么p 与q 为一真一假。
陕西省宝鸡市重点高中2023届高三上学期第一次月考 数学(理)试题
2022-2023学年度第一学期高三年级第一次月考数学(理科)宏志班试题一、选择题(本大题共12小题,每小题5分,共60分,在每小题的四个选项中,只有一个选项是符合题目要求的)1.已知集合{2,1,0,1,2}A =--,(){|ln 1}B x y x ==+,则A B =( ) A .{1,0}-B .{0,1}C .{1,0,1}-D .{0,1,2}2.定义在R 上的函数()f x 满足对任意的12x x ,(12x x ≠)恒有11122122()()()()0x f x x f x x f x x f x --+>,若(0)a f =,(1)b f =,(2)c f =,则( ) A .c b a << B .a b c << C .c a b <<D .a c b <<3.下列判断错误..的是( ) A .“22am bm <”是“a b <”的充分不必要条件B .命题“x R ∀∈,3210x x --≤”的否定是“x R ∃∈,3210x x -->”C .若,p q 均为假命题,则p q ∧为假命题D .命题“若21x =,则1x =或1x =-”的逆否命题为“若1x ≠或1x ≠-,则21x ≠” 4.已知22111()x x f x x x++=+,则f (x )等于()A .x 2-x +1,x ≠0 B .2211x x x++,x ≠0C .x 2-x +1,x ≠1D .1+211x x+,x ≠1 5.sin1a =,lgsin1b =,sin110c =,则( ) A .a b c << B .b a c <<C .b c a <<D .c b a <<6.函数6()e 1||1x mxf x x =+++的最大值为M ,最小值为N ,则M N +=( ) A .3B .4C .6D .与m 值有关总 分 值: 150分 试题范围:一轮复习第一章一第二章考试时间:120分钟7.函数e e ()x xf x x-+=的图象大致为( )A .B .C .D .8.已知(1)f x -是定义为R 上的奇函数,f (1)=0,且f (x )在[1,0)-上单调递增,在[0,)+∞上单调递减,则不等式()230xf -<的解集为( )A .(1,2)B .(,1)-∞C .(2,)+∞D .(,1)(2,)-∞⋃+∞9.解析数论的创始人狄利克雷在数学领域成就显著,对函数论、位势论和三角级数论都有重要贡献.以他名字命名的狄利克雷函数()1,,0,,x D x x ⎧=⎨⎩为有理数为无理数 以下结论错误的是( ) A .)()21D D <B .函数()y D x =不是周期函数C .()()1D D x =D .函数()y D x =在(),-∞+∞上不是单调函数10.设函数()f x 定义域为R ,(1)f x -为奇函数,(1)f x +为偶函数,当(1,1)x ∈-时,2()1f x x =-+,则下列结论错误的是( )A .7324f ⎛⎫=- ⎪⎝⎭B .(7)f x +为奇函数C .()f x 在(6,8)上是减函数D .方程()lg 0f x x +=仅有6个实数解11.定义在R 上的函数()f x 满足()()22f x f x x x =+-,则函数()()21g x xf x x=-的零点个数为( ) A .3B .4C .5D .612.定义在R 上的函数()f x 满足1(1)()3f x f x +=,且当[0,1)x ∈时,()1|21|f x x =--.若对[,)x m ∀∈+∞,都有2()81f x ≤,则m 的取值范围是( ) A .10,3⎡⎫+∞⎪⎢⎣⎭B .11,3⎡⎫+∞⎪⎢⎣⎭C .13,3⎡⎫+∞⎪⎢⎣⎭D .143⎡⎫+∞⎪⎢⎣⎭二、填空题:本题共4小题,每小题5分,共20分。
高三上学期第一次月考数学试卷(带答案)
高三上学期第一次月考数学试卷(带答案)时量:120分钟 满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数z =11+i 的虚部是A .1B .12C .-12D .-12.已知a 是单位向量,向量b 满足||a -b =3,则||b 的最大值为 A .2 B .4 C .3 D .13.已知角θ的终边在直线y =2x 上,则cos θsin θ+cos θ的值为A .-23B .-13C .23D .134.已知函数f (x )=⎩⎪⎨⎪⎧e x +3-3a ,x <0,x 2+a ,x ≥0,对任意的x 1,x 2∈R ,且x 1≠x 2,总满足以下不等关系:f (x 1)-f (x 2)x 1-x 2>0,则实数a 的取值范围为A .a ≤34B .a ≥34C .a ≤1D .a ≥15.如图,圆柱的母线长为4,AB ,CD 分别为该圆柱的上底面和下底面直径,且AB ⊥CD ,三棱锥ABCD 的体积为83,则圆柱的表面积为A .10πB .92πC .4πD .8π6.已知抛物线C :y 2=2px (p >0)的焦点F 到准线的距离为2,过焦点F 的直线l 与抛物线交于A ,B 两点,则2|AF |+3|BF |的最小值为 A .6+52B .26+5C .46+10D .117.设函数f (x )=cos(x +φ),其中|φ|<π2.若x ∈R ,都有f ⎝⎛⎭⎫π4+x =f ⎝⎛⎭⎫π4-x .则y =f (x )的图象与直线y =14x -1的交点个数为A .1B .2C .3D .48.已知定义域为R 的函数f (x ),g (x )满足:g (0)≠0,f (x )g (y )-f (y )·g (x )=f (x -y ),且g (x )g (y )-f (x )f (y )=g (x -y ),则下列说法正确的是 A .f (0)=1B .f (x )是偶函数C .若f (1)+g (1)=12,则f (2024)-g (2024)=-22024D .若g (1)-f (1)=1,则f (2024)+g (2024)=2二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分. 9.下列说法中正确的是A .一个样本的方差s 2=120[(x 1-3)2+(x 2-3)2+…+(x 20-3)2],则这组样本数据的总和等于60B .若样本数据x 1,x 2,…,x 10的标准差为8,则数据2x 1-1,2x 2-1,…,2x 10-1的标准差为16C .数据13,27,24,12,14,30,15,17,19,23的第70百分位数是23D .若一个样本容量为8的样本的平均数为5,方差为2.现样本中又加入一个新数据5,此时样本容量为9,平均数不变,方差变小 10.已知函数f (x )=ax 3-bx +2,则A .f (x )的值域为RB .f (x )图象的对称中心为(0,2)C .当b -3a >0时,f (x )在区间(-1,1)内单调递减D .当ab >0时,f (x )有两个极值点11.我国古代太极图是一种优美的对称图.定义:能够将圆O 的周长和面积同时等分成两个部分的函数称为圆O 的一个“太极函数”,则 下列命题中正确的是A .函数f (x )=sin x +1是圆O :x 2+(y -1)2=1的一个太极函数B .对于圆O :x 2+y 2=1的所有非常数函数的太极函数中,都不能 为偶函数C .对于圆O :x 2+y 2=1的所有非常数函数的太极函数中,均为中心对称图形D .若函数f (x )=kx 3-kx (k ∈R )是圆O :x 2+y 2=1的太极函数,则k ∈(-2,2)三、填空题:本题共3小题,每小题5分,共15分.12.曲线y =2x -ln x 在点(1,2)处的切线与抛物线y =ax 2-ax +2相切,则a = .13.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,若P 为椭圆C 上一点,PF 1⊥F 1F 2,△PF 1F 2的内切圆的半径为c3,则椭圆C 的离心率为 .14.设函数f (x )=ax +xx -4(x >4),若a 是从1,2,3,4四个数中任取一个,b 是从4,8,12,16,20,24六个数中任取一个,则f (x )>b 恒成立的概率为 .四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤. 15.(本小题满分13分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知(b +c )(sin B -sin C )=(a -c )sin A . (1)求B ;(2)若△ABC 的面积为334,且AD →=2DC →,求BD 的最小值.16.(本小题满分15分)已知双曲线E 的焦点在x 轴上,离心率为233,点(3,2)在双曲线E 上,点F 1,F 2分别为双曲线的左、右焦点.(1)求E 的方程;(2)过F 2作两条相互垂直的直线l 1和l 2,与双曲线的右支分别交于A ,C 两点和B ,D 两点,求四边形ABCD 面积的最小值.17.(本小题满分15分)如图,侧面BCC 1B 1水平放置的正三棱台ABCA 1B 1C 1,AB =2A 1B 1=4,侧棱长为2,P 为棱A 1B 1上的动点.(1)求证:AA 1⊥平面BCC 1B 1;(2)是否存在点P ,使得平面APC 与平面A 1B 1C 1的夹角的余弦值为53333若存在,求出点P ;若不存在,请说明理由.18.(本小题满分17分)若无穷正项数列{a n }同时满足下列两个性质:①存在M >0,使得a n <M ,n ∈N *;②{a n }为单调数列,则称数列{a n }具有性质P .(1)若a n =2n -1,b n =⎝⎛⎭⎫13n(ⅰ)判断数列{a n },{b n }是否具有性质P ,并说明理由;(ⅱ)记S n =a 1b 1+a 2b 2+…+a n b n ,判断数列{S n }是否具有性质P ,并说明理由;(2)已知离散型随机变量X 服从二项分布B (n ,p ),0<p <12,记X 为奇数的概率为c n .证明:数列{c n }具有性质P .19.(本小题满分17分)已知函数f (x )=4e x -2x -2x ,g (x )=-x 2+3ax -a 2-3a (a ∈R 且a <2).(1)令φ(x )=f (x )-g (x ),h (x )是φ(x )的导函数,判断h (x )的单调性; (2)若f (x )≥g (x )对任意的x ∈(1,+∞)恒成立,求a 的取值范围.参考答案题号 1 2 3 4 5 6 7 8 9 10 11 答案CBDDABCCABDBDAD一、选择题:本题共8小题,每小题5分,共40分。
陕西省西安2024-2025学年高三上学期10月月考数学试题含答案
陕西省西安高2025届高三第一次质量检测考试数学试题(答案在最后)(时间:120分钟满分:150分命题人:)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}(){}2210,log 1A x xB x x x =-≤≤=-≤,则A B = ()A.{}10x x -≤≤ B.{}10x x -<≤ C.{}10x x -≤< D.{}10x x -<<【答案】C 【解析】【分析】先根据对数函数的单调性解不等式化简集合B ,然后利用交集运算求解即可.【详解】因为()222log 1log 2x x -≤=,所以202x x <-≤,解得12x <≤或10x -≤<,故{10B x x =-≤<或}12x <≤,又{}10A x x =-≤≤,所以A B = {}10x x -≤<.故选:C2.“01a <<”是“函数()()log 2a f x a x =-在(),1-∞上单调递增”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【分析】根据对数函数和一次函数的单调性,再结合复合函数“同增异减”的判断法则求得对应的a 的取值范围即可得出结论.【详解】易知()()log 2a f x a x =-的定义域为(),2a -∞,且函数2y a x =-为单调递减函数;根据复合函数单调性可知若函数()()log 2a f x a x =-在(),1-∞上单调递增,可得0121a a <<⎧⎨≥⎩,解得112a ≤<;显然112a a ⎧⎫|≤<⎨⎬⎩⎭是{}|01a a <<的真子集,所以“01a <<”是“函数()()log 2a f x a x =-在(),1-∞上单调递增”的必要不充分条件.3.函数()()2e esin xxf x x x -=-+-在区间[ 2.8,2.8]-的图象大致为()A.B.C. D.【答案】B 【解析】【分析】利用函数的奇偶性可排除A 、C ,代入1x =可得()10f >,可排除D.【详解】()()()()()22ee sin e e sin xx x x f x x x x x f x ---=-+--=-+-=,又函数定义域为[]2.8,2.8-,故该函数为偶函数,可排除A 、C ,又()11πe 11111e sin11e sin 10e e 622e 42e f ⎛⎫⎛⎫=-+->-+-=-->-> ⎪ ⎪⎝⎭⎝⎭,故可排除D.故选:B.4.已知521log 2,log ,2ba b a c ⎛⎫=== ⎪⎝⎭,则()A.c b a >>B.c a b>> C.a b c>> D.b c a>>【答案】B 【解析】【分析】判断出01a <<,0b <,1c >,即可求解.【详解】555log 1log 2log ,0151a a <=<∴<=< 22log log 10b a =<= ,故0b <;1122bc ⎛⎫⎛⎫=> ⎪ ⎪⎝⎭⎝⎭,故1c >,故c a b >>.5.已知定义在R 上的函数()f x 满足()()32f x f x +=,且()21f =-,则()100f =()A.1-B.1C.3- D.3【答案】C 【解析】【分析】由条件推得函数的周期为4,结合函数的周期,即可求解.【详解】由()()32f x f x +=,可得()()()342f x f x f x +==+,所以()f x 的周期为4,则()()()3100032f f f ===-.故选:C.6.已知函数()e 1,0,2,0,x x f x x x⎧-≥⎪=⎨<⎪⎩()1g x kx =-,若关于x 的方程()()f x g x =有2个不相等的实数解,则实数k 的取值范围是()A.{}e B.[)e,+∞ C.{}1,0e 8⎛⎫- ⎪⎝⎭D.{}1,e 8⎛⎫-∞- ⎪⎝⎭【答案】C 【解析】【分析】根据题意,转化为()y f x =与1y kx =-的图象有2个交点,分0k =、0k <和0k >,三种情况讨论,结合导数的几何意义与函数的图象,即可求解.【详解】由题意,关于x 的方程()()f x g x =有2个不相等的实数解,即()y f x =与1y kx =-的图象有2个交点,如图所示,当0k =,直线1y =-与2y x=的图象交于点()2,1--,又当0x ≥时,e 10x -≥,故直线1y =-与e 1x y =-(0x ≥)的图象无公共点,故当0k =时,()y f x =与1y kx =-的图象只有一个交点,不合题意;当0k >,直线1y kx =-与曲线e 1x y =-(0x ≥)相切时,此时()y f x =与1y kx =-的图象有2个交点,设切点()00,e 1xP x -,则00e x x x k y =='=,又由1y kx =-过点()0,1-,所以()000e 11e 0x x x ---=-,解得01x =,所以e =k ;当0k <时,若21kx x=-,则220kx x --=,由180k ∆=+=,可得18k =-,所以当18k =-时,直线1y kx =-与2y x=的图象相切,由图得当108k -<<时,直线1y kx =-与()y f x =的图象有2个交点.