质谱相关知识

合集下载

质谱分析法知识汇总(全面)

质谱分析法知识汇总(全面)

质谱分析法知识汇总(全面)1.质谱法定义:是将待测物质置于离子源中电离形成带电离子,让离子加速并通过磁场或电场后,离子将按质荷比(m/z)大小分离,形成质谱图。

依据质谱线的位置和质谱线的相对强度建立的分析方法称为质谱法。

2.质谱的作用:准确测定物质的分子量;质谱法是唯一可以确定分子式的方法;根据碎片特征进行化合物的结构分析。

3.质谱分析的基本原理:质谱法是利用电磁学原理,将待测样品分子解离成具有不同质量的离子,然后按其质荷比(m/z)的大小依次排列收集成质谱。

根据质谱中的分子离子峰(M+)可以获得样品分子的相对分子质量信息;根据各离子峰(分子离子峰、同位素离子峰、碎片离子峰、亚稳离子峰、重排离子峰等)及其相对强度和氮数规则,可以确定化合物的分子式;根据各离子峰及物质化学键的断裂规律可以进行定性分析和结构分析;根据组分质谱峰的峰高与浓度间的线性关系可以进行定量分析。

4.质谱分析的过程:(1)进样,化合物通过汽化引入电离室;(2)离子化,在电离室,组分分子被一束加速电子碰撞,撞击使分子电离形成正离子;(3)离子也可因撞击强烈而形成碎片离子;(4)荷正电离子被加速电压V加速,产生一定的速度v,与质量、电荷及加速电压有关;(5)加速正离子进入一个强度为B的磁场(质量分析器),发生偏转。

5.质谱仪的组成:真空系统、进样系统、离子源或电离室、质量分析器、离子检测器。

6.真空系统作用:是减少离子碰撞损失,若真空度低:大量氧会烧坏离子源的灯丝;会使本底增高,干扰质谱图;引起额外的离子-分子反应,改变裂解模型,使质谱解释复杂化;干扰离子源中电子束的正常调节;用作加速离子的几千伏高压会引起放电等。

7.进样系统目的:高效重复地将样品引入到离子源中并且不能造成真空度的降低;间歇式进样系统——气体及低沸点、易挥发的液体;直接探针进样——高沸点的液体、固体;色谱进样系统——有机化合物。

8.离子源或电离室:作用是使试样中的原子、分子电离成离子,其性能影响质谱仪的灵敏度和分辨率本领。

质谱技术名词解释

质谱技术名词解释

质谱技术名词解释一、质谱技术概述1、质谱技术简介质谱技术是一种通用的分析方法,它可以将化学物质分析成离子,并将其分离、检测和鉴定。

质谱技术可以应用于许多领域,包括化学、生物化学、环境科学、药物研发和食品安全等。

2、质谱仪的基本原理质谱仪是一种科学研究和应用的仪器,它主要由离子源、质量分析器和检测器等三部分组成。

其中,离子源是将分析样品转换成离子的地方,质量分析器是用来分离不同质量的离子的工具,检测器是用来检测和记录分离出来的离子信号的装置。

3、质谱技术的应用范围质谱技术在化学、环境、生命科学等领域都有广泛的应用,例如在药物开发领域中,质谱技术可以通过对化合物进行结构分析、药物代谢和药代动力学等方面的研究,为药物的设计、开发和临床应用提供重要的支持。

在环境科学领域中,质谱技术可用于污染物分析、大气科学、生态学和环境监测等方面的研究。

二、质谱技术基础知识1、质谱分析质谱分析是一种分析物质的方法,它可以将化学物质分离成离子,并将其通过质量分析器进行分离和检测。

质谱分析也可以用于分析分子结构和质量,采用的技术包括质谱成像、高分辨质谱和泵浦探针质谱等。

2、质谱图质谱图反映了物质的结构、组成和化学性质等,通常由两部分组成:质量-电荷比(m/z)和相对强度。

质量-电荷比指离子的质量与电荷之比,是质谱分析中的主要参数,而相对强度则是指相应m/z值上的离子信号相对于总离子信号的百分比。

3、质谱离子的分类根据质谱离子的性质和形成过程,质谱离子可以分为正离子、负离子和中性分子离子等。

其中,正离子通常是通过电离源直接产生的,负离子则是通过化学反应或电子干扰等方式产生的,中性分子离子则通常是通过高温或化学反应等方式形成的。

4、高分辨质谱高分辨质谱是一种可以提高质谱分辨率和灵敏度的质谱技术。

它使用的质量分析器具有更高的分辨率和能量分辨率,能够检测到更小的质量差异和更低的离子信号。

高分辨质谱广泛应用于许多领域,包括药物研发、环境科学和生物医学研究等。

质谱知识总结

质谱知识总结

第四章:质谱法第一节经验1)在正离子模式下,样品主要以[M+H]+、[M+Na]+、[M+K]+准分子离子被检测;在负离子模式下,样品则大多以[M-H]-、[M+Cl]-准分子离子被检测。

