线性二次型最优控制..
4.1 线性二次型最优控制
(4-2-10)
用Ω(t,t0)表示方程组(4-2-9)的2n╳2n维转移矩阵,用λ(t0)表示待定的 协态变量初值,则方程组(4-2-9)的解可以表示为
x( t 0 ) x( t ) ( t ) ( t , t 0 ) ( t ) 0
(4-2-11)
• 二次型性能指标中加权矩阵F、Q、R的选取在最优 控制方法中是受人为因素影响最大的步骤。 • 对同样的二次型最优控制问题,选取不同的F、Q、 R,则所得到的最优控制规律也将不一样。 • 控制规律设计(控制器综合)中人为因素影响总是 客观存在的。
(4) 线性二次型最优控制问题的三种类型
状态调节器问题 此时有C(t) = I 为单位矩阵,yr(t) = 0,即有 y(t) = x(t) = -e(t) 输出调节器问题 此时有yr(t) = 0,即有 y(t) = -e(t) 跟踪问题 此时yr(t) ≠ 0, e(t) = yr(t) - y(t)
1 tf 2 为单输出,即e(t)为数量函数时, e ( t )dt 即为经典控制中的动态误 2 t0
Lu u T ( t ) R ( t ) u( t )为衡量控制功率(积分后即为能量)大小的
代价函数,若u(t)表示电流或电压时,则u2(t)正比于电功率;
e T ( t f )Fe( t f ) 是要使末值时刻误差最小。
则(4-2-12)式可写为来自(4-2-13)x ( t f ) 11 ( t f , t ) x ( t ) 12 ( t f , t ) ( t )
(4-2-14) (4-2-15)
( t f ) 21 ( t f , t ) x( t ) 22 ( t f , t ) ( t )
第七章 线性二次型最优控制
控制器设计,使得 √闭环系统是稳定的; √闭环系统具有给定的极点,保证一定的动、 稳态性能 不足: 没有考虑控制能量的问题; 极点配置对模型的要求高。 思路: 同时考虑系统性能和控制能量:积分性能指标
7.1 二次型最优控制系统 状态空间模型: 系统性能指标: Q和R为加权矩阵,由设计者选定。 目的:要求设计一个控制器u,使得性能指标J 尽可能小 √二次型最优控制问题; √最优控制器。 特别的,考虑状态反馈形式的最优控制器: √如何来确定最优状态反馈控制器? √最优闭环系统的稳定性?
3。最优状态反馈控制律的增益矩阵:
最优闭环系统:
显然,它是渐近稳定的。
ቤተ መጻሕፍቲ ባይዱ
最优闭环系统: 利用黎卡提方程的对称正定解矩阵P构造 沿闭环系统轨线,
因此,最优闭环系统是渐近稳定的。 一种新的稳定化控制器设计方法!
例 考虑一阶系统: 二次型性能指标: 求系统的状态反馈最优控制律。 解 模型参数 ,加权矩阵 ⇒ 其解: 。由于要求对称正定解,故取 最优状态反馈控制律: 最优闭环系统: 最小值依赖系统的初始状态。
线性二次型状态反馈最优控制律的设计步骤: 线性二次型状态反馈最优控制律的设计步骤 1。验证系统能控性; 2。求解黎卡提方程: 非线性方程组,取对称正定解; 3。由 构造最优反馈控制律。 例 性能指标:
问题:求最优状态反馈控制器
对象的状态方程: 1。系统是能控的。 2。求解黎卡提方程:
化简后,得到
开环系统: 在状态反馈控制律 系统是 下,所导出的闭环
闭环系统应该是渐近稳定的,因此存在李雅普 诺夫函数 其中的P为待定的对称正定矩阵。 沿闭环系统,V关于时间的导数是
应该是负定的。
控制律对性能指标的影响:
最优控制课后习题答案
最优控制课后习题答案最优控制课后习题答案最优控制是现代控制理论中的重要分支,它研究如何在给定约束条件下,使系统的性能指标达到最优。
在最优控制的学习过程中,课后习题是巩固理论知识、培养解决问题能力的重要环节。
本文将为大家提供一些最优控制课后习题的答案,希望能对大家的学习有所帮助。
1. 线性二次型最优控制问题考虑一个线性时不变系统,其状态方程和性能指标分别为:$$\begin{align*}\dot{x}(t) &= Ax(t) + Bu(t) \\J(u) &= \int_{0}^{T} (x^T(t)Qx(t) + u^T(t)Ru(t))dt\end{align*}$$其中,$x(t)$为系统的状态向量,$u(t)$为控制输入向量,$A$和$B$为系统矩阵,$Q$和$R$为正定矩阵,$T$为最优控制的时间段。
求解该问题的最优控制输入$u^*(t)$。
答案:根据最优控制的原理,最优控制输入$u^*(t)$满足以下的最优性条件:$$\begin{align*}\frac{\partial J}{\partial u}(u^*(t)) &= 2R u^*(t) + 2B^T P(t)x(t) = 0 \\\dot{P}(t) &= -PA - A^T P - Q + PBR^{-1}B^T P\end{align*}$$其中,$P(t)$为状态向量的共轭变量矩阵。