综上所述,实数k 的取值范围是{}1,0e 8⎛⎫- ⎪⎝⎭.故选:C .7.已知函数3()1f x x x =-+,则()A.()f x 有三个极值点B.()f x 有三个零点C.点(0,1)是曲线()y f x =的对称中心D.直线2y x =是曲线()y f x =的切线【答案】C 【解析】【分析】求导后判断单调性,从而求得极值点即可判断A ;利用单调性结合零点存在性定理即可判断B ;令3()h x x x =-,得到()h x 是奇函数,(0,0)是()h x 的对称中心,再结合图象的平移规律即可判断C ;由导数的几何意义求得切线方程即可判断D.【详解】对于A ,由题,()231f x x '=-,令()0f x '>得3x >或3x <-,令()0f x '<得33x -<<,所以()f x在(,3-∞-,)3+∞上单调递增,(,)33-上单调递减,所以3x =±是极值点,故A 不正确;对应B ,因323()1039f -=+>,323()1039f =->,()250f -=-<,所以,函数()f x 在3,3⎛⎫-∞ ⎪ ⎪⎝⎭上有一个零点,当3x ≥时,()03f x f ⎛≥> ⎝⎭,即函数()f x在3⎛⎫∞ ⎪ ⎪⎝⎭上无零点,综上所述,函数()f x 有一个零点,故B 错误;对于C ,令3()h x x x =-,该函数的定义域为R ,()()()()33h x x x x x h x -=---=-+=-,则()h x 是奇函数,(0,0)是()h x 的对称中心,将()h x 的图象向上移动一个单位得到()f x 的图象,所以点(0,1)是曲线()y f x =的对称中心,故C 正确;对于D ,令()2312f x x '=-=,可得1x =±,又()(1)11f f =-=,当切点为(1,1)时,切线方程为21y x =-,当切点为(1,1)-时,切线方程为23y x =+,故D 错误.故选:C8.已知函数24,0()log ,0x x f x x x x ⎧+>⎪=⎨⎪<⎩,2()g x x ax b =++,若方程()0g f x =⎡⎤⎣⎦有且仅有5个不相等的整数解,则其中最大整数解和最小整数解的和等于()A.28- B.28C.14- D.14【答案】A 【解析】【分析】利用换元法结合一元二次方程根的分布,数形结合计算即可.【详解】先作出()f x 的大致图象,如下令()f x t =,则()20g t t at b =++=,根据()f x 的图象可知:要满足题意必须()0g t =有两个不等根()1212,t t t t <,且()1f x t =有两个整数根,()2f x t =有三个整数根,结合对勾函数和对数函数的图象与性质知,两函数14,y t y x x==+相切时符合题意,因为4424x x x x+≥⋅=,当且仅当2x =时取得等号,又()()22log log 0y x x x ==-<,易知其定义域内单调递减,即()14f x t ==,此时有两个整数根2x =或16x =-,而要满足()2f x t =有三个整数根,结合()f x 图象知必有一根小于2,显然只有1x =符合题意,当1x =时有()15f =,则25t =,解方程45x x+=得25t =的另一个正根为4x =,又()2log 5x -=⇒32x =-,此时五个整数根依次是32,16,1,2,4x =--,显然最大的根和最小的根和为()43228+-=-.故选:A二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列导数运算正确的是()A.211()x x '=-B.(e )e x x--'= C.21(tan )cos x x'=D.1(ln )x x'=【答案】ACD 【解析】【分析】利用求导公式逐项判断即可.【详解】对于A ,211(x x '=-,故A 正确;对于B ,(e )e x x --'=-,故B 错误;对于C ,2222sin cos sin 1(tan )()=cos cos cos x x x x x x x +''==,故C 正确;对于D ,()(ln ),01(ln )ln ,0x x x x x x '>⎧⎪==⎨⎡⎤-<⎪⎣⎦⎩'',故D 正确.故选:ACD10.甲乙丙等5人的身高互不相同,站成一排进行列队训练,则()A.甲乙不相邻的不同排法有48种B.甲乙中间恰排一个人的不同排法有36种C.甲乙不排在两端的不同排法有36种D.甲乙丙三人从左到右由高到矮的不同排法有20种【答案】BCD 【解析】【分析】根据排列和组合的定义、结合捆绑法逐一判断即可.【详解】A :甲乙不相邻的不同排法有3234A A 72=种,所以本选项不正确;B :甲乙中间恰排一个人的不同排法有123323C A A 36=种,所以本选项正确;C :甲乙不排在两端的不同排法有2333A A 36=种,所以本选项正确;D :甲乙丙三人从左到右由高到矮的不同排法有5533A 20A =种,所以本选项正确.故选:BCD11.已知0c b a <<<,则()A.ac b bc a +<+B.333b c a +<C.a c ab c b +<+D.>【答案】ABD 【解析】【分析】选项ABD ,利用不等式的性质计算即可,选项C ,因为b c +可正可负,所以不容易化简解决,一般当乘或除以一个不知正负的数,基本上错误,我们只需要找反例即可.【详解】因为0c b a <<<,所以ac bc ac b bc a <⇒+<+,故A 正确;因为0c b a <<<,所以333333,0b a c b c a <<⇒+<,故B 正确;因为0c b a <<<,不妨令3,2,1a b c ===-,得32,2a c a b c b +==+,此时a c ab c b +>+,故C 错误;因为0c b a <<<0>>⇒<>,故D 正确.故选:ABD三、填空题:本题共3小题,每小题5分,共15分.12.某学校组织学生参加数学测试,成绩的频率分布直方图如下,数据的分组依次是[20,40),[40,60),[60,80),[80,100],则可估计这次数学测试成绩的第40百分位数是_________.【答案】65【解析】【分析】利用百分位数的定义求解.【详解】解:成绩在[20,60)的频率是()0.0050.01200.3+⨯=,成绩在[20,80)的频率为0.30.02200.7+⨯=,所以第40百分位数一定在[60,80)内,所以这次数学测试成绩的第40百分位数是0.40.36020650.4-+⨯=,故答案为:6513.若曲线e x y x =+在点()0,1处的切线也是曲线ln(1)y x a =++的切线,则a =__________.【答案】ln 2【解析】【分析】先求出曲线e x y x =+在()0,1的切线方程,再设曲线()ln 1y x a =++的切点为()()0,ln 1x xa ++,求出y ',利用公切线斜率相等求出0x ,表示出切线方程,结合两切线方程相同即可求解.【详解】由e x y x =+得e 1x y '=+,00|e 12x y ='=+=,故曲线e x y x =+在()0,1处的切线方程为21y x =+;由()ln 1y x a =++得11y x '=+,设切线与曲线()ln 1y x a =++相切的切点为()()00,ln 1x x a ++,由两曲线有公切线得0121y x '==+,解得012x =-,则切点为11,ln 22a ⎛⎫-+ ⎪⎝⎭,切线方程为112ln 21ln 222y x a x a ⎛⎫=+++=++- ⎪⎝⎭,根据两切线重合,所以ln 20a -=,解得ln 2a =.故答案为:ln 214.51(2)y x y x ⎛⎫-+⎪⎝⎭的展开式中,23x y 的系数为__________.【答案】40【解析】【分析】根据二项式的通项公式进行求解即可.【详解】二项式5(2)x y +的通项公式为()515C 2rrr r T x y -+=⋅⋅,所以23x y 的系数为()233255C 21C 240⋅+-⋅⋅=,故答案为:40四、解答题:本题共5小题,其中第15题13分,第16,17题15分,第18,19题17分,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知函数3212()232a f x x x ax +=-+.(1)若1a =,求函数()f x 的极值;(2)讨论函数()f x 的单调性.【答案】(1)极小值为23,极大值为56(2)答案见解析【解析】【分析】(1)对()f x 求导,分析单调性,再根据极值定义即可求解;(2)()()(2)f x x a x =--',对a 分2a =,2a >和2a <讨论单调性即可.【小问1详解】3213()2,()(1)(2)32f x x x x f x x x =-+'=--.所以<1或>2时,'()0f x >,12x <<时,'()0f x <,则()f x 在(1,2)上递减,在(,1),(2,)-∞+∞递增,所以()f x 的极小值为2(2)3f =,极大值为5(1)6f =.【小问2详解】()()(2)f x x a x =--',当2a =时,'()0f x ≥,所以()f x 在(,)-∞+∞上递增,当2a >时,2x <或x a >时,'()0f x >;2x a <<时,'()0f x <,所以()f x 在(,2),(,)a -∞+∞上递增,在(2,)a 上递减,当2a <时,x a <或2x >时,'()0f x >;2a x <<时,'()0f x <,所以()f x 在(,),(2,)a -∞+∞上递增;在(,2)a 上递减.16.为践行“更快更高更强”的奥林匹克格言,落实全民健身国家战略.某校高三年级发起了“发扬奥林匹克精神,锻炼健康体魄”的年度主题活动,经过一段时间后,学生的身体素质明显提高.为了解活动效果,该年级对开展活动以来近6个月体重超重的人数进行了调查,调查结果统计如图,根据上面的散点图可以认为散点集中在曲线e bx a y +=的附近,请根据下表中的数据求出月份x123456体重超标人数y987754483227ln z y = 4.58 4.34 3.98 3.87 3.46 3.29(1)该年级体重超重人数y 与月份x 之间的经验回归方程(系数ˆ,a b的最终结果精确到0.01);(2)预测从开展活动以来第几个月份开始该年级体重超标的人数降至10人以下.附:经验回归方程:ˆˆˆy bx a =+中,1221ˆn i i i n i i x y nx yb x nx ==-⋅=-∑∑,ˆˆa y bx =-;参考数据:6123.52i i z ==∑,6177.72i i i x z ==∑,62191i i x ==∑,ln10 2.30.≈【答案】(1)0.26 4.83e x y -+=(2)从第十个月开始【解析】【分析】(1)由计算公式与参考数据,求出ˆ,a b 则可得回归方程;(2)根据经验回归方程建立不等式0.26 4.83e 10x -+<,解出不等式则可预测.【小问1详解】由e bx a y +=得ln z y bx a ==+,由题意得1(123456) 3.56x =+++++=,11123.52 3.9266n i i z z ===⨯=∑,所以6162221677.726 3.5 3.92ˆ0.26916 3.56i ii i i x z x zb x x ==-⋅-⨯⨯==≈--⨯-∑∑,ˆˆ 3.92(0.26) 3.5 4.83a z bx =-≈--⨯=,所以ˆˆln 0.26 4.83z y x ==-+,即y 关于x 的经验回归方程为0.26 4.83e x y -+=【小问2详解】令0.26 4.83ln10 2.3e 10e e x -+<=≈,所以0.26 4.83 2.3x -+<,又由于x ∈N ,所以解得10x ≥,且x *∈N ,所以从第十个月开始,该年级体重超标的人数降至10人以下.17.已知函数()log (1)a f x x =+,()()()2log 2a g x x t t =+∈R ,0a >,且 1.a ≠(1)当01a <<且1t =-时,求不等式()()f x g x ≤的解集;(2)若函数()2()21f x F x a tx t =+-+在区间(1,2]-上有零点,求t 的取值范围.【答案】(1)15|24x x ⎧⎫<≤⎨⎬⎩⎭(2)2t ≤-或224t +≥【解析】【分析】(1)当1t =-时,将不等式()()f x g x ≤转化为()()2log 1log 21a a x x +≤-,利用对数函数的单调性结合一元二次不等式求解即可;(2)解法一:分离参数,将原函数的零点问题转化为22(2x t x x +=-≠-且12)x -<≤有根,设2U x =+(14U <≤且2U ≠+,则124t U U=--+,利用对勾函数的单调性求解值域即可求解;解法二:先判断0t =时,不合题意,当0t ≠时,根据二次函数零点分布分类讨论,列不等式组求解即可.【小问1详解】当1t =-时,()()2log 1log 21a a x x +≤-,又0<<1,则+1≥(2−1)22−1>0,∴42−5≤0>12⇒12<≤54,∴不等式()()f x g x ≤的解集为15|24x x ⎧⎫<≤⎨⎬⎩⎭;【小问2详解】解法一:由题设()222F x tx x t =+-+,由()0F x =,得22(2x t x x +=-≠-且12)x -<≤,则()()222422x t x x +=-+-++,设2U x =+(14U <≤且2U ≠+,则212424U t U U U U=-=-+--,令2()U U Uϕ=+,当1U <<时,()U ϕ单调递减,当4U <<时,()U ϕ单调递增,且()()913,42ϕϕϕ===,故()92U ϕ≤≤且() 4.U ϕ≠12402U U ∴-≤--<或2044U U <--≤-t 的取值范围为:2t ≤-或2.4t ≥解法二:()222F x tx x t =+-+,若0t =,则()2F x x =+在(1,2]-上没有零点.下面就0t ≠时分三种情况讨论:①方程()0F x =在(1,2]-上有重根12x x =,则0∆=,解得24t ±=,又1212x x t ==-(]1,2∈-⇒224t +=;②在(1,2]-上只有一个零点,且不是方程的重根,则()()120F F -<,解得2t <-或1t >,经检验2t =-或1t =时,在(1,2]-上都有零点,则2t ≤-或 1.t ≥③方程()0F x =在(1,2]-上有两个相异实根,则有>0Δ>0−1<−12<2o −1)>0o2)>0或<0Δ>0−1<−12<2o −1)<0o2)<0,解得214t +<<,综上可知:t 的取值范围为2t ≤-或2.4t ≥18.某企业对某品牌芯片开发了一条生产线进行试产.其芯片质量按等级划分为五个层级,分别对应如下五组质量指标值:[45,55),[55,65),[65,75),[75,85),[85,95].根据长期检测结果,得到芯片的质量指标值X 服从正态分布()2,N μσ,并把质量指标值不小于80的产品称为A 等品,其它产品称为B 等品.现从该品牌芯片的生产线中随机抽取100件作为样本,统计得到如图所示的频率分布直方图.(1)根据长期检测结果,该芯片质量指标值的标准差s 的近似值为11,用样本平均数x 作为μ的近似值,用样本标准差s 作为σ的估计值.