2)正离子模式下,样品还会出现M—1(M-H),M—15(M-CH3), M—18(M-H2O),M—20(M—HF), M-31(M—OCH3)等的峰.分子离子峰应具有合理的质量丢失。

也即在比分子离子质量差在4—13,21—26,37-,50-53,65,66 是不可能的也是不合理的,否则,所判断的质量数最大的峰就不是分子离子峰,。

因为一个有机化合物分子不可能失去4~13个氢而不断键。

如果断键,失去的最小碎片应为CH3,它的质量是15个质量单位.3)分子离子峰应为奇电子离子,它的质量数应符合氮规则:在有机化合物中,凡含有偶数氮原子或不含氮原子的,相对分子质量一定为偶数,反之,凡今吸奇数氮原子的,相对分子质量一定是奇数,这就是氮规则。

运用氮规则将有利于分子离子峰的判断和分子式的推定,经元素分析确定某化合物的元素组成后,若最高质量的离子的质量与氮规则不符,则该离子一定不是分子离子。

如果某离子峰完全符合上述3项判断原则,那么这个离子峰可能是分子离子峰;如果3项原则中有一项不符合,这个离子峰就肯定不是分子离子峰.应该特别注意的是,有些化合物容易出现M-1峰或M+1峰。

基峰研究高质量端离子峰, 确定化合物中的取代基M-15(CH3); M-16(O, NH2M-17(OH, NH3); M-18(H2O);M-19(F); M-26(C2H2);M-27(HCN, C2H3); M-28(CO, C2HM-29(CHO, C2H5); M-30(NO);M-31(CH2OH, OCH3); M-32(S, CHM-35(Cl); M-42(CH2CO, CH M-43(CH3CO, C3H7); M-44(CO2, CS15 (。

质谱仪相关知识点总结

质谱仪相关知识点总结

质谱仪相关知识点总结质谱仪的工作原理质谱仪的工作原理主要包括离子化、质谱分析和数据处理三个步骤。

1. 离子化在质谱仪中,试样分子首先被转化为离子。

这通常通过电子轰击(Electron Impact,EI)或者电喷雾(Electrospray Ionization,ESI)等离子化技术来实现。

在EI离子化中,试样分子经过高能电子撞击后失去一个电子,形成分子离子。

在ESI离子化中,试样分子被溶解在溶剂中,通过喷雾器形成微小的液滴,然后在电场作用下产生离子。

2. 质谱分析离子化后的离子经过加速、分离和检测。

首先,离子被加速到一定能量,然后通过磁场或电场进行分离,根据其质荷比的不同使不同质量的离子沿不同的轨迹飞行。

最后,检测器探测到离子并将其转化为电信号,形成质谱图。

3. 数据处理得到的质谱图可以通过计算机进行数据处理和分析,包括离子峰的识别、质谱图的解释等。

通过对质谱图的分析,可以确定试样分子的分子量、组成和结构等信息。

质谱仪的应用质谱仪广泛应用于化学、生物、医学、环境等领域的研究和应用。

1. 化学领域在化学领域,质谱仪被用于分析化合物的组成和结构。

通过对化合物的质谱图进行分析,可以确定化合物的分子量、分子结构、官能团等信息,有助于化合物的鉴定和结构证明。

2. 生物医学领域在生物医学领域,质谱仪被用于生物大分子的分析,比如蛋白质和核酸。

通过质谱仪可以得到生物大分子的质谱图,从而确定其氨基酸序列、修饰方式等信息,有助于理解生物大分子的结构和功能。

3. 环境领域在环境领域,质谱仪被用于分析环境样品中的有机污染物。

通过质谱仪可以对环境样品中的污染物进行定性和定量分析,对环境污染的来源和危害进行评估。

质谱仪的类型根据离子化技术和质谱分析技术的不同,质谱仪可以分为多种类型,包括电子轰击质谱仪(Electron Impact Mass Spectrometer),电喷雾质谱仪(Electrospray Mass Spectrometer),气相色谱质谱联用仪(Gas Chromatography Mass Spectrometer),液相色谱质谱联用仪(Liquid Chromatography Mass Spectrometer)等。