通过求解上述的代数方程和微分方程,可以得到最优控制输入$u^*(t)$和状态向量的共轭变量矩阵$P(t)$。
2. 非线性最优控制问题考虑一个非线性系统,其状态方程和性能指标分别为:$$\begin{align*}\dot{x}(t) &= f(x(t), u(t)) \\J(u) &= \int_{0}^{T} g(x(t), u(t)) dt\end{align*}$$其中,$f(x(t), u(t))$为非线性函数,$g(x(t), u(t))$为性能指标函数。
现代控制理论习题之线性二次型最优控制
【解】:
系统性能指标的值是
J=
1 T x (0) Px(0) 2
其中 P 是对应 Lyapunov 方程的对称正定解。具体写出这个 Lyapunov 方程,得到
2
第七章
线性二次型最优控制
⎡1 a ⎤ ⎡ p11 ⎢1 − 1⎥ ⎢ p ⎣ ⎦ ⎣ 12
由此可得以下的一组方程:
p12 ⎤ ⎡1 1 ⎤ ⎡ p11 ⎢ ⎥−⎢ p 22 ⎥ ⎦ ⎣a − 1⎦ ⎣ p12
2ap12 + a 2 p 22 = −1
p12 ⎤ ⎡1 0⎤ = −⎢ ⎥ ⎥ p 22 ⎦ ⎣0 1 ⎦
p11 + (a − 2) p12 − ap 22 = 0
p11 − 2 p12 = −1
求解该方程组,得到
⎡ 1 + 0.5a 2 ⎢− P = ⎢ a(1 + 0.5a) ⎢ 0.5(a − 1) ⎢ a (1 + 0.5a ) ⎣ 0.5(a − 1) ⎤ ⎥ a (1 + 0.5a ) ⎥ 1.5 ⎥ − a (1 + 0.5a ) ⎥ ⎦
容易看出该系统是渐近稳定的。 7.3 考虑系统
⎡1 1 ⎤ ⎡1⎤ x(k + 1) = ⎢ x(k ), x(0) = ⎢ ⎥ ⎥ ⎣a − 1⎦ ⎣0⎦
其中 −0.25 ≤ a < 0 。我们希望确定参数 a 的一个最优值,使得性能指标 1 ∞ J = ∑ x T (k )Qx(k ) 2 k =0 最小化。其中 Q = I 。
其解为 P = 1 ± 2 。考虑到要求的 P 是对称正定的,故 P = 1 + 2 。 系统的最优控制律为:
u = − R −1 B T Px = −(1 + 2 ) x
第4章线性二次型最优控制
λ(t) = [Ω 22 (t f , t) − FΩ12 (t f , t)]−1[FΩ11 (t f , t) − Ω 21 (t f , t)]x(t)
此式表明λ(t)与 x(t)之间存在线性关系。令
λ(t) = P(t)x(t)
考虑Ω(tf ,tf)=I2n╳2n, 即
首先列出该问题的 Hamilton 函数
H
=
1 2
xT
(t)Q(t)x(t)
+
1 2
uT
(t)R(t)u(t)
+
λT [A(t)x(t)
+
B(t)u(t)]
(4-2-3)
因 u(t)不受约束,所以沿最优轨线有
∂H ∂u (t )
=
0
即
∂H ∂u(t)
=
R(t)u(t)
+
BT
(t )λ (t )
=
0
(4-2-4)
则取较小值。 z 若要减少各分量间的关联耦合作用,系数矩阵可不为对角线矩阵,只需
将在系数矩阵中对应关联分量位置的元素取为非零的正数,其大小也依
对消除各分量间关联的重视程度而定,即最优性能指标也可以用于解耦
控制设计。 z 当 Q、R 取为时变矩阵 Q(t)和 R(t)时,可以反映不同时间阶段的系统控
制要求。如当 t = t0 时 e(t)可能很大,但此时并不反映系统的控制性能, 可以将 Q(t)取得较小;当 t→ tf、e(t)减小时,为保证控制系统性能,可 以将 Q(t)逐渐取大。 二次型性能指标中系数矩阵 F、Q、R 的选取在最优控制理论中是受人为因 素影响最大的步骤,对同样的二次型最优控制问题,选取不同的 F、Q、R 所得 到的最优控制规律也是完全不一样的。 (4) 线性二次型最优控制问题的三种类型 依照系统(4-1-1)~(4-1-3)的情况不同,线性二次型最优控制问题可以分为 如下三类: I. 状态调节器问题 此时有 C(t) = I 为单位矩阵,yr(t) = 0,即有 y(t) = x(t) = -e(t) II. 输出调节器问题 此时有 yr(t) = 0,即有 y(t) = -e(t)。 III. 跟踪问题
现代控制理论线性二次型最优控制
J = ∫ x T Qxdt
0
∞
J = ∫ uT Rudt 描述了控制能量
0
∞
性能指标:既考虑系统性能的要求,也考虑能量消耗
7.1 二次型最优控制
& = Ax + Bu ⎧x 系统状态空间模型: ⎨ ⎩ y = Cx
系统性能指标:J = ∫0 [ x T Qx + uT Ru]dt Q和R为加权矩阵,由设计者选定。 目的:要求设计一个控制器u,使得性能指标J尽可能小 9 二次型最优控制问题; 9 最优控制器。 特别的,考虑状态反馈形式的最优控制器:u = − Kx 9 如何来确定最优状态反馈控制器? 9 最优闭环系统的稳定性?