若从生产线中任取一件芯片,试估计该芯片为A 等品的概率(保留小数点后面两位有效数字);(①同一组中的数据用该组区间的中点值代表;②参考数据:若随机变量ξ服从正态分布()2,N μσ,则()0.6827,(22)0.9545P P μσξμσμσξμσ-<<+≈-<<+≈,(33)0.9973P μσξμσ-<<+≈.)(2)(i )从样本的质量指标值在[45,55)和[85,95]的芯片中随机抽取3件,记其中质量指标值在[85,95]的芯片件数为η,求η的分布列和数学期望;(ii )该企业为节省检测成本,采用随机混装的方式将所有的芯片按100件一箱包装.已知一件A 等品芯片的利润是(124)m m <<元,一件B 等品芯片的利润是ln(25)m -元,根据(1)的计算结果,试求m 的值,使得每箱产品的利润最大.【答案】(1)0.16(2)(i )分布列见解析,32;(ii )794m =【解析】【分析】(1)根据频率分布直方图求得样本平均数,然后利用正态分布的对称性求解概率.(2)(i )先求出η的取值,然后求出对应的概率,即可求出分布列,代入期望公式求解即可;(ii )先根据二项分布的期望求出()E Z 1684ln(25)m m =+-,然后构造函数()1684ln(25)(124)f x x x x =+-<<,利用导数求出最大值时的m 即可.【小问1详解】由题意,估计从该品牌芯片的生产线中随机抽取100件的平均数为:10(0.01500.025600.04700.015800.0190)69x =⨯⨯+⨯+⨯+⨯+⨯=.即69x μ≈=,11s σ≈≈,所以2(69,11)X N ~,因为质量指标值X 近似服从正态分布2)(69,11N ,所以1(69116911)(80)2P X P X --<<+≥=1()2P X μσμσ--<<+=10.68270.158650.162-≈=≈,所以从生产线中任取一件芯片,该芯片为A 等品的概率约为0.16.【小问2详解】(i )(0.010.01)1010020+⨯⨯=,所以所取样本的个数为20件,质量指标值在[]85,95的芯片件数为10件,故η可能取的值为0,1,2,3,相应的概率为:301010320C C 2(0)C 19η===P ,211010320C C 15(1)C 38η===P ,121010320C C 15(2)C 38η===P ,031010320C C 2(3)C 19η===P ,随机变量η的分布列为:η0123P 21915381538219所以η的数学期望2151523()0123193838192E η=⨯+⨯+⨯+⨯=.(ii )设每箱产品中A 等品有Y 件,则每箱产品中B 等品有(100)Y -件,设每箱产品的利润为Z 元,由题意知:(100)ln(25)(ln(25))100ln(25)Z mY Y m m m Y m =+--=--+-,由(1)知:每箱零件中A 等品的概率为0.16,所以~(100,0.16)Y B ,所以()1000.1616E Y =⨯=,所以()[(ln(25))100ln(25)]E Z E m m Y m =--+-(ln(25))100ln(25)m m EY m =--+-16(ln(25))100ln(25)m m m =--+-1684ln(25)m m =+-.令()1684ln(25)(124)f x x x x =+-<<,由84()16025f x x '=-=-得,794x =,又79(1,)4∈x ,()0f x '>,()f x 单调递增,79(,24)4∈x ,()0f x '<,()f x 单调递减,所以当79(1,24)4x =∈时,()f x 取得最大值.所以当794m =时,每箱产品利润最大.19.已知函数1()e ln (1).x f x a x a x -=+-+(1)当0a =时,求函数()f x 的单调区间;(2)当1a =时,证明:函数()f x 在(0,)+∞上单调递增;(3)若1x =是函数()f x 的极大值点,求实数a 的取值范围.【答案】(1)答案见解析(2)证明见解析(3)(,1).-∞【解析】【分析】(1)代入a 的值,求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(2)对函数()f x 二次求导,判断()f x 导函数的单调性,求出导函数的最小值,即可证明;(3)对()f x 求导得,11()e 1x f x a a x -'=+--,令11()e 1x h x a a x-=+--,再求导,分a 的不同取值讨论()h x 的性质,即可求出a 的取值范围.【小问1详解】当0a =时,()ln f x x x =-,且知11()1x f x x x-='-=,在(0,1)上,()0f x '>,()f x 在(0,1)上单调递增;在(1,)+∞上,()0f x '<,()f x 在(1,)+∞上单调递减;所以函数()f x 的单调增区间为(0,1),单调减区间为(1,)+∞【小问2详解】证明:因为1a =,所以1()e ln 2x f x x x -=+-,且知11()e 2x f x x-'=+-,要证函数()f x 单调递增,即证()0f x '≥在(0,)+∞上恒成立,设11()e 2x g x x-=+-,0x >,则121()e x g x x -'=-,注意1e x y -=,21y x =-在(0,)+∞上均为增函数,故()g x '在(0,)+∞上单调递增,且(1)0g '=,于是()g x 在(0,1)上单调递减,在(1,)+∞上单调递增,()(1)0g x g ≥=,即()0f x '≥,因此函数()f x 在(0,)+∞上单调递增;【小问3详解】由11()e 1x f x a a x -'=+--,有(1)0f '=,令11()e 1x h x a a x -=+--,有121()e x h x a x -'=-,①当0a ≤时,11()e 0x xh x a x -'=-<在(0,)+∞上恒成立,因此()f x '在(0,)+∞上单调递减,注意到(1)0f '=,故函数()f x 的增区间为(0,1),减区间为(1,)+∞,此时1x =是函数()f x 的极大值点;②当0a >时,1e x y a -=与21y x=-在(0,)+∞上均为单调增函数,故()h x '在(0,)+∞上单调递增,注意到(1)1h a '=-,若(1)0h '<,即01a <<时,此时存在(1,)n ∈+∞,使()0h n '=,因此()f x '在(0,)n 上单调递减,在(,)n +∞上单调递增,又知(1)0f '=,则()f x 在(0,1)上单调递增,在(1,)n 上单调递减,此时1x =为函数()f x 的极大值点,若(1)0h '>,即1a >时,此时存在(0,1)m ∈,使()0h m '=,因此()f x '在(0,)m 上单调递减.在(,)m +∞上单调递增,又知(1)0f '=,则()f x 在(,1)m 上单调递减,在(1,)+∞上单调递增,此时1x =为函数()f x 的极小值点.当1a =时,由(1)可知()f x 单调递增,因此1x =非极大值点,综上所述,实数a 的取值范围为(,1).-∞【点睛】关键点点睛:已知函数的极大值点,求出函数的导数,根据导数的导数121()e x h x a x -'=-分类讨论,确定函数极值点是解题的关键,据此可得符合题意的参数取值范围.。
湖南省2025届高三上学期第一次月考数学试题含答案
2025届高三月考试卷(一)数学(答案在最后)命题人:高三数学备课组审题人:高三数学备课组时量:120分钟满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,1.已知{}()260,{lg 10}A x x xB x x =+-≤=-<∣∣,则A B = ()A.{}32xx -≤≤∣ B.{32}xx -≤<∣C.{12}xx <≤∣ D.{12}xx <<∣【答案】D 【解析】【分析】通过解一元二次不等式和对数函数的定义域,求出集合,A B ,再求交集.【详解】集合{}()32,{lg 10}{12}A x x B x x x x =-≤≤=-<=<<∣∣∣,则{12}A B xx ⋂=<<∣,故选:D .2.若复数z 满足()1i 3i z +=-+(i 是虚数单位),则z 等于()A.2B.54C.D.2【答案】C 【解析】【分析】由复数的除法运算计算可得12i z =-+,再由模长公式即可得出结果.【详解】依题意()1i 3i z +=-+可得()()()()3i 1i 3i 24i12i 1i 1i 1i 2z -+--+-+====-+++-,所以z ==.故选:C3.已知平面向量()()5,0,2,1a b ==- ,则向量a b + 在向量b 上的投影向量为()A.()6,3- B.()4,2- C.()2,1- D.()5,0【答案】A 【解析】【分析】根据投影向量的计算公式即可求解.【详解】()()7,1,15,a b a b b b +=-+⋅=== 所以向量a b +在向量b 上的投影向量为()()236,3||a b b b b b +⋅==- .故选:A4.记n S 为等差数列{}n a 的前n 项和,若396714,63a a a a +==,则7S =()A.21 B.19C.12D.42【答案】A 【解析】【分析】根据等差数列的性质,即可求解公差和首项,进而由求和公式求解.【详解】{}n a 是等差数列,396214a a a ∴+==,即67a =,所以67769,a a a a ==故公差76162,53d a a a a d =-=∴=-=-,()767732212S ⨯∴=⨯-+⨯=,故选:A5.某校高二年级下学期期末考试数学试卷满分为150分,90分以上(含90分)为及格.阅卷结果显示,全年级1200名学生的数学成绩近似服从正态分布,试卷的难度系数(难度系数=平均分/满分)为0.49,标准差为22,则该次数学考试及格的人数约为()附:若()2,X N μσ~,记()()p k P k X k μσμσ=-≤≤+,则()()0.750.547,10.683p p ≈≈.A.136人B.272人C.328人D.820人【答案】B 【解析】【分析】首先求出平均数,即可得到学生的数学成绩2~(73.5,22)X N ,再根据所给条件求出(5790)P X ≤≤,即可求出(90)P X ≥,即可估计人数.【详解】由题得0.4915073.5,22μσ=⨯==,()()(),0.750.547p k P k X k p μσμσ=-≤≤+≈ ,()5790P X ∴≤≤()0.750.547p =≈,()()900.510.5470.2265P X ≥=⨯-=,∴该校及格人数为0.22651200272⨯≈(人),故选:B .6.已知()π5,0,,cos ,tan tan 426αβαβαβ⎛⎫∈-=⋅= ⎪⎝⎭,则αβ+=()A.π6 B.π4C.π3D.2π3【答案】D 【解析】【分析】利用两角差的余弦定理和同角三角函数的基本关系建立等式求解,再由两角和的余弦公式求解即可.【详解】由已知可得5cos cos sin sin 6sin sin 4cos cos αβαβαβαβ⎧⋅+⋅=⎪⎪⎨⋅⎪=⋅⎪⎩,解得1cos cos 62sin sin 3αβαβ⎧⋅=⎪⎪⎨⎪⋅=⎪⎩,,()1cos cos cos sin sin 2αβαβαβ∴+=⋅-⋅=-,π,0,2αβ⎛⎫∈ ⎪⎝⎭,()0,παβ∴+∈,2π,3αβ∴+=,故选:D .7.已知12,F F 是双曲线22221(0)x y a b a b-=>>的左、右焦点,以2F 为圆心,a 为半径的圆与双曲线的一条渐近线交于,A B 两点,若123AB F F >,则双曲线的离心率的取值范围是()A.1,3⎛⎫ ⎪ ⎪⎝⎭B.1,5⎛⎫⎪ ⎪⎝⎭C.(D.(【答案】B 【解析】【分析】根据双曲线以及圆的方程可求得弦长AB =,再根据不等式123AB F F >整理可得2259c a <,即可求得双曲线的离心率的取值范围.【详解】设以()2,0F c 为圆心,a 为半径的圆与双曲线的一条渐近线0bx ay -=交于,A B 两点,则2F 到渐近线0bx ay -=的距离d b ==,所以AB =,因为123AB F F >,所以32c ⨯>,可得2222299a b c a b ->=+,即22224555a b c a >=-,可得2259c a <,所以2295c a <,所以5e <,又1e >,所以双曲线的离心率的取值范围是1,5⎛⎫⎪ ⎪⎝⎭.故选:B8.已知函数()220log 0x a x f x x x ⎧⋅≤=⎨>⎩,,,,若关于x 的方程()()0f f x =有且仅有两个实数根,则实数a 的取值范围是()A.()0,1 B.()(),00,1-∞⋃ C.[)1,+∞ D.()()0,11,+∞ 【答案】C 【解析】【分析】利用换元法设()u f x =,则方程等价为()0f u =,根据指数函数和对数函数图象和性质求出1u =,利用数形结合进行求解即可.【详解】令()u f x =,则()0f u =.①当0a =时,若()0,0u f u ≤=;若0u >,由()2log 0f u u ==,得1u =.所以由()()0ff x =可得()0f x ≤或()1f x =.如图所示,满足()0f x ≤的x 有无数个,方程()1f x =只有一个解,不满足题意;②当0a ≠时,若0≤u ,则()20uf u a =⋅≠;若0u >,由()2log 0f u u ==,得1u =.所以由()()0ff x =可得()1f x =,当0x >时,由()2log 1f x x ==,可得2x =,因为关于x 的方程()()0ff x =有且仅有两个实数根,则方程()1f x =在(,0∞-]上有且仅有一个实数根,若0a >且()(]0,20,xx f x a a ≤=⋅∈,故1a ≥;若0a <且()0,20xx f x a ≤=⋅<,不满足题意.综上所述,实数a 的取值范围是[)1,+∞,故选:C .二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分9.如图,在正方体111ABCD A B C D -中,E F M N ,,,分别为棱111AA A D AB DC ,,,的中点,点P 是面1B C 的中心,则下列结论正确的是()A.E F M P ,,,四点共面B.平面PEF 被正方体截得的截面是等腰梯形C.//EF 平面PMND.平面MEF⊥平面PMN【答案】BD 【解析】【分析】可得过,,E F M 三点的平面为一个正六边形,判断A ;分别连接,E F 和1,B C ,截面1C BEF 是等腰梯形,判断B ;分别取11,BB CC 的中点,G Q ,易证EF 显然不平行平面QGMN ,可判断C ;EM ⊥平面PMN ,可判断D.【详解】对于A :如图经过,,E F M 三点的平面为一个正六边形EFMHQK ,点P 在平面外,,,,E F M P ∴四点不共面,∴选项A 错误;对于B :分别连接,E F 和1,B C ,则平面PEF 即平面1C BEF ,截面1C BEF 是等腰梯形,∴选项B 正确;对于C :分别取11,BB CC 的中点,G Q ,则平面PMN 即为平面QGMN ,由正六边形EFMHQK ,可知HQ EF ,所以MQ 不平行于EF ,又,EF MQ ⊂平面EFMHQK ,所以EF MQ W = ,所以EF I 平面QGMN W =,所以EF 不平行于平面PMN ,故选项C 错误;对于D :因为,AEM BMG 是等腰三角形,45AME BMG ∴∠=∠=︒,90EMG ∴∠=︒,EMMG ∴⊥,,M N 是,AB CD 的中点,易证MN AD ∥,由正方体可得AD ⊥平面11ABB A ,MN ∴⊥平面11ABB A ,又ME ⊂平面11ABB A ,EM MN ∴⊥,,MG MN ⊂ 平面PMN ,EM ∴⊥平面GMN ,EM ⊂ 平面MEF ,∴平面MEF ⊥平面,PMN 故选项D 正确.