质谱基础知识汇总

质谱基础知识汇总

质谱基础知识汇总(精华版)质谱,即质量的谱图,物质的分子在高真空下,经物理作用或化学反应等途径形成带电粒子,某些带电粒子可进一步断裂,形成离子,质谱的离子可以质谱的核心内容,今天就和大家聊一聊质谱使用者都应该知道的离子。

质谱,物质的分子在高真空下,经物理作用或化学反应等途径形成带电粒子, 某些带电粒子可进一步断裂,形成离子,每一离子的质量与所带电荷的比称为质荷比(m/z,曾用m/e),不同质荷比的离子经质量分离器一一分离后,由检测器测定每一离子的质荷比及相对强度,由此得出的谱图称为质谱。

不同离子的概念1、分子离子分子被电子束轰击失去一个电子形成的离子称为分子离子。

分子离子用 M+表示。

分子离子是一个游离基离子。

在质谱图中与分子离子相对应的峰为分子离子峰。

分子离子峰的质荷比就是化合物的相对分子质量, 所以,用质谱法可测分子量。

2、同位素离子含有同位素的离子称为同位素离子。

在质谱图上,与同位素离子相对应的峰称为同位素离子峰。

3、碎片离子分子离子在电离室中进一步发生键断裂生成的离子称为碎片离子。

4、重排离子经重排裂解产生的离子称为重排离子。

其结构并非原来分子的结构单元。

在重排反应中,化学键的断裂和生成同时发生, 并丢失中性分子或碎片。

5、奇电子离子与偶电子离子具有未配对电子的离子为奇电子离子。

这样的离子同时也是自由基,具有较高的反应活性。

无未配对电子的离子为偶电子离子。

6、多电荷离子分子中带有不止一个电荷的离子称为多电荷离子。

当离子带有多电荷离子时,其质核比下降,因此可以利用常规的四极质量分析器来检测大分子量化合物。

7、亚稳离子从离子源出口到检测器之间产生的离子。

即在飞行过程中发生裂解的母离子。

由于母离子中途已经裂解生成某种离子和中性碎片,记录器中只能记录这种离子,也称这种离子为亚稳离子,由它形成的质谱峰为亚稳峰。

8、准分子离子比分子量多或少 1 质量单位的离子称为准分子离子,如:(M+H)+,(M-H)+。

高中质谱法知识点总结

高中质谱法知识点总结

高中质谱法知识点总结一、基本概念1. 质谱法是一种物质分析方法,通过质谱仪对物质进行分析,得到物质分子的质谱图。

2. 质谱仪根据物质的质谱图可确定物质的分子式,相对分子质量和分子结构。

二、质谱法的原理1. 质谱法的原理是利用物质分子的质谱图,通过质谱仪对物质进行解析和鉴定。

2. 质谱仪利用在电场或磁场中偏转物质分子的性质,通过将分子的质量和电荷比进行测量,得出物质的质谱图。

三、质谱法的分类1. 按照离子发生的方式和离子形成的方式,可以将质谱法分为离子化方法和非离子化方法。

2. 离子化方法包括电子轰击质谱法,电喷雾质谱法,化学电离质谱法等;非离子化方法包括基质辅助激光解吸/离子化质谱法,激光解离/电离质谱法等。

四、质谱法的步骤1. 样品的预处理:样品需要经过适当的预处理,如提取、富集、净化等,以保证分析的准确性。

2. 样品的离子化:样品通过不同的离子化方式,将其转化为带电的离子。

3. 离子传输和分析:带电离子被送入质谱仪,通过电场或磁场进行分析,并得到质谱图。

4. 数据的解析和鉴定:根据得到的质谱图,对样品的分子式、相对分子质量和分子结构进行分析和鉴定。

五、质谱法的应用1. 医药领域:用于药物成分的分析和结构鉴定。

2. 环境领域:用于污染物的检测和分析。

3. 食品领域:用于食品成分的分析和检测。

4. 农业领域:用于农药和农产品的分析和检测。

六、质谱法的优势1. 高分辨率:质谱法可以提供非常高的分辨率,能够鉴定物质的分子结构和组成。

2. 灵敏度高:质谱法可以检测到非常微小的样品量,对于微量物质的分析非常敏感。

3. 多元测定:质谱法可以同时检测多种物质的成分和结构,具有多元测定的特点。