总结:只要黎卡提方程有对称正定解,就可以构造最优 状态反馈增益矩阵,并得到性能指标的最小值。 问题:什么时候可解呢? 定理:若 ( A, B) 能控,则状态反馈二次型最优控制问题 可解,即黎卡提方程存在对称正定解P,据此可以构 造最优状态反馈控制律和最小性能指标值。
& = ( A − BR −1B T P ) x 最优闭环系统: x
T J = ∫ x T [ PA + AT P − PBR −1 B T P + Q ] xdt + x0 P x0 0 ∞
依赖矩阵P。若选取正定矩阵P满足
PA + AT P − PBR −1 B T P + Q = 0 (Riccati 黎卡提方程)
T J = x 则性能指标的最小值 0 P x0 。
应该是负定的。
控制律对性能指标的影响:
J = ∫ ( x T Q x + u T R u)dt
0 ∞ ∞ d d ⎤ ⎡ T T ⎢ x Q x + u R u + dt V ( x )⎥dt − ∫0 dtV ( x )dt ⎦ ⎣
用MATLAB解线性二次型最优控制问题
cp=[cp;-K]; dp=[dp;0]; G=ss(ap,bp,cp,dp);
[y,t,x]=step(G); figure('pos',[50,50,200,150],'color','w');
axes('pos',[0.15,0.14,0.72,0.72])
plotyy(t,y(:,2:3),t,y(:,4)) [ax,h1,h2]=plotyy(t,y(:,2:3),t,y(:,4));
KA AT K KBR1BT K Q 0
这个方程称为代数黎卡提方程。代数黎卡提方程的求解非常 简单,并且其求解只涉及到矩阵运算,所以非常适合使用 MATLAB来求解。
3
解线性二次型最优控制问题
方法一:
求解代数黎卡提方程的算法有很多,下面介绍一种简单的迭 代算法来解该方程。令 0 0 ,则可以写出下面的迭代公式
20
解线性二次型最优控制问题
例 无人飞行器的最优高度控制,飞行器的控制方程如下
h(t ) 0 1 0 h(t ) 0 1 h(t ) 0 u (t ) h (t ) 0 0 0 0 1 / 2 1 / 2 h (t ) h (t )
运行结果: P = 67.9406 21.7131 21.7131 11.2495 E = -7.2698 -2.4798 K =13.0276 6.7496 RR = 3.4487e-016
14
解线性二次型最优控制问题
以上的三种方法的运行结果相同。于是可以得到,最优
控制变量与状态变量之间的关系:
6.7496 21.7131 11.2495
线性二次型最优控制问题
2023/12/21
9
对容许控制U(t)和终态X(tf)的说明
(1) 在线性二次型问题的定义中,并没有直接提出对控制 作用U(t)的不等式约束,但这并不等于在物理上不需要对 U(t)进行必要的限制。实际上,用适当选择Q(t)和R(t)数值 比例的方法,同样可以把U(t)的幅值限制在适当的范围之 内。这样,就可以在保持闭环系统线性性质的前提下,实 现对U(t)的限制。
2023/12/21
1
线性二次型最优控制问题是指线性系统具有二次型 性能指标的最优控制问题,它呈现如下重要特性:
性能指标具有鲜明的物理意义。最优解可以写成统一的解 析表达式。所得到的最优控制规律是状态变量的反馈形式, 便于计算和工程实现。
可以兼顾系统性能指标的多方面因素。例如快速性、能量 消耗、终端准确性、灵敏度和稳定性等。
dt
这时问题转化为:用不大的控制量,使系统输出Y(t)紧
紧跟随Yr(t)的变化,故称为跟踪问题。
2023/12/21
13
6.2 有限时间的状态调节器问题
问题6.2.1 给定线性定常系统的状态方程和初始条件
X (t) AX (t) BU (t)
X
(t0 )
X0
(6.2.1)
其 中 X(t) 是 n 维 状 态 变 量 , U(t) 是 m 维 控 制 变 量 , A 是 nn常数矩阵,B是nm常数矩阵。性能指标是
在理论上,线性二次型最优控制问题是其它许多控制问题 的基础,有许多控制问题都可作为线性二次型最优控制问 题来处理。
线性二次型最优控制问题,在实践上得到了广泛而 成功的应用。可以说,线性二次型最优控制问题是 现代控制理论及其应用领域中最富有成果的一部分。
2023/12/21
线性二次型问题的最优控制
若取 xT (t )(Q + K T RK ) x (t ) = −
J=
d T x (t ) Px (t ) 则有: dt
1 ∞ T 1 ∞ T x (t )(Q + K T RK ) x(t ) dt = − 2 ∫0 dx (t ) Px(t ) 2 ∫0 1 T = x (0) Px (0) − xT (∞) Px(∞) 2
x 因此,设计的控制律为 u = [−1 - 3] 1 x2