故选:BD .10.已知函数()5π24f x x ⎛⎫=+ ⎪⎝⎭,则()A.()f x 的一个对称中心为3π,08⎛⎫ ⎪⎝⎭B.()f x 的图象向右平移3π8个单位长度后得到的是奇函数的图象C.()f x 在区间5π7π,88⎡⎤⎢⎥⎣⎦上单调递增D.若()y f x =在区间()0,m 上与1y =有且只有6个交点,则5π13π,24m ⎛⎤∈ ⎥⎝⎦【答案】BD 【解析】【分析】代入即可验证A ,根据平移可得函数图象,即可由正弦型函数的奇偶性求解B ,利用整体法即可判断C ,由5πcos 242x ⎛⎫+= ⎪⎝⎭求解所以根,即可求解D.【详解】对于A ,由35π3π2π0848f ⎛⎫⎛⎫=+⨯=≠⎪ ⎪⎝⎭⎝⎭,故A 错误;对于B ,()f x 的图象向右平移3π8个单位长度后得:3π3π5ππ228842y f x x x x ⎡⎤⎛⎫⎛⎫⎛⎫=-=-+=+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,为奇函数,故B 正确;对于C ,当5π7π,88x ⎡⎤∈⎢⎥⎣⎦时,则5π5π2,3π42x ⎡⎤+∈⎢⎥⎣⎦,由余弦函数单调性知,()f x 在区间5π7π,88⎡⎤⎢⎥⎣⎦上单调递减,故C 错误;对于D ,由()1f x =,得5πcos 242x ⎛⎫+= ⎪⎝⎭,解得ππ4x k =+或ππ,2k k +∈Z ,()y f x =在区间()0,m 上与1y =有且只有6个交点,其横坐标从小到大依次为:ππ5π3π9π5π,,,,,424242,而第7个交点的横坐标为13π4,5π13π24m ∴<≤,故D 正确.故选:BD11.已知定义在R 上的偶函数()f x 和奇函数()g x 满足()()21f x g x ++-=,则()A.()f x 的图象关于点()2,1对称B.()f x 是以8为周期的周期函数C.()20240g =D.20241(42)2025k f k =-=∑【答案】ABC 【解析】【分析】根据函数奇偶性以及所满足的表达式构造方程组可得()()222f x f x ++-=,即可判断A 正确;利用对称中心表达式进行化简计算可得B 正确,可判断()g x 也是以8为周期的周期函数,即C 正确;根据周期性以及()()42f x f x ++=计算可得20241(42)2024k f k =-=∑,可得D 错误.【详解】由题意()()()(),f x f x g x g x -=-=-,且()()()00,21g f x g x =++-=,即()()21f x g x +-=①,用x -替换()()21f x g x ++-=中的x ,得()()21f x g x -+=②,由①+②得()()222f x f x ++-=,所以()f x 的图象关于点2,1对称,且()21f =,故A 正确;由()()222f x f x ++-=,可得()()()()()42,422f x f x f x f x f x ++-=+=--=-,所以()()()()82422f x f x f x f x ⎡⎤+=-+=--=⎣⎦,所以()f x 是以8为周期的周期函数,故B 正确;由①知()()21g x f x =+-,则()()()()882121g x f x f x g x +=++-=+-=,故()()8g x g x +=,因此()g x 也是以8为周期的周期函数,所以()()202400g g ==,C 正确;又因为()()42f x f x ++-=,所以()()42f x f x ++=,令2x =,则有()()262f f +=,令10x =,则有()()10142,f f +=…,令8090x =,则有()()809080942f f +=,所以1012(2)(6)(10)(14)(8090)(8094)2222024f f f f f f ++++++=+++=个所以20241(42)(2)(6)(10)(14)(8090)(8094)2024k f k f f f f f f =-=++++++=∑ ,故D 错误.故选:ABC【点睛】方法点睛:求解函数奇偶性、对称性、周期性等函数性质综合问题时,经常利用其中两个性质推得第三个性质特征,再进行相关计算.三、填空题:本题共3小题,每小题5分,共15分.12.6(31)x y +-的展开式中2x y 的系数为______.【答案】180-【解析】【分析】根据题意,由条件可得展开式中2x y 的系数为213643C C (1)⋅-,化简即可得到结果.【详解】在6(31)x y +-的展开式中,由()2213264C C 3(1)180x y x y ⋅⋅-=-,得2x y 的系数为180-.故答案为:180-.13.已知函数()f x 是定义域为R 的奇函数,当0x >时,()()2f x f x '->,且()10f =,则不等式()0f x >的解集为__________.【答案】()()1,01,-⋃+∞【解析】【分析】根据函数奇偶性并求导可得()()f x f x ''-=,因此可得()()2f x f x '>,可构造函数()()2xf x h x =e并求得其单调性即可得()f x 在()1,+∞上大于零,在()0,1上小于零,即可得出结论.【详解】因为()f x 为奇函数,定义域为R ,所以()()f x f x -=-,两边同时求导可得()()f x f x ''--=-,即()()f x f x ''-=且()00f =,又因为当0x >时,()()2f x f x '->,所以()()2f x f x '>.构造函数()()2xf x h x =e,则()()()22xf x f x h x '-'=e,所以当0x >时,()()0,h x h x '>在()0,∞+上单调递增,又因为()10f =,所以()()10,h h x =在()1,+∞上大于零,在()0,1上小于零,又因为2e 0x >,所以()f x 在()1,+∞上大于零,在()0,1上小于零,因为()f x 为奇函数,所以()f x 在(),1∞--上小于零,在()1,0-上大于零,综上所述,()0f x >的解集为()()1,01,-⋃+∞.故答案为:()()1,01,-⋃+∞14.已知点C 为扇形AOB 的弧AB 上任意一点,且60AOB ∠=,若(),R OC OA OB λμλμ=+∈,则λμ+的取值范围是__________.【答案】231,3⎡⎢⎣⎦【解析】【分析】建系设点的坐标,再结合向量关系表示λμ+,最后应用三角恒等变换及三角函数值域求范围即可.【详解】方法一:设圆O 的半径为1,由已知可设OB 为x 轴的正半轴,O 为坐标原点,过O 点作x 轴垂线为y 轴建立直角坐标系,其中()()13,,1,0,cos ,sin 22A B C θθ⎛⎫ ⎪ ⎪⎝⎭,其中π,0,3BOC θθ⎡⎤∠=∈⎢⎥⎣⎦,由(),R OC OA OB λμλμ=+∈,即()()13cos ,sin ,1,022θθλμ⎛⎫=+ ⎪ ⎪⎝⎭,整理得1cos ,sin 22λμθλθ+==,解得cosλμθ==-,则323ππcos cos sin ,0,3333λμθθθθθ⎛⎫⎡⎤+=-=+=+∈ ⎪⎢⎝⎭⎣⎦,ππ2ππ,,sin 33332θθ⎤⎡⎤⎛⎫+∈+∈⎥⎪⎢⎣⎦⎝⎭⎣⎦所以231,3λμ⎡+∈⎢⎣⎦.方法二:设k λμ+=,如图,当C 位于点A 或点B 时,,,A B C 三点共线,所以1k λμ=+=;当点C 运动到AB 的中点时,123332k λμ=+==,所以231,3λμ⎡⎤+∈⎢⎥⎣⎦故答案为:231,3⎡⎢⎣⎦四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.ABC V 的内角,,A B C 的对边分别为,,a b c ,已知22cos a b c B +=.(1)求角C ;(2)若角C 的平分线CD 交AB 于点,313,13D AD DB ==CD 的长.【答案】(1)2π3C =(2)3CD =【解析】【分析】(1)利用正弦定理及两角和的正弦定理整理得到()2cos 1sin 0C B +=,再利用三角形的内角及正弦函数的性质即可求解;(2)利用正弦定理得出3b a =,再由余弦定理求出4a =,12b =,再根据三角形的面积建立等式求解.【小问1详解】由22cos a b c B +=,根据正弦定理可得2sin sin 2sin cos A B C B +=,则()2sin sin 2sin cos B C B C B ++=,所以2sin cos 2cos sin sin 2sin cos B C B C B C B ++=,整理得()2cos 1sin 0C B +=,因为,B C 均为三角形内角,所以(),0,π,sin 0B C B ∈≠,因此1cos 2C =-,所以2π3C =.因为CD 是角C的平分线,AD DB ==所以在ACD 和BCD △中,由正弦定理可得,,ππsin sin sin sin 33AD CD BD CDA B ==,因此sin 3sin B ADA BD==,即sin 3sin B A =,所以3b a =,又由余弦定理可得2222cos c a b ab C =+-,即222293a a a =++,解得4a =,所以12b =.又ABC ACD BCD S S S =+△△△,即111sin sin sin 222ab ACB b CD ACD a CD BCD ∠∠∠=⋅⋅+⋅⋅,即4816CD =,所以3CD =.16.已知1ex =为函数()ln af x x x =的极值点.(1)求a 的值;(2)设函数()ex kxg x =,若对()120,,x x ∀∈+∞∃∈R ,使得()()120f x g x -≥,求k 的取值范围.【答案】(1)1a =(2)(]()10,-∞-+∞ ,【解析】【分析】(1)直接根据极值点求出a 的值;(2)先由(1)求出()f x 的最小值,由题意可得是求()g x 的最小值,小于等于()f x 的最小值,对()g x 求导,判断由最小值时的k 的范围,再求出最小值与()f x 最小值的关系式,进而求出k 的范围.【小问1详解】()()111ln ln 1a a f x ax x x x a x xα--=='+⋅+,由1111ln 10e e e a f a -⎛⎫⎛⎫⎛⎫=+= ⎪ ⎪⎪⎝⎭⎝⎭'⎭⎝,得1a =,当1a =时,()ln 1f x x ='+,函数()f x 在10,e ⎛⎫ ⎪⎝⎭上单调递减,在1,e∞⎛⎫+ ⎪⎝⎭上单调递增,所以1ex =为函数()ln af x x x =的极小值点,所以1a =.由(1)知min 11()e e f x f ⎛⎫==- ⎪⎝⎭.函数()g x 的导函数()()1exg x k x -=-'①若0k >,对()1210,,x x k ∞∀∈+∃=-,使得()()12111e 1e k g x g f x k ⎛⎫=-=-<-<-≤ ⎪⎝⎭,即()()120f x g x -≥,符合题意.②若()0,0k g x ==,取11ex =,对2x ∀∈R ,有()()120f x g x -<,不符合题意.③若0k <,当1x <时,()()0,g x g x '<在(),1∞-上单调递减;当1x >时,()()0,g x g x '>在1,+∞上单调递增,所以()min ()1ek g x g ==,若对()120,,x x ∞∀∈+∃∈R ,使得()()120f x g x -≥,只需min min ()()g x f x ≤,即1e ek ≤-,解得1k ≤-.综上所述,k 的取值范围为(](),10,∞∞--⋃+.17.已知四棱锥P ABCD -中,平面PAB ⊥底面,ABCD AD ∥,,,2,2BC AB BC PA PB AB BC AD E ⊥====为AB 的中点,F 为棱PC 上异于,P C 的点.(1)证明:BD EF ⊥;(2)试确定点F 的位置,使EF 与平面PCD 所成角的余弦值为14.【答案】(1)证明见解析(2)F 位于棱PC 靠近P 的三等分点【解析】【分析】(1)连接,,PE EC EC 交BD 于点G ,利用面面垂直的性质定理和三角形全等,即可得证;(2)取DC 的中点H ,以E 为坐标原点,分别以,,EB EH EP 所在直线为,,x y z 轴建立,利用线面角公式代入即可求解.【小问1详解】如图,连接,,PE EC EC 交BD 于点G .因为E 为AB 的中点,PA PB =,所以PE AB ⊥.因为平面PAB ⊥平面ABCD ,平面PAB ⋂平面,ABCD AB PE =⊂平面PAB ,所以PE ⊥平面ABCD ,因为BD ⊂平面ABCD ,所以PE BD ⊥.因为ABD BCE ≅ ,所以CEB BDA ∠∠=,所以90CEB ABD ∠∠+= ,所以BD EC ⊥,因为,,PE EC E PE EC ⋂=⊂平面PEC ,所以BD ⊥平面PEC .因为EF ⊂平面PEC ,所以BD EF ⊥.【小问2详解】如图,取DC 的中点H ,以E 为坐标原点,分别以,,EB EH EP 所在直线为,,x y z 轴建立空间直角坐标系,设2AB =,则2,1,BC AD PA PB ====则()()()()0,0,1,1,2,0,1,1,0,0,0,0P C D E -,设(),,,(01)F x y z PF PC λλ=<<,所以()(),,11,2,1x y z λ-=-,所以,2,1x y z λλλ===-,即(),2,1F λλλ-.则()()()2,1,0,1,2,1,,2,1DC PC EF λλλ==-=-,设平面PCD 的法向量为(),,m a b c =,则00DC m PC m ⎧⋅=⎪⎨⋅=⎪⎩,,即2020a b a b c +=⎧⎨+-=⎩,,取()1,2,3m =--,设EF 与平面PCD 所成的角为θ,由cos 14θ=,得sin 14θ=.所以314sin cos ,14m EF m EF m EF θ⋅====,整理得2620λλ-=,因为01λ<<,所以13λ=,即13PF PC = ,故当F 位于棱PC 靠近P 的三等分点时,EF 与平面PCD 所成角的余弦值为7014.18.在平面直角坐标系xOy 中,抛物线21:2(0)C y px p =>的焦点到准线的距离等于椭圆222:161C x y +=的短轴长,点P 在抛物线1C 上,圆222:(2)E x y r -+=(其中01r <<).(1)若1,2r Q =为圆E 上的动点,求线段PQ 长度的最小值;(2)设()1,D t 是抛物线1C 上位于第一象限的一点,过D 作圆E 的两条切线,分别交抛物线1C 于点,M N .证明:直线MN 经过定点.【答案】(1(2)证明见解析【解析】【分析】(1)根据椭圆的短轴可得抛物线方程2y x =,进而根据两点斜率公式,结合三角形的三边关系,即可由二次函数的性质求解,(2)根据两点坐标可得直线,MN DM 的直线方程,由直线与圆相切可得,a b 是方程()()()2222124240rx r x r -+-+-=的两个解,即可利用韦达定理代入化简求解定点.