七、质谱法的发展趋势1. 高通量:随着自动化和高通量分析技术的发展,质谱法能够进行更大规模的样品分析。

2. 多维联用:将质谱法与色谱法等其他分析技术进行联用,能够提高分析的准确度和可靠性。

3. 生物质谱学:生物质谱学的发展将为药物研发和生物医学等领域提供更多的可能性。

大一无机化学知识点质谱

大一无机化学知识点质谱

大一无机化学知识点质谱大一无机化学知识点:质谱质谱(Mass Spectrometry, MS)是一种分析技术,可用于确定化合物的分子式、分子量、结构和分子的片段组成等信息,被广泛应用于有机化学、生化学、药物研发等领域。

1. 质谱的基本原理质谱的基本原理是将待测样品分子在真空环境中通过化学或物理方法转化为带电离子,然后在电场和磁场的作用下,根据离子的质量/电荷比对其进行分离和检测。

质谱仪通常由离子源、质量分析器和检测器组成。

2. 离子来源离子源是将待测样品分子转化为带电离子的装置。

常见的离子来源包括电离(例如电子轰击电离、化学电离、电子喷雾电离等)、化学反应(如化学矩阵辅助激光解吸电离,MALDI)以及激光脱附电离等。

3. 质量分析器质量分析器的作用是将带电离子按其质量-电荷比(m/z)进行分离,并将不同质量的离子引导到不同检测器。

常见的质量分析器包括磁质量分析器(Magnetic Sector Analyzer)、四极杆质量分析器(Quadrupole Mass Analyzer)、飞行时间质量分析器(Time-of-Flight Mass Analyzer)和离子阱质量分析器(Ion Trap Mass Analyzer)。

4. 检测器检测器根据不同的离子信号进行检测和测量。

常见的检测器包括离子多道收集器(Ion Multi-Channel Detector,IMCD)、离子计数器(Ion Counter)、荧光检测器(Fluorescence Detector)和光电倍增管(Photomultiplier Tube)等。

5. 质谱的应用质谱在化学和生化领域中应用广泛,可用于分析不同样品的分子式、分子结构、分子量以及各种离子片段等信息。

在有机化学中,质谱可用于鉴定有机化合物的结构,如通过质谱图谱确定分子中的官能团和碳骨架;在生物化学中,质谱技术可用于研究蛋白质、核酸和多肽等生物大分子的结构和功能。

质谱介绍专业知识

质谱介绍专业知识

①含Cl原子 a. 含一种Cl原子 n=1 所以(a+b)1=3+1
M: M+2=3:1
a:b=100:32.5=3:1
b.含两个Cl原子 n=2 所以 (a+b)2=(3+1 )2=9+6+1
M:M+2:M+4=9:6:1
②含Br原子 a.含一种Br原子 n=1 所以(a+b)1=1+1 M:M+2=1:1
§5-2有机质谱中旳裂解反应
一、电荷表达措施: ①电荷一般在π电子或者杂原子上分子离子以“ ”表达 奇电子离子(OE),如CH3OH (带未成对电子)
以“+”表达偶电子离子(EE),如CH3OH+(电子完全成对 ②电荷不明用[ ] 或[ ]+
③构造复杂旳化合物用┓ 或┓+
注意: 偶电子规律
偶电子离子裂解,一般只能生成偶电子离子。
因为 63.6 932 能够拟定m/z136和m/z93为母子关系
136
特点:①亚稳离子相应于亚稳离子峰,峰形弱且宽,呈小包状
②亚稳离子质荷比m*/z一般不为整数
③ 亚稳离子峰一般要跨2~5个质量单位
4. 重排离子
重排离子是由原子迁移产生重排反应而形成旳离子。重排反应 中,发生变化旳化学键至少有两个或更多。重排反应可造成原 化合物碳架旳变化,并产生原化合物中并不存在旳构造单元离 子。
异裂:
双电子转移,σ键断裂后, 两个电子归一种碎片保存
半异裂: R R R + ' R+ '
离子化σ键断裂
简朴开裂从裂解机理可分为下列几种:
(1) -断裂 由自由基中心引起旳断裂反应,均裂,动力来自于自由基