3 控制律验证 3.1 系统稳定性验证 加入状态反馈后系统的极点分布图如下。极点为 − 状态反馈控制后系统又不稳定变为稳定系统。
3 1 3 ± i ,阻尼比 ξ = 。因此引入 2 2 2
Pole-Zero Map 0.8 0.7 0.6 0.84 0.4 0.95 0.2 Imaginary Axis 0.9 0 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.56 0.42 0.3 0.2 0.09
2 控制律设计 由上述分析可知状态反馈的控制律为 u = Kx = [ k1 k2 ] x , 因此, 系统新的状态方程变为:
0 & = x 0 1 0 0 + [k1 k 2 ] x 其中 Ac = A + BK = 0 1 k1 1 。 k2
& = Ax + Bu x y = Cx + Du x (0) = x 0
性能指标
J= 1 ∞ T x (t )Qx(t ) + uT (t ) Ru (t ) dt 2 ∫0
若采用状态反馈,取控制输入 u = Kx 则有: & = ( A + BK ) x x
线性二次型最优控制问题.ppt
上式所示的性能指标中加权矩阵S,Q(t)和R(t)
(1)加权矩阵中的各个元素之间的数值比例关系,将直接影 响系统的工作品质。例如,提高S阵中某一元素的比重,说明 更加重视与该元素对应的状态分量的终端准确性;提高Q(t) 阵中某一元素的比重,说明希望与之对应的状态分量具有较 好的快速响应特性;而提高R(t)阵中某一元素的比重,意味着 需要更有效地抑制与之相应的控制分量的幅值及由它引起的 能量消耗。这只是大致趋势,实际情况十分复杂。因此,如 何安排各加权阵的各个元素之间的关系,乃是一件十分重要 而又十分困难的工作 。
J
1 2
eT
(t f
)Se(t f
)
1 2
tf t0
[eT (t)Q(t)e(t) U T (t)R(t)U (t)]dt
(6.1.2)
2019年8月3
3
为最小,这就是线性二次型最优控制问题。其中S是ll半正定
对称常数矩阵,Q(t)是ll半正定对称时变矩阵,R(t)是mm正 定对称时变矩阵,终端时间tf是固定的,终端状态X(tf)自由。
但是,由于协态变量在实际系统中是不存在的,自然也无法 检测到。因此式(6.2.3)的最优调节作用在工程上是难以实 现的。为了便于在工程上实现,需将调节作用U(t)表示成系 统状态变量X(t)的函数。令:
(t) P(t)X (t)
其中P(t)是nn待定的时变矩阵。对上式两边求导数,得
(t) P(t)X (t) P(t)X (t)
2019年8月3
5
(2)在这些不同目标之间,往往存在着一定矛盾。例如,为 能尽快消除误差并提高终端准确性,就需较强的控制作用及 较大的能量消耗;而抑制控制作用的幅值和降低能耗,必然 会影响系统的快速性和终端准确性。如何对这些相互冲突的 因素进行合理折衷,是系统设计者必须认真对待的课题。
线性二次型最优控制问题
线性二次型最优控制问题2. 线性二次型最优控制问题如果所研究系统为线性,所取性能指标为状态变量与控制变 量的二次型函数,称这种动态系统最优化问题为线性二次型最概念优控制问题.问题的提法 设线性时变系统的状态方程为:x ( t ) = A( t ) x ( t ) + B( t )u( t ) y( t ) = C ( t ) x ( t )假设控制向量u(t)不受约束 ,用yr(t)表示期望输出,则误差向量为e( t ) = yr ( t ) − y( t )求最优控制u*(t) ,使下列二次型性能指标极小。
1 T 1 tf e ( t f )Fe ( t f ) + ∫ [e T ( t )Q( t )e( t ) + u( t )T R( t )u( t )]dt 2 2 t0 F —半正定 q × q常数矩阵 , Q ( t ) —半正定 q × q时变矩阵 J ( u) =R ( t ) —正定 p × p时变矩阵 t 0 及 t f 固定NORTHWESTERN POLYTECHNICAL UNIVERSITYNWPU线性二次型最优控制问题2. 线性二次型最优控制问题各项指标物理意义1 T 1 tf T J ( u) = e ( t f )Fe ( t f ) + ∫ [e ( t )Q( t )e( t ) + u( t )T R( t )u( t )]dt 2 2 t0(1) 第一积分过程项 0.5∫ttf0[e T ( t )Q ( t )e( t )]dt 是对动态跟踪误差加权平方和的积分要求,是系统在运动过程中动态跟踪误差的总度量. t (2) 第二积分过程项 0.5∫t [u( t )T R( t )u( t )]dt 表示系统在控制过程中对系统加权f 0后的控制能量消耗的总度量. (3) 末值项 0.5eT (t f )Fe( t f ) 表示末态跟踪误差向量与希望的零向量之间的距 离加权平方和. 整个性能指标物理意义: 使系统在控制过程中的动态误差与能量消耗,以及控制结束时的系统 终端跟踪误差综合最优。