【小问1详解】由题意得椭圆的方程:221116y x +=,所以短半轴14b =所以112242p b ==⨯=,所以抛物线1C 的方程是2y x =.设点()2,P t t ,则111712222PQ PE -≥-=-=≥,所以当232ι=时,线段PQ 长度取最小值12-.【小问2详解】()1,D t 是抛物线1C 上位于第一象限的点,21t ∴=,且()0,1,1t D >∴.设()()22,,,M a a N b b ,则:直线()222:b a MN y a x a b a --=--,即()21y a x a a b -=-+,即()0x a b y ab -++=.直线()21:111a DM y x a --=--,即()10x a y a -++=.由直线DMr =,即()()()2222124240r a r a r -+-+-=.同理,由直线DN 与圆相切得()()()2222124240r b r b r -+-+-=.所以,a b 是方程()()()2222124240r x r x r -+-+-=的两个解,22224224,11r r a b ab r r --∴+==--.代入方程()0x a b y ab -++=得()()222440x y r x y +++---=,220,440,x y x y ++=⎧∴⎨++=⎩解得0,1.x y =⎧⎨=-⎩∴直线MN 恒过定点()0,1-.【点睛】圆锥曲线中定点问题的两种解法(1)引进参数法:先引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:先根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.技巧:若直线方程为()00y y k x x -=-,则直线过定点()00,x y ;若直线方程为y kx b =+(b 为定值),则直线过定点()0,.b 19.龙泉游泳馆为给顾客更好的体验,推出了A 和B 两个套餐服务,顾客可选择A 和B 两个套餐之一,并在App 平台上推出了优惠券活动,下表是该游泳馆在App 平台10天销售优惠券情况.日期t 12345678910销售量千张1.91.982.22.362.432.592.682.762.70.4经计算可得:10101021111 2.2,118.73,38510i i i i i i i y y t y t =======∑∑∑.(1)因为优惠券购买火爆,App 平台在第10天时系统出现异常,导致当天顾客购买优惠券数量大幅减少,已知销售量y 和日期t 呈线性关系,现剔除第10天数据,求y 关于t 的经验回归方程结果中的数值用分数表示;(2)若购买优惠券的顾客选择A 套餐的概率为14,选择B 套餐的概率为34,并且A 套餐可以用一张优惠券,B 套餐可以用两张优惠券,记App 平台累计销售优惠券为n 张的概率为n P ,求n P ;(3)记(2)中所得概率n P 的值构成数列{}()N n P n *∈.①求n P 的最值;②数列收敛的定义:已知数列{}n a ,若对于任意给定的正数ε,总存在正整数0N ,使得当0n N >时,n a a ε-<,(a 是一个确定的实数),则称数列{}n a 收敛于a .根据数列收敛的定义证明数列{}n P 收敛.参考公式:()()()1122211ˆˆ,n niii ii i nni i i i x x y y x y nx yay bx x xx nx====---==---∑∑∑∑.【答案】(1)673220710001200y t =+(2)433774nn P ⎛⎫=+⋅- ⎪⎝⎭(3)①最大值为1316,最小值为14;②证明见解析【解析】【分析】(1)计算出新数据的相关数值,代入公式求出 ,ab 的值,进而得到y 关于t 的回归方程;(2)由题意可知1213,(3)44n n n P P P n --=+≥,其中12113,416P P ==,构造等比数列,再利用等比数列的通项公式求解;(3)①分n 为偶数和n 为奇数两种情况讨论,结合指数函数的单调性求解;②利用数列收敛的定义,准确推理、运算,即可得证.【小问1详解】解:剔除第10天的数据,可得 2.2100.42.49y ⨯-==新,12345678959t ++++++++==新,则9922111119.73100.4114,73,38510285i i i i t y t ==⎛⎫⎛⎫=-⨯==-= ⎪ ⎪⎝⎭⎝⎭∑∑新新,所以912922119114,7395 2.4673ˆ2859560009i i i i t y t y b t t ==⎛⎫- ⎪-⨯⨯⎝⎭===-⨯⎛⎫- ⎪⎝⎭∑∑新新新新新,可得6732207ˆ 2.4560001200a=-⨯=,所以6732207ˆ60001200y t =+.【小问2详解】解:由题意知1213,(3)44n n n P P P n --=+≥,其中12111313,444416P P ==⨯+=,所以11233,(3)44n n n n P P P P n ---+=+≥,又由2131331141644P P +=+⨯=,所以134n n P P -⎧⎫+⎨⎬⎩⎭是首项为1的常数列,所以131,(2)4n n P P n -+=≥所以1434(2)747n n P P n --=--≥,又因为1414974728P -=-=-,所以数列47n P ⎧⎫-⎨⎬⎩⎭是首项为928-,公比为34-的等比数列,故1493(7284n n P --=--,所以1934433(()2847774n n n P -=--+=+-.【小问3详解】解:①当n 为偶数时,19344334()(28477747n n n P -=--+=+⋅>单调递减,最大值为21316P =;当n 为奇数时,19344334()(28477747n n n P -=--+=-⋅<单调递增,最小值为114P =,综上可得,数列{}n P 的最大值为1316,最小值为14.②证明:对任意0ε>总存在正整数0347[log ()]13N ε=+,其中[]x 表示取整函数,当347[log ()]13n ε>+时,347log ()34333333()()()7747474n n n P εε-=⋅-=⋅<⋅=,所以数列{}n P 收敛.【点睛】知识方法点拨:与新定义有关的问题的求解策略:1、通过给出一个新的定义,或约定一种新的运算,或给出几个新模型来创设新问题的情景,要求在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实心信息的迁移,达到灵活解题的目的;2、遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、运算、验证,使得问题得以解决.方法点拨:与数列有关的问题的求解策略:3、若新定义与数列有关,可得利用数列的递推关系式,结合数列的相关知识进行求解,多通过构造的分法转化为等差、等比数列问题求解,求解过程灵活运用数列的性质,准确应用相关的数列知识.。
高三数学上学期第一次月考试题 理含解析
日期:2022年二月八日。
HY中学2021届高三数学上学期第一次月考试题理〔含解析〕制卷人:打自企;成别使;而都那。
审核人:众闪壹;春壹阑;各厅……日期:2022年二月八日。
一、选择题〔本大题一一共12小题〕1.集合,,那么等于A. B. C. D.2.假设复数z满足,i为虚数单位,那么A. B. i C. D. 2i3.某中学2021年的高考考生人数是2021年高考考生人数的倍,为了更好地比照该校考生的升学情况,统计了该校2021年和2021年的高考情况,得到如图柱状图:那么以下结论正确的选项是A. 与2021年相比,2021年一本达线人数减少B. 与2021年相比,2021年二本达线人数增加了倍日期:2022年二月八日。
C. 2021年与2021年艺体达线人数一样D. 与2021年相比,2021年不上线的人数有所增加4.黄金分割比是指将整体一分为二,较大局部与整体局部的比值等于较小局部与较大局部的比值,其比值为,约为,这一比值也可以表示为,那么A. B. 1 C. 2 D.5.函数,那么函数的大致图象为A. B.C. D.6.以下命题中,真命题是.A. ,B. ,C. 的充要条件是D. 假设x,,且,那么x,y至少有一个大于17.设,,,那么a,b,c的大小关系为A. B. C. D.8.某商场进展购物摸奖活动,规那么是:在一个封闭的纸箱中装有标号分别为1,2,3,4,5的五个小球,每次摸奖需要同时取出两个球,每位顾客最多有两次摸奖时机,并规定:假设第一次取出的日期:2022年二月八日。
两球号码连号,那么中奖,摸奖完毕;假设第一次未中奖,那么将这两个小球放回后进展第二次摸球.假设与第一次取出的两个小球号码一样,那么为中奖.按照这样的规那么摸奖,中奖的概率为A. B. C. D.9.函数在区间上单调递增,那么实数t的取值范围为A. B. C. D.10.函数假设直线l与曲线,都相切,那么直线l的斜率为A. B. C. D.11.红海行动是一部现代化海HY题材影片,该片讲述了中国海HY“蛟龙突击队〞奉命执行撤侨任务的故事.撤侨过程中,海HY舰长要求队员们依次完成六项任务,并对任务的顺序提出了如下要求:重点任务A必须排在前三位,且任务E、F必须排在一起,那么这六项任务的不同安排方案一共有A. 240种B. 188种C. 156种D. 120种12.函数,假设关于x的方程有且仅有两个不同的整数解,那么实数a的取值范围是A. B. C. D.二、填空题〔本大题一一共4小题〕13.的展开式中常数项的系数为60,那么______.14.假设,那么满足不等式的m的取值范围为______.15.在边长为1的等边三角形ABC中,点D、E分别是边AB,BC的中点,连接DE并延长到点F,使得设,那么______;______.16.如图放置的边长为1的正方形PABC沿x轴滚动,点B恰好经过原点.设顶点的轨迹方程是,那么对函数有以下判断:函数是偶函数;对任意的,都有;日期:2022年二月八日。
2024-2025学年上海建平中学高三上学期数学月考试卷及答案(2024.10)
1建平中学2024学年第一学期高三年级数学月考2024.09一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分) 1.已知全集{}1,2,3,4,5U =,集合{}2,4A =,则A =________. 2.复数1ii+的模为________. 3.已知x R ∈,则不等式12x −<的解集为________. 4.函数33y x x =−的极小值点________.5.二项式61x x ⎛⎫+ ⎪⎝⎭的展开式中常数项的值为________.6.已知()y f x =是定义在R 上的偶函数,且它在[)0,+∞上严格递增,那么使得(2)()f f a −≤成立的实数a 的取值范围是________.7.已知角α的顶点在坐标原点,始边与x 轴的正半抽重合,角α的终边与单位圆的交点坐标是34,55⎛⎫− ⎪⎝⎭,则sin 3π⎛⎫α+= ⎪⎝⎭________.8.2位女生3位男生排成一排,则2位女生不相邻,且3位男生相邻的排法共有_____种. 9.将sin y x =的正数零点从小到大排成一列12n x x x <<<<,则12limnn n n x x x →∞+++的值为________.10.中国古建筑的屋檐下常系挂风铃,风铃可近似看作由一个较大的圆锥挖去一个较小的圆锥,两圆锥的轴在同一条直线上,截面图如下,其中1320O O =厘米,122O O =厘米,16AB =厘米,若不考虑铃舌,则风铃的体积为________立方厘米.(保留两位小数)11.设T 是满足以下条件的△ABC 的集合:对任意一个单位圆O ,点A ,B ,C 至少有一个在圆O 外,已知△XYZ 是直角三角形,且不是T 中的元素,则△XYZ周长的取值范围是2________.12.已知向量b ,c 满足1b c −=,向量(1,,1)i a i n n N n ≤≤∈≥满足1i a b −=或1i a c −=且1i j a a −≥对任意1i j n ≤<≤成立.则n 的最大值为________.二、单选题(13、14题每题4分,15、16题每题5分,共18分)13.双曲线221:142x y Γ−=和双曲线222:142y x Γ−=具有相同的( )A .焦点B .顶点C .渐近线D .离心率14.为了研究y 关于x 的线性相关关系,收集了5组样本数据(见下表):若已求得一元线性回归方程为0.34y ax =+,则下列选项中正确的是( ).A .0.21a =B .当8x =时,y 的预测值为2.2C .样本数据y 的第40百分位数为1D .去掉样本点(3,1)后,x 与y 的样本相关系数r 不会改变15.已知等比数列{}n a 的前n 项和为n S ,若121a a a −<<,则( ).A .{}n a 为递减数列B .{}n a 为递增数列C .{}n S 有最小项D .{}n S 有最大项16.对于二元一次方程组661ax y x by +=⎧⎨+=⎩,其系数a ,b 的值分别由掷一颗均匀骰子和一枚均匀硬币决定.令a 的值为骰子出现的点数;若硬币出现正面时b 的值为1,若硬币出现反面时b 的值为2.对于以下两个命题判断正确的是( ). ①此方程无解或有无穷多解的概率为16; ②在硬币出现反面且此方程有解的条件下,x 的值为正的概率为25. A .①真②真 B .①真②假 C .①假②真 D .①假②假3三、解答题(17、18、19题每题14分,20、21题每题18分,共78分) 17.对于函数()y f x =,其中2()2sin cos f x x x x =+−x R ∈. (1)求函数()y f x =的单调增区间;(2)在锐角△ABC 中,若()1f A =,2AB AC ⋅=,求△ABC 的面积.18.如图,已知ABCD 为等腰梯形,∥AD BC ,120BAD ∠=︒,PA ⊥平面ABCD ,2AB AD AP ===. (1)求证:PC AB ⊥;(2)求二面角C BPA −−的大小.19.垃圾分类能减少有害垃圾对环境的破坏,同时能提高资源循环利用的效率.目前上海社区的垃圾分类基本采用四类分类法,即干垃圾,湿垃圾,可回收垃圾与有害垃圾,某校为调查学生对垃圾分类的了解程度,随机抽取100名学生作为样本,按照了解程度分为A等级和B等级,得到如下列联表:(1)根据表中的数据回答:学生对垃圾分类的了解程度是否与性别有关(规定:显著性水平0.05α=)?附:22()()()()()n ad bca b c d a c b d−χ=++++,其中n a b c d=+++,()2 3.8410.05P x≥≈.(2)为进一步加强垃圾分类的宣传力度,学校特举办垃圾分类知识问答比赛.每局比赛由二人参加,主持人A和B轮流提问,先赢3局者获得奖项并结束比赛.甲,乙两人参加比赛,已知主持人A提问甲赢的概率为23,主持人B提问甲赢的概率为12,每局比赛互相独立,且每局都分输赢.现抽签决定第一局由主持人A提问.(i)求比赛只进行3局就结束的概率;(ii)设X为结束比赛时甲赢的局数,求X的分布和数学期望[]E X.4520.已知直线:l y kx m =+和椭圆22:142x y Γ+=相交于点11(,)A x y ,22(,)B x y .(1)当直线l 过椭圆Γ的左焦点和上顶点时,求直线l 的方程; (2)点C 在Γ上,若0m =,求△ABC 面积的最大值; (3)如果原点O 到直线l△AOB 为直角三角形.621.已知R 的子集S 和定义域同为D 的函数()y f x =,()y g x =.