质谱原理学习(通俗版)精选全文

质谱原理学习(通俗版)精选全文

8-2 质谱仪器原理
质谱过程
高速电子 撞击 气态分子 得到 阳离子
顺序谱图
按质荷比m/z
导 入
质量分析器
峰位置
峰强度
定性分析 结构分析
定量分析
8-2 质谱仪器原理
仪器构造
真空系统
进样 系统
离子源
质量 分析器
检测器
1.间歇式进样 2.直接进样 3.气相色谱
1.电子轰击 2.化学电离 3.场致电离 4.激光
➢分子离子:样品分子失去一个电子电离所产生的离子。
8-2 质谱仪器原理
2、离子源(电离室)
场致电离源 (Field Ionization; FI)
电压:7-10 kv;d < 1 mm; 强电场将分子中拉出一个电子; 分子离子峰强;碎片离子峰少; 不适合化合物结构鉴定;
场解析电离源(Field Desorption Ionization; FD)
四极滤质器 (Quadrupole Mass Filter, QMF)
➢ 只有合适质荷比的离子(共振离子)才能通过电极间隙 而进入检测器;
➢ 采用电压扫描或频率扫描,就可检测出不同质荷比的离子。
✓ 电压扫描:保持直流电压和射 频电压的比值及射频频率不变, 改变直流和射频电压的大小。
✓ 频率扫描:保持电压不变改变 射频电压的频率。
8-2 质谱仪器原理
2、离子源(电离室)
离子源是质谱仪的心脏,作用主要是将试样中的原子、 分子电离成离子,并使离子加速、聚焦为离子束,离子束 通过狭缝进入质量分析器。 其性能影响质谱仪的灵敏度和分辨率。
➢ 硬电离方法:给样品较大能量的电离方法, 适用于难电离的稳定物质。
➢ 软电离方法:给样品较小能量的电离方法, 适用于易破裂或易电离的样品。

质谱学习知识

质谱学习知识

1.质谱分析法先将中性分子离子化,再顺次分离和记录各种离子的质荷比和丰度先将中性分子离子化,再顺次分离和记录各种离子的质荷比和丰度( 强度),从而实现分析目的的一种分析方法。

2.质谱不同质荷比的离子经质量分析器分离,而后被检测并记录下来的谱图叫作质谱图。

简称质谱。

质谱图的横坐标是质荷比(m/z) ,纵坐标是离子强度;质谱法(Mass Spectrometry) 即质谱分析法,一般亦简称为质谱;质谱计(Mass Spectrometer): 采用顺次记录各种质荷比离子的强度的方式测量化合物质谱的仪器;质谱仪(Mass Spectrography) :采用干板记录方式,同时记录下所有离子的质谱仪器。

氯霉素的质谱图3.质谱基础知识常用的质量单位Da=Dalton(道尔顿)质量单位,等于一个碳原子(12C)质量的十二分之一,约为1.66×10-24克;一克约为6×1023道尔顿。

amu=atomic mass unit ,原子质量单位1amu=1Da原子结构及其质量原子量* 国际协议赋予其确切的质量为12原子量(C) = 0.9889(12.0000) + 0.0111(13.0033)= 12.011一种元素的所有同位素的重量平均值叫作原子量同位素及同位素丰度同位素即具有相同的原子序数而又具有不同的质量数的原子叫作同位素。

同位素丰度即自然界中某同位素原子所占的百分数叫做该同位素的天然丰度。

同位素表示法质量数= 质子+ 中子具有相同的元素符号,在元素符号的左上角表明其质量数4.怎样计算质量数、分子量名义质量数采用元素质量数的整数进行计算,例如:C=12,H=1,O=16单同位素质量数或准确质量数用丰度最大的同位素准确质量数计算例如:12C=12,1H=1.0078,16O=15.9948平均质量数或化学质量数考虑到所有天然同位素丰度的该元素原子量来计算例如:C=12.001,H=1.00794,O=15.9994四极杆质谱获得的单电荷离子的m/z值,是单同位素质数,建议质谱峰标注到小数点后1位。

质谱知识总结(总结文件)

质谱知识总结(总结文件)