线性系统二次型最优控制律
线性系统二次型最优控制律线性系统二次型最优控制定义使用二次型性能指标的线性系统最优控制。
它可得到状态线性反馈的最优控制规律,便于实现闭环最优控制,是应用广泛的最优控制方式。
性能指标线性系统状态方程及输出方程为x(t)=A(t)x(t)+B(t)u(t) (1)y(t)=C(t)x(t) (2)式中x(t)为n维状态向量;u(t)为p维控制向量;y(t)为q维输出向量。
设z(t)为理想输出向量,与y(t)同维数,并定义e(t)=z(t)-y(t) (3)误差向量。
线性二次型最优控制问题的性能指标这里,权函数F、Q(t)为正半定矩阵,R(t)为正定矩阵。
假设tf固定。
要求寻找最优控制u*(t),使性能指标J为最小。
被积函数的第一项表明误差e(t)的大小,是非负的。
其第二项表明控制功率的大小,对应于u≠0它恒为正。
因此,对u(t)往往不需再加约束,而常设u(t)为自由的。
性能指标的第一项则表示终值误差。
状态调节器问题系统状态方程如式 (1)所示,u(t)不受约束,tf固定,性能指标为寻找最优控制u*(t),使性能指标J为最小。
用极小值原理或动态规划法,可得下列矩阵黎卡提微分方程(一阶非线性微分方程)P(t)=-P(t)A(t)-AT(t)P(t)+P(t)B(t)R-1(t)BT(t)P(t)-Q(t) (6) 其边界条件为P(tf)=F (7)由式(6)解出P(t)后,可得最优控制规律为u*(t)=-R-1(t)BT(t)P(t)x*(t) (8)由式(8)可以看出,最优控制规律是一个状态线性反馈规律,控制向量u*(t)由状态向量x*(t)生成,构成状态反馈,并且呈线性关系。
这样,能方便地实现闭环最优控制,这一点在工程上具有十分重要的意义。
P(t)是一对称矩阵,一般都要由计算机求出方程(6)的数值解。
P(t)是时间函数,即使线性系统是定常的,为了实现最优控制,反馈增益应该是时变的,而不是常值反馈增益。
线性二次型最优控制
✓ R(t)为r×r维时变旳分段连续旳正定矩阵,且其逆矩 阵存在并有界;
✓ 末态时刻tf是固定旳。
线性二次型最优控制(6/12)
下面对上述性能指标泛函作细致旳讨论: 1) 性能指标泛函J[u(·)]中旳第1项e(tf)Fe(tf),是为了突出对 末端目旳旳控制误差旳要求和限制而引进旳,称为末端 代价函数。 ✓ 非负定旳常数矩阵F为加权矩阵,其各行各列元素旳 值旳不同,体现了对误差向量e(t)在末态时刻tf各分量 旳要求不同、主要性不同。 ✓ 若矩阵F旳第i行第i列元素值较大,代表二次项旳主 要性较大,对其精度要求较高。
线性二次型最优控制(9/12)
3) 性能指标泛函J[u(·)]中旳被积函数旳第2项u(t)R(t)u(t),表 达在系统工作过程中对控制向量u(t)旳大小旳要求和限 制。
✓ 因为时变旳加权矩阵R(t)为正定旳,故该项函数值在 u(t)为非零向量时总是为正旳。 ❖ 而且u(t)越大,该项函数值越大,其在整个性能指 标泛函所占旳分量就越大。
时变状态调整器(3/3)
因为所讨论旳系统为线性系统,给定旳性能指标泛函对状态 变量x(t)和控制量u(t)均连续可微,所以,状态调整器问题可用 变分法、极大值原理和动态规划措施中旳任一种求解。
➢ 本节采用变分法给出最优控制解存在旳充分必要条件及 最优控制问题解旳体现式,讨论最优控制解旳存在性、 唯一性等性质及解旳计算措施。
➢ 最优轨线为下述状态方程
x *(t) A(t) x*(t) B(t)u*(t), x*(t0 ) x0, t [t0, t f ]
旳解,而最优性能值为
J*
J[u* (t)]
1 2
x0 P(0) x0 , x0
0
式中,P(t)为下述矩阵黎卡提微分方程旳正定或半正定解。
【线性系统课件】线性二次型最优控制问题
得 x 2 A22 x2 u w A12 x2 { A, C}能观 { A22 , A12 }能观
闭环系统为
x [ A BR1BT P]x
仍保持为定常系统。
对P的要求:最优系统必须是稳定的,即 [ A BR1BT P] 的所有特征值均具负实部。 可以证明:以上方法构成的最优闭环系统必是大范围渐 近稳定的。
证明: 选取Lyapunov函数
V ( x) xT Px x ( A BR1 B T P ) x V ( x) x Px x P x
step2 : 选取Gnq , 使{F , G}能控 step3 : 求解TA FT GC, 求出唯一解阵 T step4 : 若T非奇, 则H TB; 若T奇异, 返回step1或step2.