若对任意1x ,2x D ∈,当12x x S −∈时,总有12()()f x g x S −∈,则称()y f x =是()y g x =的一个“S 关联函数”. (1)求2y x =的所有{}1关联函数; (2)若2ln my x x x=−+是其自身的一个[)0,+∞关联函数,求实数m 的取值范围; (3)对定义在R 上的函数()y p x =,证明:“()(0)p x x p =+对任意x R ∈成立”的充分必要条件是“存在函数()y q x =,使得对任意正整数n ,()y q x =都是()y p x =的一个11,1n n ⎡⎤⎢⎥+⎣⎦关联函数”.7参考答案一、填空题 1.{}1,3,5;2.;3.()1,3−;4.1;5.20;6.(][),22,−∞−⋃+∞;7.8.12; 9.12; 10.134.04;11. ()+∞ 12.3 12.已知向量b ,c 满足1b c −=,向量(1,,1)i a i n n N n ≤≤∈≥满足1i a b −=或1i a c −=且1i j a a −≥对任意1i j n ≤<≤成立.则n 的最大值为________. 【答案】3【解析】设,,i i b OB c OC a OA ===,则1,1,i i i b c CB a b OA OB BA −==−=−==1i i i a c OA OC CA −=−==, 所以1,,A B C 三点共线,且1A 在,B C 之间,因为1i j a a −…,所以1i j A A …, 即12,,A A A ,中任意两点之间的距离不小于1,因为1b c CB −==,所以,B C 两点之间的距离小于1,所以12,,,A A A ,中至少有一个点在B,C 之间,所以n 的最大值为3. 二、选择题13. D 14.D 15.C 16.B15.已知等比数列{}n a 的前n 项和为n S ,若121a a a −<<,则( ).A .{}n a 为递减数列B .{}n a 为递增数列C .{}n S 有最小项D .{}n S 有最大项 【答案】C【解析】由121a a a −<<可得10a >,所以211a q a =<, 因为12a a −<得211a q a =>−,所以11q −<<,8因为()111n n a q S q−=−,当01q <<时,{}n S 递增,当10q −<<时,{}n S 摆动,,A B 错误;当01q <<时,n S 最小项1S ,没有最大项,当10q −<<时,1230,0,0a a a ><>,40a <且340,n a a S +>最小项2S ,有最大项1S ,C 正确,D 错误.故选:C . 三.解答题17.(1)5,,1212k k k Z ππ⎡⎤π−π+∈⎢⎥⎣⎦ (218.(1)证明略(2)19.(1)无关 (2)(i )518 (ii )()263108E X =20.已知直线:l y kx m =+和椭圆22:142x yΓ+=相交于点11(,)A x y ,22(,)B x y . (1)当直线l 过椭圆Γ的左焦点和上顶点时,求直线l 的方程; (2)点C 在Γ上,若0m =,求△ABC 面积的最大值; (3)如果原点O 到直线l△AOB 为直角三角形. 【答案】(1)y x =+ (2) (3)见解析【解析】(1)椭圆22:142x y Γ+=的2,a b c ===Γ的左焦点()和上顶点(0,则直线l1=,即为y x =+(2)由0m =可得直线l 的方程为y kx =,联立椭圆方程2224x y +=,可得22412x k =+,222412k y k =+,则AB ==9C 到AB的距离为d =,则ABC ∆面积为12==显然0k <时,上式取得最大值,由()211122k k k−==+−+−…当且仅当2k =时,上式取得最大值1,则三角形ABC的面积的最大值为 (3)证明:联立2224y kx mx y =+⎧⎨+=⎩可得()222124240k x kmx m +++−= 由()()1122,A x ,y B x ,y 可得2121222424,1212km m x x x x k k −+=−=++ 由原点O 到直线l,=,即为22344m k =+, 则()1212121(OA OB x x y y x x kx m k ⋅=+=++)2x m +()()2212121kx x km x x m =++++()2222224411212m km k km m k k −⎛⎫=+⋅+⋅−+ ⎪++⎝⎭(2222222212244412k m m k k m m k =+−−−++)222k m +()2221344012m k k=−−=+ 可得OA OB ⊥,则AOB ∆为直角三角形.21.(1)222y x x =−+(2),⎛−∞ ⎥⎝⎦ (3)略。
高三数学第一次月考试卷(最终版)
高三数学第一次月考试卷(理)XX :班级:分数:试卷满分 150 分考试时间120 分钟一、选择题:本大题共8 小题,每小题 5 分,共 50 分 . 在每小题给出的四个选 项中,只有一项是符合题目要求的.1.已知全集U R ,集合A{ x | 0 x2} , B { x | x 1} ,那么集合AC U B 等于()( A ){ x | 0 x 1} ( B ){ x |0 x 1} ( C ){ x |1 x 2}( D ){ x |1x 2}2.已知命题p : x R ,| x1| 0 ,那么命题p 为()( A )x R ,| x1| 0( B )x R ,| x1|0 ( C )x R ,| x1|0( D )x R ,| x1|03.下列函数中,图象关于y 轴对称的是()( A )y2x ( B ) y2x ( C ) yx 2( D ) y log 2 x4.函数f ( x) x 2e x 的单调递减区间是()( A )( 2,0) (B )( , 2),(0, ) ( C )(0, 2)(D )(,0) , (2,)5.若函数f ( x)的图象在 a, b 上是不间断的, 且有f (a) f (b) 0,则函数 f (x)在 a,b 上()(A )一定没有零点( B )至少有一个零点 (C )只有一个零点( D )零点情况不确定6. 在极坐标系中,过点(2, 3) 且平行于极轴的直线的极坐标方程是()2A.sin = - 2B.cos = - 2C.sin = 2D.cos = 271 ”是“函数y x2bx 1 ( x [1, ))为增函数”的().“ b( A )充分但不必要条件( B )必要但不充分条件( C)充要条件( D)既不是充分条件也不是必要条件8.方程2x x 2 的解所在区间是()A.( 0,1)B.(1, 2)C.( 2,3)D.(3,4)9.函数y xa x(0 a 1)的图象的大致形状是()x10. 已知定义在 R 上的函数y=f(x) 满足 f(x+2)= f(x),当 -1<x ≤ 1时, f(x)=x3.若函数 g( x) f (x)log a x 恰有6个零点,则()A.a= 5 或 a= 1B.a(0,1)[5, ) C. a[1,1] [5,7] D. a [1,1) [5,7) 557575二、填空题:本大题共8 小题,每小题 5 分,共 45 分. 把答案填在题中横线上 . 11.不等式12x 18的解集是 _________.212.函数y log 23x 2 的定义域为_________________________513. 若alog 2 3, b log3 2 , c log4 6 ,则它们从小到大的顺序是____________14.抛物线yx 2 x 与x 轴所围成封闭图形的面积是 ___________.15. 如图,AC 为⊙O 的直径,OBAC ,弦 BN 交 AC 于 点 M .若OC3 ,OM1,则 MN _____.Clg x, x 0, 1 ,则 x 0的值是16.已知函数f ( x)2 ,x 若 f (x 0 )x 0.17.曲线y1 x2e 2在点 4,e处的切线与坐标轴所围成的三角形的面积为BMOAN._____________x 2t 2a, 18. .在平面直角坐标系下,已知曲线C 1 :t, ( t 为参数)和曲线yC 2 :x2cos , (为参数 ),若曲线C 1,C 2有公共点,则实数a 的y1 2sin取值X 围为____________.119.已知函数f (x)x 2 , 0 xc,其中 c 0 .那么 f ( x) 的零点是_____;若 f (x)x 2 x, 2 x 0,的值域是 [1, 2] ,则c 的取值X 围是_____.4三、解答题:本大题共4 小题,共 55 分 . 解答应写出文字说明,证明过程或演算步骤 .20.(本小题满分 12 分)设 p:实数 x 满足x 24ax 3a 20 ,其中 a 0 ,命题 q : 实数x 满足x 2 x 6 0, 1, 且pq 为真,XX 数x 的取值X 围;x 2 2x8.求( 1)若a0.( 2)若 p 是 q 的充分不必要条件,XX 数a 的取值X 围.21.(本小题满分13 分)已知函数f ( x)x 33ax 1 在x1 处取得极值.(Ⅰ)XX 数a 的值;(Ⅱ)当 x [ 2,1] 时,求函数f ( x) 的值域.22.(本小题分)定义在(,)上的函数满足)140 f ( x): (1 f (2) 1;( 2) f ( xy) f ( x) f ( y), 其中 x, y为任意正实数,(3)任意正实数满足时,f ( y))恒成立x, yx y( x y)( f ( x)0根据上述条件求下列问题:(1)求 f (1), f (4)的值()判断函数的单调性2 f (x)()若f ( x 3) 2,试求的取值X围。
2024-2025学年云南省昆明市昆明三中高三(上)第一次月考数学试卷(含答案)
2024-2025学年云南省昆明三中高三(上)第一次月考数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.如图,集合A 、B 均为U 的子集,(∁U A)∩B 表示的区域为( )A. ⅠB. ⅡC. ⅢD. Ⅳ2.已知等差数列{a n }的前三项依次为a−1,a +1,2a +3,则此数列的通项公式a n 等于( )A. 2n +1B. 2n−1C. 2n−3D. 2n−53.若a =0.20.3,b =0.30.2,c =log 0.50.3,则a ,b ,c 的大小关系为( )A. c <a <b B. b <a <cC. a <b <cD. a <c <b4.设函数f(x)={log 12(3−x),(x ≤0)f(x−3)+1,(x >0),则f(20)=( )A. 3B. 4C. 5D. log 12175.如图:正方体ABCD−A 1B 1C 1D 1的棱长为2,E 为DD 1的中点,过点D 作正方体截面使其与平面A 1EC 1平行,则该截面的面积为( )A. 23 B. 26 C. 46 D. 436.▵ABC 的内角A,B,C 的对边分别为a,b,c ,若AB 边上的高为2c,A =π4,则cos ∠ACB =( )A.1010B. 31010C. 3510D.557.一袋里装有带编号的红色,白色,黑色,蓝色四种不同颜色的球各两个,从中随机选4个球,已知有两个是同一颜色的球,则另外两个球不是同一颜色的概率为( )A. 25B. 45C. 89D. 8158.已知正项等比数列{a n}的前n项和为S n,且满足a n S n=4n−2n2,设b n=2log2(S n+1),将数列{b n}中的整数项组成新的数列{c n},则c2024=( )A. 2022B. 2023C. 4048D. 4046二、多选题:本题共3小题,共15分。
宁夏银川一中2024届高三上学期第一次月考数学理科试题及参考答案
银川一中2024届高三年级第一次月考理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,务必将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}1A x x =≤,{}20B x x a =-<,若A B ⊆,则实数a 的取值范围是A .()2,+∞B .[)2,+∞C .(),2-∞D .(],2-∞2.已知复数z 满足i zz =+-112,则复数z 的虚部是A.-1B.iC.1D.-i3.如图,可以表示函数()f x 的图象的是A .B .C .D .4.已知a ,b 为实数,则使得“0a b >>”成立的一个充分不必要条件为A .11a b>B .ln(1)ln(1)a b +>+C .33a b >D 11a b ->-5.函数()214log 2y x x =--的单调递增区间为A .1,2⎛⎫-∞ ⎪⎝⎭B .(),1-∞-C .1,2⎛⎫+∞ ⎪⎝⎭D .()2,+∞6.的大小关系为则,,设c b a c b a ,,,21(31log 2log 3.02131===A .b c a <<B .cb a <<C .ca b <<D .ac b <<7.已知函数ay x=,xy b=,log cy x=的图象如图所示,则A.e e ea c b<<B.e e eb a c<<C.e e ea b c<<D.e e eb c a<<8.若命题“[]()21,3,2130a ax a x a∃∈---+-<”为假命题,则实数x的取值范围为A.[]1,4-B.50,3⎡⎤⎢⎥⎣⎦C.[]51,0,43⎡⎤⎢⎥⎣-⎦D.[)51,0,43⎛⎤- ⎥⎝⎦9.已知函数则函数2,0,()()()1,0,x xf xg x f xxx⎧≥⎪==-⎨<⎪⎩,则函数()g x的图象大致是A.B.C.D.10.已知函数()()()314(1)1a x a xf x axx⎧-+<⎪=⎨≥⎪⎩,满足对任意的实数1x,2x且12x x≠,都有[]1212()()()0f x f x x x--<,则实数a的取值范围为A.1,17⎡⎫⎪⎢⎣⎭B.10,3⎡⎫⎪⎢⎣⎭C.11,63⎡⎫⎪⎢⎣⎭D.1,16⎡⎫⎪⎢⎣⎭11.已知定义在R上的函数()f x在(],2-∞上单调递减,且()2f x+为偶函数,则不等式()()12f x f x->的解集为A.()5,6,3⎛⎫-∞-+∞⎪⎝⎭B.()5,1,3⎛⎫-∞-+∞⎪⎝⎭C.5,13⎛⎫- ⎪⎝⎭D.51,3⎛⎫- ⎪⎝⎭12.已知函数()ln1af x xx=++.若对任意1x,(]20,2x∈,且12x x≠,都有()()21211f x f xx x->--,则实数a的取值范围是A.27,4⎛⎤-∞⎥⎝⎦B.(],2-∞C.27,2⎛⎫-∞⎪⎝⎭D.(],8∞-二、填空题(本大题共4小题,每小题5分.共20分)13.已知lg 2a b +=-,10b a =,则=a ______.14.已知()222,02,0x x x f x x x x ⎧-+≥=⎨+<⎩,满足()()f a f a <-,则a 的取值范围是.15.若函数()21x mf x x +=+在区间[]0,1上的最大值为3,则实数=m _______.16.已知函数()e e 21x x f x x -=--+,则不等式(23)()2f x f x -+>的解集为____________.三、解答题(共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答。
24届天津南开中学高三第一次月考数学科参考答案
x
π 2
,t
=
2x
−
π 3
π 6
,
2π 3
当t
=
π 6
即
x
=
π 4
时, (sin t )min
=
sin
π 6
=
1 2
,此时
ymin
=1
当t
=
π 2
即
x
=
5π 12
时, (sin t )max
=
sin
π 2
= 1此时
ymax
=
2.
