古今数学思想读后感

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[标签:标题]

篇一:古今数学思想读后感

古今数学思想读后感

王平

学习数学,重要的是理解,而不是像别的科目一样死背下来.数学有一个特点,那就是闻一知十”.做会了一道标题,就可以总结这道标题所包含的方法和原理,再用总结的原理去办理这类题,

董存瑞事迹读后感见效就会更好我就是数学读后感.学习数学还有一点很重要,那就是从根本的动手,稳妥当当的去练,不求全部题都市做,只求做过的题不会忘,会用就行了.在做题的过

程中,最忌讳的就是大意大意.每每一道标题会做,却因大意做错了,是很不值得的.所以在考数

学的时候,肯定不要太急,要条理清楚的去计算,思索;这样速率可能会稍慢,但却可以使你不丢分.相比之下,我会接纳稍慢的计算方法来片面分析标题,尽量做到不漏.学习是终身的事情,不

要过于着急,一步一个脚迹的来,就肯定会取得一想不到的效果.

课堂上努力营造一个明主平等、宽松和谐的学习氛围。关于学习气氛,苏霍姆林斯基认为:儿童的思维同他的情感分不开,这种情感是发展儿童智力和创造力极其重要的土壤,学生

只有在情感愉悦的气氛里,思维才会活跃。因此,课堂上关注每一位学生,鼓励学生课堂

上发表不同意见,即使说错了,对学生思维中合理的因素也加以肯定,保护学生的自尊心,激发学生的自信力。鼓励学生课堂上提出问题,对教师的讲授、学生的发言,大家随时可

以发问。对提问的学生给与表扬鼓励,这样就形成了课堂上生生、师生的互动交流。课堂

上还经常开展学习竟赛“最佳问题奖、最佳发言人”的评比活动,激发了学生

的学习热情。

创设情境,激励学生主动参与教学过程。学生常常把自己当作是或希望自己是一个探索者、研究者和发现者。因此,教学中提供一些富有挑战性和探索性的问题,就会推动学生学习

数学的积极性。例如书中举了这样的一例:在教学三角形内角和等于180°的知识时,教

师请同学们事先准备好各种不同的三角形,并非别测量出每个内角的角度,标在图中。上

课伊始的第一个教学活动就是“考考老师”。学生报出三角形两个内角的度数,请老师猜一猜第三个角是多少度。每次问题的抛出,教师都对答如流,准确无误。同学们都惊奇了,

疑问由此产生,之后让学生自己动手实践发现规律。这样为学生创设猜想的学习情景,让

学生凭借直觉大胆猜想,把课本中现成的结论转变成为学生探索的对象,变学生被动学习

为主动探索研究。

总之,数学知识来源于生活,教师在数学教学中积极的创造条件,充分挖掘生活中的数学,为学生创设生动有趣的生活问题情景来帮助学生学习,鼓励学生善于去发现生活中的数学

问题,养成运用的态度观察和分析周围的事物,并学会运用所学的数学知识解决实际问题,在实际生活中尝试到学习数学的乐趣。

篇二:古今数学思想读后感

《古今数学思想》读后感

23中陈玲

莫里斯?克莱因(Morris Kline,1908—1992),纽约大学库朗数学研究所的教授,荣誉退休教授,他曾在那里主持一个电磁研究部门达20年之久。他的著作很多,包括《数学:确定性的丧失》和《数学与知识的探求》等。

数学的高度客观性和高度创造性,正是《古今数学思想》的主题思想。在《古今数学思想》这部经典著作中,美国著名的应用数学家、数学教育家莫里斯?克莱因重点关注数学家的思想,描述了数学家在高度抽象的数学世界里开疆拓土的冒险历程。

该书的中译本分为四册:第一册重点讲述古埃及、古巴比伦的原始数学乃至古希腊数学体系的初步建立,突出了欧几里得《几何原本》和阿基米德的工作,兼顾了中世纪和文艺复

兴的代数学和数论。第二册可以看成数学中最重要的分支——微积分的发展史,包括解析

几何、微分、积分、级数论和微分方程等,特别合乎高校数学教师和大学新生的胃口。第

三册重点讲述了19世纪的数学(其中大多数分支也已走进大学一二年级的课堂),比如复变

函数、行列式与矩阵、群论、数论、非欧几何、微分几何和代数几何等。第四册则是现代

数学的一个概观,包括分析的严密化、实变函数、泛函分析、抽象代数、拓扑学和数理逻

辑等。数学是如何从蒙昧时代到古希腊的繁荣,又如何跨越漫长的中世纪,完成常量数学向变量数学的飞跃的呢?作者告诉我们,这一切都离不开人类经济贸易、自然科学尤其

是天文学、物理学

等方面研究的需要,也离不开理性主义哲学的影响。但数学自有其发展的内在逻辑,19世

纪的三大领域——数系、运算、空间维数——的推广,分别革新了函数论、代数学和几何学;而数理逻辑的发展,又重新使人们思考与数学有关的哲学问题,这是数学的内部矛盾

所推动的。每门科学都有它最基本的矛盾,物理学的基本矛盾是唯象与实证的矛盾,生物

学的基本矛盾是简单与复杂的矛盾,数学中的最基本矛盾,则是有限与无限的矛盾。值得一提的是,克莱因在写这本书时,既没有偏袒纯数学,视应用数学为“二等公民”;也不是宣扬狭隘的实用主义,这一点难能可贵。

在这部巨著中,作者非常注意描述数学家特别是几十位大数学家(如阿基米德、牛顿、欧拉、拉格朗日、高斯等)的创新过程,通过对他们的书信、论文、专著的简要介绍,使读者

既领略了数学家的个人魅力、超群智慧,又了解到这种创新活动的历史条件和文化背景,

极具可读性。古代数学学技术的辉煌成就激发了学生爱数学、学数学的情感。这种情感是一种潜在的驱动力,它对于培养学生的学习兴趣,立志投身数学研究有着重要意义。

篇三:古今数学思想读书笔记

古今数学思想读书笔记

M·克莱因(Morris·Kline,莫里斯·克莱因,1908.5.1-1992.5.10 ),美国数学史家、数学教育家与应用数学家,数学哲学家,应用物理学家。生于美国纽约市布鲁克林。1930年,

他以优异的成绩毕业于纽约大学,随之攻读学位,并于1932年获硕士学位,1936年获得

博士学位。获博士学位后,他1936年至1938年在普林斯顿高等研究院研究拓扑学,1938

相关文档
最新文档