三.降维状态观测器
线性定常系统
x Ax Bu, x(0) x0 , t 0 y Cx rankC 输出的维数q
•
综上,有限调节时间LQ问题的综合步骤是: (1)A,B,P(tf)=S,Q,R代入Riccati非线性矩阵微分方程,解 出增益矩阵P(t); (2)构造状态反馈 此时闭环状态方程为
u (t ) R1BT P(t ) x (t )
x [ A BR1BT P(t )]x , x (0) x0
C PQ [Q1 Q 2 ] R CQ1 CQ2 RQ RQ 2 1 0 I q 0 I nq CQ1 I q , CQ2 0, RQ1 0, RQ2 I n q
step2:作线性非奇异变换, x Px
x PAP1 x PBu A x B u y CP 1 x [CQ1 CQ2 ]x [ I q x1q 记x x 2 nq 0]x
线性二次型最优控制
线性二次型最优控制
本文旨在探讨线性二次型最优控制的理论及其实际应用。
线性二次型控制是一种广泛使用的有效控制策略,用于解决复杂的系统问题。
本文以线性二次型的哲学和理论基础为主线,全面总结了线性二次型最优控制的哲学和原理,研究了它的实际应用,并介绍了理论与实践的关系。
首先,本文介绍了线性二次型最优控制的哲学和理论基础。
实践证明,线性二次型控制技术在它所面对的问题中具有优势。
线性二次型最优控制是一种基于目标的最优化控制技术,以有效地通过控制技术来实现有效的控制者。
其次,本文研究了线性二次型最优控制的实际应用。
实际应用中,线性二次型最优控制的最大特点在于它的非线性输入和输出行为。
基于该技术,可以构建一类实用性强的系统,以有效地满足实际应用中的复杂性及非线性性需求。
此外,线性二次型最优控制也可用于节能、飞行控制,机器人控制、智能汽车控制等领域的实际应用。
最后,本文介绍了线性二次型最优控制的理论与实践的关系。
在实践中,要求在有效消耗低的基础上实现有效控制,这要求模型与实践相结合。
只有通过深入理解和求解这种关系,才能有效地利用这种理论在实践中得到最优的控制效果。
总之,线性二次型最优控制作为一种有效的最优化控制策略,极大地促进了复杂系统的发展和应用,同时为更加高效和可靠的实践应用提供了有效的方案。
本文为线性二次型最优控制的哲学和理论研究
以及实际应用提供了一个全面的研究和探讨,以帮助更好地理解和应用这种控制策略。
线性二次型最优控制
Chapter7 线性二次型最优控制稳定性是控制系统的一个重要指标,还要考虑诸如调节时间、超调、振荡等动态特性以及控制器所消耗的能量等因素。
通过极点配置可使系统具有期望的稳定性和动态性能,然而并没有考虑控制的能量代价。
用Lyapunov 稳定性理论解决“参数优化问题”,通过选取一个适当的参数,可以在保证系统稳定的前提下,使二次型性能指标最小化,从而使系统的过渡过程具有较好的性能,有必要将这种方法推广到控制器设计。
7.1 二次型最优控制在控制系统中,为了达到同一个控制目的,可以有多种方案(如多输入系统的极点配置状态反馈控制器是不唯一的),具有最小能量的控制方式更具实际意义。
对于Bu Ax x+= Cx y = (7-1) 系统性能和控制能量的要求可以由下列二次型性能指标来描述: ⎰∞+=0d ][t Ru u Qx x J T T (7-2)Q 是对称正定(半正定)加权矩阵,R 是对称正定加权矩阵,他们反映了设计者对状态x 和控制u 中各分量重要性的关注程度。
第一项反映控制性能,这一项越小,状态衰减到0的速度越快,振荡越小,控制性能越好;第二项反映对控制能量的限制。
通常状态x 衰减速度越快,控制能量越大,这是一个矛盾,最优控制的目的就是寻找Q 、R ,调和上述矛盾,问题归结为,对给定系统(7-1)和保证一定性能指标(7-2)的前提下,,设计一个控制器u ,使J 最小。
若系统的状态是可以直接测量的,且考虑的控制器是状态反馈控制器,则可以证明,使性能指标(7-2)最小化的最优控制器具有以下线性状态反馈形式:Kx u -= (7-3) 将控制器(7-3)代入系统方程(7-1)可得x BK A x)(-= (7-4) 若系统是渐近稳定的,矩阵BK A -所有特征值均具有负实部,根据线性时不变系统的Lyapunov 稳定性定理,(7-4)一定存在一个正定对称矩阵P 的二次型Lyapunov 函数Px x x T =)V (,利用系统的稳定性可得⎰⎰∞∞⋅-⎥⎦⎤⎢⎣⎡++=00d )(V d d d )(V d d t x t t x t Ru u Qx x J TT []{}∞==∞--+-++=⎰t t T T T T t x t x P BK A BK A P x Ru u Qx x 00)]([V d )()([]000d Px x t x P B K PBK P A PA RK K Q x TT T T T T +--+++=⎰∞对上式“下划线”部分“+”“-”P B PBR T 1-进行配平方得到P B PBR P B PBR P B K PBK RK K T T T T T 11---+-- P B PBR P B R K R P B R K T T T T 111)()(------=可得[]0001d Px x t x P B PBR P A PA Q x J TT T T +-++=⎰∞- ⎰∞----+011d )()(t x P B R K R P B R K x T T T T (7-5)求解最优控制问题,就是选取一个适当的增益矩阵K ,是性能指标J 最小化。
线性二次型最优控制..