17. 解:(1)方法一:由 b − ccosA = 2acosBcosC 根据正弦定理边化角得:
(Ⅲ)若 F ( x) 有两个不同的零点 x1, x2 ,不妨设 x1 x2 ,
则
x1 ,
x2 为
f
(x)
=
ln
x
−
a( x −1)
x +1
的两个零点,且
x1
1,
x2
1,
由(Ⅱ)知此时 a 2 ,并且 f ( x) 在 (0,t1 ) , (t2 , +) 为单调递增函数,
在 (t1,t2 ) 上为单调递减函数,且 f (1) = 0 ,所以 f (t1 ) 0 , f (t2 ) 0 ,
h( x)
=
1 x
−
x
+1) − 2( x ( x + 1)2
− 1)
=
( x + 1)2 − 4x x ( x + 1)2
=
( x −1)2 x ( x + 1)2
,
当 x 1时, h( x) 0 ,
2022届西藏拉萨中学高三上学期第一次月考数学(理)试题解析.docx
拉萨中学高三年级(2022届)第一次月考理科数学试题一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A = {x\x<l}, B= {x\x> 2} , C = A\JB,则( )A.V2eCB. CjBC.屁 CD. ^5-2eC【答案】D【解析】求出C = A[JB,逐项排除可得答案.解:•.•集合A = {x\x<l} f 5= {x\x> 2} , C = AIJB,:,C = {x\x<l^x>2},••• y/iwC ' C^B,屈 c,后—2eC,故A, B, C均错误,。
正确,故选:D.点评:本题考查了集合的基本运算,集合间的关系、元素与集合的关系,属于基础题.2.设命题p:3ae (0, +oo),函数/(%) = x5 -ax在上有零点,则。
的否定为( )A.Ba G(0,+OO),函数 /(%) ^x5 -ax在(1,心)上无零点B.X/«G(0,+oo),函数y(x) = x5-ax在(1,十》)上无零点C.X/a e (-00 , 0],函数 /(x) = x5 -ax在(1,十》)上无零点D.V«G(0,+<»),函数 /(x) ^x5 -ax在(-8, 1]上无零点【答案】B【解析】根据命题的否定的概念判断.解:解:命题J»:3«e(0,+oo),函数y(%) = %5-ax在(1,+8)上有零点,则。
的否定为:V«e(0,+oo),函数f(x) = x5-ax在(l,*o)上无零点.故选:B.点评:本题考查命题的否定,掌握命题的否定的定义是解题关键.命题的否定只要否定结论,条件不否定,但存在量词与全称量词要互换.3.若log t,b<0(。
>0且。
壬1), 2b2~b > 1 -则()A. a>1, Z?>1B. 0<a<l, b>lC. a>l, 0<b<lD. 0<。
2023—2024学年黑龙江省高三上学期第一次月考考试数学试题(含答案)
2023-2024学年黑龙江省高三上册第一次月考考试数学试题.....函数()2ln(f x x =--的单调递减区间为().(,1)-∞-B (1,1)-D7.若正数x ,y 满足35x y xy +=,则34x y +的最小值是()A .2B .3C .4D .58.已知定义在R 上的函数()f x ,其导函数()f x '满足:对任意x ∈R 都有()()f x f x '<,则下列各式恒成立的是()A .()()()()20181e 0,2018e 0f f f f <⋅<⋅B .()()()()20181e 0,2018e 0f f f f >⋅>⋅C .()()()()20181e 0,2018e 0f f f f >⋅<⋅D .()()()()20181<e 0,2018e 0f f f f ⋅>⋅二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.如图是函数()y f x =的导函数()y f x '=的图象,则下列判断正确的是()A .()f x 在()4,3--上是减函数B .()f x 在()1,2-上是减函数C .3x =-时,()f x 有极小值D .2x =时,()f x 有极小值10.对于定义在R 上的函数()f x ,下述结论正确的是()A .若()()11f x f x =+-,则()f x 的图象关于直线1x =对称B .若()f x 是奇函数,则()1f x -的图象关于点()1,0A 对称C .函数()1y f x =+与函数()1y f x =-的图象关于直线1x =对称D .若函数()1f x -的图象关于直线1x =对称,则()f x 为偶函数16.已知定义在R 上的函数f ()()2log a f x x =+,则(2022f 四、解答题:本题共6小题,共由图象可知:函数12xy=与y∴函数()213 2xf x x=+-的零点个数为故答案为.214.2【分析】根据对数函数的性质求出函数过定点坐标,再代入直线方程,即可得到。
2024-2025学年渭南市蒲城县高三数学上学期10月第一次月考卷及答案解析
蒲城中学2024—2025学年上学期高三第一次月考数学注意事项:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.3.本试卷命题范围:集合与逻辑、不等式、函数.一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1. 已知集合{}13,5A =,,{}1,2,3B =,则A B = ( )A. {}3 B. {}1,2,5 C. {}1,2,3,5 D. {}1,2,3,4,5【答案】C【解析】【分析】根据并集的知识求得正确答案.【详解】依题意,A B = {}1,2,3,5.故选:C2. 已知命题2024:R,20230x p x x ∀∈+>,则p 的否定是( )A. 2024R,20230x x x ∀∈+≤ B. 2024R,20230x x x ∃∈+<C. 2024R,20230x x x ∃∈+≤ D. 2024R,20230x x x ∃∈+≠【答案】C【解析】【分析】根据全称命题的否定即可得到结果.【详解】先变量词,再否结论,而“202420230x x +>”的否定是“202420230x x +≤”,故p 的否定是:2024R,20230x x x ∃∈+≤.故选:C.3. 不等式304x x+≥-的解集为( )A. []3,4- B. [)3,4-C. ()(),33,∞∞--⋃+ D. (](),34,-∞-+∞ 【答案】B【解析】【分析】转化为一元二次不等式,求出解集.【详解】304x x +≥-等价于()()34040x x x ⎧+-≥⎨-≠⎩,解得[)3,4x ∈-.故选:B4. 函数211x y x -=+-的定义域是( )A. [)4,-+∞ B. ()4,-+∞C. [)()4,00,-+∞ D. [)()4,11,-+∞ 【答案】D【解析】【分析】根据给定条件,利用函数有意义列出不等式组求解即得.【详解】函数211x y x -=-有意义,则4010x x +≥⎧⎨-≠⎩,解得4x ≥-且1x ≠,所以所求定义域为[)()4,11,-+∞ .故选:D5. 函数()21ex x f x +=的大致图象为( )A. B.C. D.【答案】A【解析】【分析】利用导数研究函数的单调性,即可确定.【详解】()()()2222212e (1)e 21210e e e e x xx x x x x x x x x x x f x --+-+--+'===-=-≤恒成立,所以函数()21ex x f x +=在定义域R 上单调递减,且对任意R x ∈,都有210,e 0x x +>>,所以对任意R x ∈,都有()0f x >,所以结合选项可知A 满足,故选:A.6. 已知120232023202212024,log 2022,log 2023a b c ===,则,,a b c 的大小关系是( )A. a b c>> B. b a c >>C. c a b>> D. a c b>>【答案】A【解析】【分析】根据指数函数、对数函数的单调性确定范围即可比较大小.【详解】依题意102023202420241a =>=,2023202320230log 1log 2022log 20231<<<=,202220221log log 102023c =<=,所以a b c >>.故选:A7. 函数()f x =[]1,1-上单调递减,则a 的取值范围为( )A. 1a ≤- B. 1a <- C. 31a -≤≤- D. 31a -<<-【答案】C【解析】【分析】令()272t x ax x =+-,由题意可得()t x 需满足在区间[]1,1-上单调递减,且()min 0t x ≥,由此列出不等式,求得答案.【详解】令()272t x ax x =+-,则()f t =由题意可得()272t x ax x =+-需满足在区间[]1,1-上单调递减,且()min 0t x ≥,而()272t x ax x =+-图象开口向下,对称轴为t a =,故1a ≤-且()1620t a =+≥,即31a -≤≤-,故选:C8. 设0a >,0b >,则下列不等式中不恒成立的是( ).A. 12a a +≥ B. 222(1)a b a b +≥+-C. ≥D. 3322a b ab +≥【答案】D【解析】【详解】分析:根据基本不等式、作差法、分析法论证A,B,C 正确,举反例得D 错误.详解:332222()()a b ab a b a ab b +-=-+-,a b <<有3322a b ab <+,故D项错误,其余恒成立:1122,a a a a+≥=⇒+≥2222222(1)(1)(1)02(1),a b a b a b a b a b +-+-=-+-≥⇒+≥+-当a b ≥时0a b a b a b a b ---+≥---+=⇒-当a b <0>D .点睛:本题考查根据基本不等式、作差法、分析法论证等知识点,考查推理论证能力.二、选择题:本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 下列函数在其定义域上既是奇函数又是增函数的是( )A. 1y x = B. e e x xy -=-的C. 3y x = D. 2log y x=【答案】BC【解析】【分析】根据解析式直接判断奇偶性与单调性即可求解.【详解】选项A :1y x =为奇函数不是增函数,选项B :e e x x y -=-,为奇函数和增函数,选项C :3y x =为奇函数和增函数,选项D :2log y x =不是奇函数.故选:BC.10. 下列四个命题中正确的是( )A. 若,a b c d >>,则a d b c->- B. 若22a m a n >,则m n >C. 若110a b <<,则2b ab > D. 若a b >,则11a b a>-【答案】ABC【解析】【分析】根据不等式的性质判断ABC ,举反例排除D ,从而得解.【详解】A.由条件可知,a b >,d c ->-,所以a d b c ->-,故A 正确;B.因为22a m a n >,所以20a >,所以m n >,故B 正确;C.因为110a b<<,所以0b a <<,所以2b ab >,故C 正确;D.因为a b >,取1,0a b ==,则111a b a ==-,故D 错误.故选:ABC11. 下列说法正确的是( )A. “万事俱备,只欠东风”,则“东风”是“赤壁之战东吴打败曹操”的必要不充分条件B. 若p 是q 的必要不充分条件,p 是r 的充要条件,则q 是r 的充分不必要条件C. 方程20ax x a ++=有唯一解的充要条件是12a =±D. []x 表示不超过x 的最大整数,x 表示不小于x 的最小整数,则“[]ab =”是“a b ≥”的充要条件【答案】AB【解析】【分析】根据充分条件和必要条件的定义依次判断各选项即可.【详解】对于A ,“东风”是“赤壁之战东吴打败曹操”的必要条件,但不是充分条件,故A 正确;对于B ,若p 是q 的必要不充分条件,则q p ⇒,p q ¿;若p 是r 充要条件,则p r ⇒,r p ⇒;则有q r ⇒,r q ¿,即q 是r 的充分不必要条件,故B 正确;对于C ,当0a =时,方程20ax x a ++=可化为0x =,也满足唯一解的条件,故C 错误;对于D ,依题意,得[]a a ≥,b b ≥,所以“[]a b =”⇒“a b ≥”,即充分性成立;反之不成立,如3.1 1.5≥,[3.1]3=,1.52=,不能推出“[3.1] 1.5=”,即必要性不成立,故D 错误.故选:AB .三、填空题:本大题共3小题,每小题5分,共15分.12. 已知函数()()16log ,2,21,2x x f x f x x ≤⎧=⎨->⎩则(4)f =______.【答案】1【解析】【分析】根据自变量确定代入哪段,结合对数性质计算即可.【详解】因为()()()42342f f f ==,()1612log 24f ==,所以()()4421f f ==.故答案为:113. 若“x ∃∈R ,使得2210x mx -+<”是假命题,则实数m 的取值范围是______.【答案】⎡⎣-【解析】【分析】根据特称命题的定义和一元二次不等式的恒成立问题求解.【详解】因为“x ∃∈R ,使得2210x mx -+<”是假命题,所以“x ∀∈R ,使得2210x mx -+≥”是真命题,所以280m ∆=-≤,解得m ⎡∈-⎣,故答案为: ⎡⎣-.14. 已知函数e ()1x mx f x x =+-是偶函数,则m =__________.【答案】2【解析】【分析】求出f(x)定义域,根据f(x)是偶函数,可取定义域内任意x ,根据f(-x)=f(x)即可求得m 的值.【详解】由e 10x -≠得e ()1x mx f x x =+-的定义域为{}|0x x ≠,则∵e ()1x mx f x x =+-是偶函数,故f(-1)=f(1),即111e 1e 1m m ---+=+--,解得m=2.此时()1(e )e 1e 21x x x x x f x x +=+=--,而()()e (1e 1)x x xf x f x ---+-==-,故()f x 确为偶函数,故m=2.故答案为:2.四、解答题:本大题共5小题,共77分.解答应写出必要的文字说明、证明过程及演算步骤.15. 设集合{}52A x x =-<.{}121B x x m =<<+.(1)若A B =∅ ,求实数m 的取值范围;(2)若“x A ∈”是“x B ∈”的充分不必要条件,求实数m 的取值范围.【答案】(1)1m ≤;(2)[)3,+∞.【解析】【分析】(1)分B =∅和B ≠∅两种情况讨论即可;(2)由题得A 是B 的真子集,根据集合间的基本关系求解即可.【小问1详解】{}{}{}5225237A x x x x x x =-<=-<-<=<<,当B =∅时,121m ≥+,解得0m ≤当B ≠∅时,由A B =∅ 得:0213m m >⎧⎨+≤⎩,解得01m <≤;综上,1m ≤;【小问2详解】由题得,A 是B 的真子集,所以31721m ≥⎧⎨≤+⎩,且等号不同时成立,解得3m ≥,所以实数m 的取值范围为[)3,+∞.16. 已知函数()21x b f x ax +=+,点()1,5A ,()2,4B 是()f x 图象上的两点.(1)求a ,b 的值;(2)求函数()f x 在[]1,3上的最大值和最小值.【答案】(1)18a b =⎧⎨=⎩(2)max ()5f x =,min 7()2f x =【解析】【分析】(1)把图象上的两点代入函数解析式,由方程组求a ,b 的值;(2)定义法求函数单调性,由单调性求最值.【小问1详解】因为点()1,5A ,()2,4B 是()f x 图象上的两点,所以2514421b a b a +⎧=⎪⎪+⎨+⎪=⎪+⎩,解得18a b =⎧⎨=⎩.【小问2详解】设1213x x ≤<≤,则()()()()()2112121212628281111x x x x f x f x x x x x -++-=-=++++,因为1213x x ≤<≤,所以210x x ->,()()12110x x ++>,则()()120f x f x ->,即()()12f x f x >,所以函数()281x f x x +=+在[]1,3上单调递减.故()max ()15f x f ==,()min 7()32f x f ==.17. 已知函数()2109f x x x =-+.(1)求不等式()0f x >的解集;(2)若0x >,不等式()f x ax ≥恒成立,求a 的取值范围.【答案】(1){1x x <或}9x >;(2)(],4-∞-【解析】【分析】(1)直接解不等式21090x x -+>即可;(2)转化问题转化为()9100x a x x +-≥>恒成立,然后利用基本不等式求出910x x +-的最小值即可.【小问1详解】不等式()0f x >,即为21090x x -+>,则有()()190x x -->,解得1x <或9x >,所以不等式()0f x >的解集为{1x x <或}9x >.【小问2详解】不等式()()0f x ax x ≥>,即为2109x x ax -+≥,所以()9100x a x x +-≥>,只需910x x+-的最小值大于或等于a 即可,因为910104x x +-≥-=-,当且仅当9x x =即3x =时取等号.所以910x x+-的最小值为4-,所以4a ≤-,故a 的取值范围是(],4-∞-18. 若定义在R 上的奇函数()f x 满足()()2=f x f x -,当[]0,1x ∈时,()22f x x x =-.(1)求()2024f 值;(2)当[]3,4x ∈时,求函数()f x 的解析式.【答案】(1)0 (2)()268x x f x =-+-的【解析】【分析】(1)根据函数的奇偶性、周期性等知识求得正确答案.(2)根据函数解析式的求法求得正确答案.小问1详解】定义在R 上的奇函数()f x 满足()()2=f x f x -,()()f x f x ∴-=-,()()()2+==f x f x f x --,()()4f x f x ∴+=,即函数()f x 是以4为周期的周期函数()()()2024450600f f f ∴=⨯==.