一、主动控制简介概念:结构主动控制需要实时测量结构反应或环境干扰,采用现代控制理论的主动控制算法在精确的结构模型基础上运算和决策最优控制力,最后作动器在很大的外部能量输入下实现最优控制力。
特点:主动控制需要实时测量结构反应或环境干扰,是一种需要额外能量的控制技术,它与被动控制的根本区别是有无额外能量的消耗。
优缺点:主动控制具有提高建筑物的抵抗不确定性地面运动,减少输入的干扰力,以及在地震时候自动地调整结构动力特征等能力,特别是在处理结构的风振反应具有良好的控制效果,与被动控制相比,主动控制具有更好的控制效果。
但是,主动控制实际应用价格昂贵,在实际应用过程中也会存与其它控制理论相同的问题,控制技术复杂、造价昂贵、维护要求高。
组成:传感器、控制器、作动器工作方式:开环、闭环、开闭环。
二、简单回顾主动控制的应用与MATLAB应用1.主动变刚度A VS控制装置工作原理:首先将结构的反应反馈至控制器,控制器按照事先设定好的控制算法并结合结构的响应,判断装置的刚度状态,然后将控制信号发送至电液伺服阀以操纵其开关状态,实现不同的变刚度状态。
锁定状态(ON):电液伺服阀阀门关闭,双出杆活塞与液压缸之间没有相对位移,斜撑的相对变形与结构层变形相同,此时结构附加一个刚度;打开状态(OFF):电液伺服阀阀门打开,双出杆活塞与液压缸之间有相对位移,液压缸的压力差使得液体发生流动,此过程中产生粘滞阻尼,此时结构附加一个阻尼。
示意图如下:2. 主动变阻尼A VD控制装置工作原理:变孔径阻尼器以传统的液压流体阻尼器为基础,利用控制阀的开孔率调整粘性油对活塞的运动阻力,并将这种阻力通过活塞传递给结构,从而实现为结构提供阻尼的目的。
关闭状态(ON):开孔率一定,液体的流动速度受限,流动速度越小,产生的粘滞阻尼力越大,开孔率最小时,提供最大阻尼力,此时成为ON状态;打开状态(OFF):控制阀完全打开,由于液体的粘滞性可提供最小阻尼力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、主动控制简介概念:结构主动控制需要实时测量结构反应或环境干扰,采用现代控制理论的主动控制算法在精确的结构模型基础上运算和决策最优控制力,最后作动器在很大的外部能量输入下实现最优控制力。
特点:主动控制需要实时测量结构反应或环境干扰,是一种需要额外能量的控制技术,它与被动控制的根本区别是有无额外能量的消耗。
优缺点:主动控制具有提高建筑物的抵抗不确定性地面运动,减少输入的干扰力,以及在地震时候自动地调整结构动力特征等能力,特别是在处理结构的风振反应具有良好的控制效果,与被动控制相比,主动控制具有更好的控制效果。
但是,主动控制实际应用价格昂贵,在实际应用过程中也会存与其它控制理论相同的问题,控制技术复杂、造价昂贵、维护要求高。
组成:传感器、控制器、作动器工作方式:开环、闭环、开闭环。
二、简单回顾主动控制的应用与MATLAB应用1.主动变刚度A VS控制装置工作原理:首先将结构的反应反馈至控制器,控制器按照事先设定好的控制算法并结合结构的响应,判断装置的刚度状态,然后将控制信号发送至电液伺服阀以操纵其开关状态,实现不同的变刚度状态。
锁定状态(ON):电液伺服阀阀门关闭,双出杆活塞与液压缸之间没有相对位移,斜撑的相对变形与结构层变形相同,此时结构附加一个刚度;打开状态(OFF):电液伺服阀阀门打开,双出杆活塞与液压缸之间有相对位移,液压缸的压力差使得液体发生流动,此过程中产生粘滞阻尼,此时结构附加一个阻尼。
示意图如下:2. 主动变阻尼A VD控制装置工作原理:变孔径阻尼器以传统的液压流体阻尼器为基础,利用控制阀的开孔率调整粘性油对活塞的运动阻力,并将这种阻力通过活塞传递给结构,从而实现为结构提供阻尼的目的。
关闭状态(ON):开孔率一定,液体的流动速度受限,流动速度越小,产生的粘滞阻尼力越大,开孔率最小时,提供最大阻尼力,此时成为ON状态;打开状态(OFF):控制阀完全打开,由于液体的粘滞性可提供最小阻尼力。
示意图如下:3.振动实例 已知多自由度有阻尼线性结构的参数:276200027600002300M kg ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,54.406 1.92101.921 3.443 1.52210/0 1.522 1.522K N m -⎡⎤⎢⎥=--⨯⎢⎥⎢⎥-⎣⎦,阻尼矩阵采用瑞利阻尼C M K αβ=+,,αβ根据前两阶自振频率及阻尼比确定,阻尼比取0.05,该多自由度结构(参数同上)所受地震波数据见dzb.xls 文件,文件第一列为时间,单位s ,文件第2列为加速度,单位m/s 2。
3.1变刚度对比了刚度分别为K 、10*K 以及0.1*K 时M1的响应时程曲线以及最大位移。
MATLAB 程序如下:clearclcM=diag([2762 2760 2300]); %质量矩阵K=100000*[4.406 -1.921 0;-1.921 3.443 -1.522;0 -1.522 1.522];kk={K,10.*K,0.1.*K} %细胞矩阵-变刚度 W=[4.1041;10.4906;14.9514]; %各阶频率zuni=0.05area=2*W(1)*W(2)*zuni/(W(1)+W(2));byta=2*zuni/(W(1)+W(2));C=area*M+byta*K; %阻尼矩阵num=xlsread('dzb.xls',1,'B1:B1501');P=M*ones(3,1)*num'; %读入外荷载*********中心差分法**********h=0.02; %步长para=[1/h^2,1/(2*h),2/h^2,h^2/2]; %参数向量Kx=para(1)*M+C*para(2); %x(i+1)前系数x(:,1)=zeros(3,1); %初位移v(:,1)=zeros(3,1); %初速度a(:,1)=-0.00082*num(1)*ones(3,1); %初加速度for j=1:3for i=1:1:1501%差分迭代第一步 if i<2;x0=x(:,1)-h*v(:,1)+h^2/2*a(:,1);Px(:,i)=P(:,i)-(kk{j}-para(3)*M)*x(:,i)-(para(1)*M-para(2)*C)*x0;x(:,i+1)=inv(Kx)*Px(:,i);a(:,i+1)=para(1)*(x0-2*x(:,i)+x(:,i+1)); %加速度响应v(:,1)=para(2)*(x(:,i+1)-x0); %速度响应else %差分迭代Px(:,i)=P(:,i)-(kk{j}-para(3)*M)*x(:,i)-(para(1)*M-para(2)*C)*x(:,i-1);x(:,i+1)=inv(Kx)*Px(:,i);a(:,i+1)=para(1)*(x(:,i-1)-2*x(:,i)+x(:,i+1)); %加速度响应v(:,i)=para(2)*(x(:,i+1)-x(:,i-1)); %速度响应endend*************中心差分法*************X=x(:,1:1501);Y=max(abs(X),[],2);Z(j)=max(Y);save X %保存位移相应subplot(3,1,j) %画图plot(X(1,:))xlabel('时间t/0.02s')ylabel('位移X1/m');end运行结果如下:最大位移分别为:0.0085m0.0045m0.0100m3.2变阻尼依旧使用上述系统,对比无阻尼,阻尼为C和0.5C三种情况下M1的响应时程曲线和最大位移。
MATLAB程序:clearclcM=diag([2762 2760 2300]); %质量矩阵K=100000*[4.406 -1.921 0;-1.921 3.443 -1.522;0 -1.522 1.522]; %刚度矩阵W=[4.1041;10.4906;14.9514]; %各阶频率zuni=0.05area=2*W(1)*W(2)*zuni/(W(1)+W(2));byta=2*zuni/(W(1)+W(2));C=area*M+byta*K;cc={0*C,C,0.5*C}; %变阻尼num=xlsread('dzb.xls',1,'B1:B1501');P=M*ones(3,1)*num'; %读入外荷载**************中心差分法************h=0.02; %步长para=[1/h^2,1/(2*h),2/h^2,h^2/2]; %参数向量Kx=para(1)*M+C*para(2); %x(i+1)前系数x(:,1)=zeros(3,1); %初位移v(:,1)=zeros(3,1); %初速度a(:,1)=-0.00082*num(1)*ones(3,1); %初加速度for j=1:3for i=1:1:1501 %差分迭代第一步if i<2;x0=x(:,1)-h*v(:,1)+h^2/2*a(:,1);Px(:,i)=P(:,i)-(K-para(3)*M)*x(:,i)-(para(1)*M-para(2)*cc{j})*x0;x(:,i+1)=inv(Kx)*Px(:,i);a(:,i+1)=para(1)*(x0-2*x(:,i)+x(:,i+1)); %加速度响应v(:,1)=para(2)*(x(:,i+1)-x0); %速度响应else %差分迭代Px(:,i)=P(:,i)-(K-para(3)*M)*x(:,i)-(para(1)*M-para(2)*cc{j})*x(:,i-1);x(:,i+1)=inv(Kx)*Px(:,i);a(:,i+1)=para(1)*(x(:,i-1)-2*x(:,i)+x(:,i+1)); %加速度响应v(:,i)=para(2)*(x(:,i+1)-x(:,i-1)); %速度响应endend**************中心差分法******************X=x(:,1:1501);Y=max(abs(X),[],2);Z(j)=max(Y);save X %保存位移相应subplot(3,1,j) %画图plot(X(1,:))xlabel('时间t/0.02s')ylabel('位移X1/m');end运行结果是:最大位移分别为:0.0115m0.0085m0.0068m三、主动控制算法简介主动控制算法是主动控制的基础,它们是根据控制理论建立的。
好的控制理论算法必须在线计算时间短、稳定性及可靠性好、抗干扰能力强。
结构控制算法分为经典控制理论与现代控制理论两类。
1.经典控制理论:经典控制理论的特点是以输入输出特性(主要是传递函数)为系统数学模型,采用频率响应法和根轨迹法这些图解分析方法,分析系统性能和设计控制装置。
经典控制理论的数学基础是拉普拉斯变换,占主导地位的分析和综合方法是频域方法。
经典控制理论包括线性控制论、采样控制理论、非线性控制理论三个部分。
2.现代控制理论:现代算法计算主要用时间域,采用状态空间法(State Space Method) 来描述系统的动力性态,其数学工具为线性代数、矩阵理论和变分法。
其主要包括下面一些算法:(1)经典线性最优控制法(2)瞬时最优控制法(3)极点配置法(4)独立模态空间控制法(5)随机最优控制法(6)界限状态控制法(7)模糊控制法(8)预测实时控制法(9)H∞优化控制(10)变结构控制3.简要介绍各种算法最优控制算法通俗来讲:即对一个受控的动力学系统或运动过程,从一类允许的控制方案中找出一个最优的控制方案,使系统的运动在由某个初始状态转移到指定的目标状态的同时,其性能指标值为最优。
在工程上,最优控制算法以现代控制理论中的状态空间理论为基础,采用极值原理,使用最优滤波或者动态规划等最优化方法,进一步求解结构振动最优控制输入,在振动主动控制领域应用比较普遍。
当被控对象结构参数模型可以被精确建模,并且激励和测量信号比较确定时,采用最优算法设计控制器可以较容易地取得控制效果。
最优控制法根据具体算法又可分为经典线性最优控制法、瞬时最优控制法、随机最优控制法等等,下面简单介绍:A经典线性最优控制法该算法基于现代控制理论,以线性二次型性能指标为目标函数来确定控制力与状态向量之间的关系式。
目标函数中用权矩阵来协调经济性与安全性之间的关系,需求解Riccati方程。
由于该算法忽略了荷载项,严格说来,由它得到的控制不是最优控制;但数值分析和有限的试验证明,这一控制算法虽然不是最优的,但是可行的和有效的。