【小问2详解】当[]0,1x ∈时,()22f x x x =-,∴当[]1,0x ∈-时,[]0,1x -∈,()()()22()22f x f x x x x x ⎡⎤=--=----=--⎣⎦,又当[]3,4x ∈时,[]41,0x -∈-,()()()224(4)2468f x f x x x x x ∴=-=----=-+-.19. 已知()f x 为偶函数、()g x 为奇函数,且满足1()()2x f x g x --=.(1)求()f x ,()g x ;(2)若方程2()[()]29mf x g x m =++有解,求实数m 的取值范围.【答案】(1)()()22,22x x x xf xg x --=+=- (2)10m ≥【解析】【分析】(1)根据函数的奇偶性列方程组来求得()(),f x g x .(2)利用分离常数法、构造函数法,结合基本不等式求得正确答案【小问1详解】依题意,()f x 为偶函数、()g x 为奇函数,且满足1()()2x f x g x --=,所以11()()2()()2x x f x g x f x g x -+⎧-=⎨---=⎩,则11()()2()()2xx f x g x f x g x -+⎧-=⎨+=⎩,解得()()22,22x x x x f x g x --=+=-.【.【小问2详解】若方程2()[()]29mf x g x m =++有解,即()()2222229x x x xm m --+-=++有解,即()()222222722225x x x x x x m ---⎡⎤-=++=++⎣⎦+,对于方程()()2222522x x x x m --⎡⎤-=++⎣⎦+①,当0x =时,方程左边为0,右边为9,所以0x =不是①的解.当0x ≠时,令22x x t -=+,由于222x x -+>=,所以2t >,20t ->,则方程①可化()()()2222429525,22t t t t m t m t t -+-++-=+==--9244102t t =-++≥+=-,当且仅当92,52t t t -==-时等号成立,所以10m ≥.【点睛】方法点睛:对于奇函数,有()()f x f x -=-,对于偶函数,有()()f x f x -=.当题目所给条件中包括奇函数或偶函数时,首先应想到运用上述两个式子来对问题进行求解.求方程有解的问题,可以考虑利用分离参数法来进行求解.为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新课标高三数学月考及答案(理科)注意事项:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第I 卷(选择题60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U =N ,集合P ={1,2,3,4,5},Q ={1,2,3,6,8},则U (C Q)P =A .{1,2,3}B .{4,5}C .{6,8}D .{1,2,3,4,5} 2.复数111iz i i=+-+,则z = A .i B .-i C .1+i D .1-i3.已知中心在原点,焦点在y 轴上的双曲线的离心率为5,则它的渐近线方程为A .2y x =±B .52y x =±C .12y x =± D .6y x =± 4.已知命题1:R p x ∃∈,使得210x x ++<;2:[1,2]p x ∀∈,使得210x -≥.以下命题为真命题的为A .12p p ⌝∧⌝B .12p p ∨⌝C .12p p ⌝∧D .12p p ∧5.已知点Q (5,4),动点P (x ,y )满足⎪⎩⎪⎨⎧≥-≤-+≥+-0102022y y x y x ,则|PQ |的最小值为A .5B .34C .2D .7 6.若棱长均为2的正三棱柱内接于一个球,则该球的半径为 A .33 B .332 C .321 D .7 7.右图是计算1+31+51+…+291值的程序框图,则图中①、②处应填写的语句分别是 A .15,1=+=i n n ? B .15,1〉+=i n n ?C .15,2=+=i n n ?D .15,2〉+=i n n ? 8.已知函数()x x x f 2cos 2sin 3+=,下面结论错误..的是 A .函数()x f 的最小正常周期为π B .函数()x f 可由()x x g 2sin 2=向左平移6π个单位得到 C .函数()x f 的图象关于直线6π=x 对称D .函数()x f 在区间[0,6π]上是增函数 9.函数()x f 满足()00=f ,其导函数()x f '的图象如下图, 则()x f 的图象与x 轴所围成的封闭图形的面积为 A .31 B .34 C .2 D .38 10.已知某几何体的三视图如图所示,则该几何体的体积为A .364 B .32 C .380 D .38+28 11.已知定义域为R 的函数()x f 是奇函数,当0≥x 时,()=x f |2a x -|-2a ,且对∈x R ,恒有()()x f x f ≥+1,则实数a 的取值范围为A .[0,2]B .[-21,21] C .[-1,1] D .[-2,0] 12.在ABC ∆中,是ABC ∆的 内心,若OP =OB y OA x +,其中10≤≤x ,10≤≤y ,动点P 的轨迹所覆盖的面积为 A .6310 B .635 C .310 D .320第II 卷(非选择题 共90分)O A BC AC ,51cos ,7,6===本卷包括必考题和选考题两部分,第13题至第21题为必考题,每个试题考生都必须作答.第22题至第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分,共20分. 13.函数()22log x x y -=的定义域为 .14.学校要安排4名学生在周六、周日参加社会实践活动,每天至少1人,则学生甲被安排在周六的不同排法的种数为 (用数学作答).15.已知i 、j 、k 为两两垂直的单位向量,非零向量)R ,,(321321∈++=a a a k a j a i a a ,若向量a 与向量i 、j 、k 的夹角分别为α、β、γ,则=++γβα222cos cos cos . 16.过点)2,2(p M -作抛物线)0(22>=p py x 的两条切线,切点分别为A 、B ,若线段AB 中点的纵坐标为6,则抛物线的方程为 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知数列{n a }为公差不为零的等差数列,1a =1,各项均为正数的等比数列{n b }的第1项、 第3项、第5项分别是1a 、3a 、21a . (I)求数列{n a }与{n b }的通项公式; (Ⅱ)求数列{n a n b }的前n 项和. 18.(本小题满分l2分)如图,在多面体ABCDEF 中,ABCD 为菱形,∠ABC=60, EC ⊥面ABCD ,FA ⊥面ABCD ,G 为BF 的中点,若EG//面ABCD .(I)求证:EG ⊥面ABF ;(Ⅱ)若AF=AB ,求二面角B —EF —D 的余弦值. 19.(本小题满分12分)某班甲、乙两名同学参加l00米达标训练,在相同条件下两人l0次训练的成绩(单位:秒)如下:(I)请画出适当的统计图;如果从甲、乙两名同学中选一名参加学校的100米比赛,从成绩的稳定性方面考虑,选派谁参加比赛更好,并说明理由(不用计算,可通过统计图直接回答结论). (Ⅱ)从甲、乙两人的10次成绩中各随机抽取一次,求抽取的成绩中至少有一个低于 12.8秒的概率.(III)经过对甲、乙两位同学的若干次成绩的统计,甲、乙的成绩都均匀分布在[11.5,14.5]之间,现甲、乙比赛一次,求甲、乙成绩之差的绝对值小于0.8秒的概率. 20.(本小题满分12分)点P 为圆O :222a y x =+ (a >0)上一动点,PD ⊥x 轴于D 点,记线段PD 的中点M 的运动轨迹为曲线C . (I)求曲线C 的方程;(II)若动直线l 与曲线C 交于A 、B 两点,当△OAB(O 是坐标原点)面积取得最大值,且最大值为1时,求a 的值. 21.(本小题满分l2分)已知函数)1(ln )(--=x a x x f ,a ∈R. (I)讨论函数)(x f 的单调性; (Ⅱ)当1≥x 时,)(x f ≤1ln +x x恒成立,求a 的取值范围. 请考生在第22~24三题中任选一题做答。
如果多做,则按所做的第一题记分. 22.(本小题满分10分)选修4—1:几何证明选讲如图,AB 为圆O 的直径,P 为圆O 外一点,过P 点作PC ⊥AB 于C , 交圆O 于D 点,PA 交圆O 于E 点,BE 交PC 于F 点. (I)求证:∠P=∠ABE ;(Ⅱ)求证:CD 2=CF·CP. 23.(本小题满分10分)选修4—4:坐标系与参数方程在平面直角坐标系xOy 中,以原点O 为极点,Ox 轴为极轴建立极坐标系,曲线C 1的方程为⎪⎪⎩⎪⎪⎨⎧==.tan 1;tan 12ϕϕy x (ϕ为参数),曲线C 2的极坐标方程为:1)sin (cos =+θθρ,若曲线C 1与C 2相交于A 、B 两点. (I)求|AB|的值;(Ⅱ)求点M(-1,2)到A 、B 两点的距离之积. 24.(本小题满分l0分)选修4—5:不等式选讲 已知函数|32||12|)(-++=x x x f . (I)求不等式)(x f ≤6的解集;(Ⅱ)若关于x 的不等式)(x f >a 恒成立,求实数a 的取值范围.2011-2012年度高三复习质量检测二西吉中学2014年新课标高三数学月考及答案(理科答案)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1-5 BDCCA 6-10 CDBBC 11-12 BA二、填空题:本大题共4小题,每小题5分,共20分.13. ()0,1 14. 7 15. 1 16. 2224x y x y ==或三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)解:(Ⅰ)设数列{}n a 的公差为d, 数列{}n b 的公比为q,由题意得:23121a a a =, ……………2分2(12)1(120)d d ∴+=⨯+,24160d d -=,0d ≠,4,d ∴=所以43n a n =-.………………4分于是{}1351,9,81,n b b b b ===的各项均为正数, ,所以q=3,13n n b -∴=.……………………6分(Ⅱ)1(43)3n n n a b n -=-,0122135393(47)3(43)3n n n S n n --∴=+⨯+⨯++-⨯+-⨯.1231335393(47)3(43)3n n n S n n -=+⨯+⨯++-⨯+-⨯.……………8分两式两边分别相减得:2312143434343(43)3n n n S n --=+⨯+⨯+⨯++⨯--⨯……………10分231114(3333)(43)343(13)1(43)313(54)35n nn nn n n n --=+++++--⨯⨯⨯-=+--⨯-=-⨯-(45)352n n n S -+∴=.………………12分18. (本小题满分12分)解:(Ⅰ)取AB 的中点M ,连结GM,MC ,G 为BF 的中点, 所以GM //FA,又EC ⊥面ABCD, FA ⊥面ABCD, ∵CE//AF,∴CE//GM,………………2分 ∵面CEGM ⋂面ABCD=CM, EG// 面ABCD,∴EG//CM,………………4分∵在正三角形ABC 中,CM ⊥AB,又AF ⊥CM ∴EG ⊥AB, EG ⊥AF,∴EG ⊥面ABF.…………………6分(Ⅱ)建立如图所示的坐标系,设AB=2, 则B (0,0,3)E(0,1,1) F (0,-1,2)EF =(0,-2,1) , EB =(3,-1,-1), DE =(3,1, 1),………………8分设平面BEF 的法向量1n =(z y x ,,)则⎩⎨⎧=--=+-0302z y x z y 令1=y ,则3,2==x z , ∴1n =(2,1,3)…………………10分同理,可求平面DEF 的法向量 2n =(-2,1,3)设所求二面角的平面角为θ,则θcos =41-.…………………12分 19.(本小题满分12分)解:(Ⅰ) 茎叶图……………………2分 或………………2分从统计图中可以看出,乙的成绩较为集中,差异程度较小,应选派乙同学代表班级参加比赛更好;………………4分(Ⅱ)设事件A 为:甲的成绩低于12.8,事件B 为:乙的成绩低于12.8, 则甲、乙两人成绩至少有一个低于12.8秒的概率为:617110210-⨯=;……………8分(此部分,可根据解法给步骤分:2分)(Ⅲ)设甲同学的成绩为x ,乙同学的成绩为y , 则0.8x y -<,……………10分 得0.80.8x y x -+<<+,如图阴影部分面积即为33 2.2 2.2 4.16⨯-⨯=,则4.16104(0.8)(0.80.8)33225P x y P x y x -<=-+<<+==⨯. …………12分20.(本小题满分12分)解:(Ⅰ)设()00,P x y ,(),M x y ,由0012x x y y =⎧⎪⎨=⎪⎩,得002x x y y =⎧⎨=⎩,…………2分 代入222x y a +=,得 222214x y a a+=.……………4分(Ⅱ)①当l 斜率不存在时,设x t =,由已知得a t a -<<,由2224x y a x t⎧+=⎨=⎩,得2224a t y -=所以()222222122224OABat t a ta S y x t ∆--=⨯⨯=⋅=≤, 当且仅当222t a t =-,即22t a =时,等号成立. 此时OAB S ∆最大值为24a .……………………5分②当l 斜率存在时,设其方程为y kx m =+,由2224x y a y kx m⎧+=⎨=+⎩,消去y 整理得()222241840k x kmx m a +++-=, ()()()222222284414444km k m a k a m ⎡⎤∆=-+-=+-⎣⎦由0∆>,得2222440k a a m +-> ①设()()1122,,,A x y B x y ,则 2212122284,4141km m a x x x x k k --+==++ ②………7分2241AB k ===+ ③ 原点到直线l距离为 d = , ④…………………9分由面积公式及③④得2222222112224144()111414,2224OABS AB d k m m a a k k ∆=⨯=⋅++-++=≤⋅=………………11分综合①②,OAB S ∆的最大值为24a ,由已知得214a =,所以 2a =.…………………12分 21. (本小题满分12分)解:(Ⅰ))(x f 的定义域为),,0(+∞xaxx f -=1)(', 若,0≤a 则'()0,f x >)(x f ∴在),0(+∞上单调递增,……………2分 若0,a >则由0)('=x f 得a x 1=,当)1,0(ax ∈时,,0)('>x f 当 ),1(+∞∈a x 时,0)('<x f ,)(x f ∴在)1,0(a 上单调递增,在),1(+∞a单调递减.所以当0a ≤时,()f x 在),0(+∞上单调递增,当0a >时, ()f x 在)1,0(a 上单调递增,在),1(+∞a单调递减.……………4分(Ⅱ)1)1(ln 1ln )(2+--=+-x x a x x x x x f , 令)1)(1(ln )(2≥--=x x a x x x g ,ax x x g 21ln )(-+=',令()()ln 12F x g x x ax '==+-,12()axF x x-'=,………………6分 (1)a 0,≤若()0F x '>,[)g (x)1,g (x)g (1)1-2a 0'''+∞≥=>在递增,[)0)1()(,,1)(=≥+∞∴g x g x g 递增在,不符合题意从而,01x lnx-f(x)≥+.……………8分 (2)1110a ,),()0,(()(1,,)2122x F x g x a a ''<<>∴∈若当在递增,g (x)g (1)1-2a,''>=从而以下论证(1)同一样,所以不符合题意.……………10分[)1(3),()01,2a F x '≥≤+∞若在恒成立,[)02a -1(1)g (x )g 1,(x )g ≤='≤'+∞'∴递减,在,[)01ln )(,0)1()(,,1g(x)≤+-=≤∴+∞x xx f g x g 递减在从而, 综上所述,a 的取值范围是⎪⎭⎫⎢⎣⎡+∞,21………………12分 22. (本小题满分10分)证明:(Ⅰ)依题意, 090AEB ACP ∠=∠=,所以在 Rt ACP ∆中,90;P PAB ∠=-∠……………2分 在 Rt ABE ∆中,90;ABE PAB ∠=-∠…………4分 所以.P ABE ∠=∠……………5分(Ⅱ)在ADB Rt ∆中,2CD AC CB =⋅,…………6分 由①得BCF ∆∽PCA ∆, ∴BC CFPC AC=,……………8分 ∴2CD BC AC CF CP=⋅=⋅,所以2CD CF CP =.……………10分 23. (本小题满分10分)解:(Ⅰ)21:(0),C y x x =≠2:10C x y +-=,则2C的参数方程为:1,2(2.2x t y ⎧=--⎪⎪⎨⎪=+⎪⎩为参数),…………2分 代入1C 得0222=-+t t ,……………4分104)(2122121=-+=-=∴t t t t t t AB .……………6分(Ⅱ)221==⋅t t MB MA .…………10分 24. (本小题满分10分)解:(I )原不等式等价于313222(21)(23)6(21)(23)6x x x x x x ⎧⎧>-≤≤⎪⎪⎨⎨⎪⎪++-≤+--≤⎩⎩或 或12(21)(23)6x x x ⎧<-⎪⎨⎪-+--≤⎩ ………………3分 解,得3131212222x x x <≤-≤≤-≤<-或或. 即不等式的解集为}21|{≤≤-x x ……………… 6分 (II )4|)32()12(||32||12|=--+≥-++x x x x . ………………8分4<∴a . ……………… 10分。