第四章:质谱法第一节经验)在正离子模式下,样品主要以[]、[]、[]准分子离子被检测。

在负离子模式下,样品则大多以[-]-、[]-准分子离子被检测。

)正离子模式下,样品还会出现(), (), (), (), ()等的峰。

分子离子峰应具有合理的质量丢失.也即在比分子离子质量差在,,,,,是不可能的也是不合理的,否则,所判断的质量数最大的峰就不是分子离子峰,.因为一个有机化合物分子不可能失去~个氢而不断键.如果断键,失去的最小碎片应为,它的质量是个质量单位.)分子离子峰应为奇电子离子,它的质量数应符合氮规则:在有机化合物中,凡含有偶数氮原子或不含氮原子的,相对分子质量一定为偶数,反之,凡今吸奇数氮原子的,相对分子质量一定是奇数,这就是氮规则。

运用氮规则将有利于分子离子峰的判断和分子式的推定,经元素分析确定某化合物的元素组成后,若最高质量的离子的质量与氮规则不符,则该离子一定不是分子离子。

如果某离子峰完全符合上述项判断原则,那么这个离子峰可能是分子离子峰;如果项原则中有一项不符合,这个离子峰就肯定不是分子离子峰.应该特别注意的是,有些化合物容易出现峰或峰。

基峰研究高质量端离子峰, 确定化合物中的取代基M-15(CH3); M-16(O, NH2M-17(OH, NH3); M-18(H2O);M-19(F); M-26(C2H2);M-27(HCN, C2H3); M-28(CO, C2HM-29(CHO, C2H5); M-30(NO);M-31(CH2OH, OCH3); M-32(S, CHM-35(Cl); M-42(CH2CO, CHM-43(CH3CO, C3H7); M-44(CO2, CS()()第二节: 基本原理基本原理质谱是唯一可以确定分子式的方法。

而分子式对推测结构是至关重要的。

质谱法的灵敏度远远超过其它方法,测试样品的用量在不断降低,而且其分析速度快,还可同具有分离功能的色谱联用。

第四章质谱

第四章质谱

扫描模式
扫描模式是质谱分析中重要的参数,它决定了仪器如何收集和处理离子信息。
全扫描模式
1
检测所有离子,获得完整谱图。
选择离子监测模式 2
只检测特定离子,提高灵敏度。
多反应监测模式 3
检测多个离子对,增强定量分析能力。
分辨率的定义及影响因素
分辨率定义
分辨率指质谱仪区分相邻两个质量数离子的能力,常用峰的半峰宽表示。
生物医学研究
质谱可以用于蛋白质组学,分 析蛋白质的结构和功能,研究 蛋白质的相互作用和修饰,了 解疾病发生机制和药物作用机 理。
食品安全
质谱可以用于食品安全检测, 如识别食品中农药残留、兽药 残留、重金属、添加剂等,保 障食品安全和质量。
环境监测
质谱可以用于环境监测,如分 析大气、水体、土壤中的污染 物,了解污染程度和来源,为 环境保护提供科学依据。
碎片离子可用于确认目标物的结构,为未知物结构的鉴定提供重 要信息。
碎片模式
碎片离子可以提供关于母离子如何断裂的信息,例如,可以判断 断裂的类型和位置。 不同化合物具有不同的碎片模式,可以用于区分不同的化合物。
定性分析的步骤
样品制备 1
对样品进行预处理,使之适合质谱分析。
质谱分析 2
获取样品的质谱图,并进行数据处理。
外标法
使用一系列已知浓度的标准物质 来建立校正曲线,然后根据样品 信号强度在校正曲线上查得其浓 度。
标准加入法
将已知量的标准物质加入到样品中,通过比较加入前后样品信号强度的 变化来定量分析。
内标法的应用
精确度提高
内标法可以有效地消除样品处理过程中的误差,提高定量分析的精确度。
校正曲线
通过内标物,可以建立标准曲线,用于测定未知样品中目标化合物的浓度。

质谱知识总结

质谱知识总结

第四章:质谱法第一节经验1)在正离子模式下,样品主要以[M+H]+、[M+Na]+、[M+K]+准分子离子被检测;在负离子模式下,样品则大多以[M-H]-、[M+Cl]-准分子离子被检测。

2)正离子模式下,样品还会出现M-1(M-H), M-15(M-CH3), M-18(M-H2O), M-20(M-HF), M-31(M-OCH3)等的峰。

分子离子峰应具有合理的质量丢失.也即在比分子离子质量差在4-13,21-26,37-,50-53,65,66 是不可能的也是不合理的,否则,所判断的质量数最大的峰就不是分子离子峰,.因为一个有机化合物分子不可能失去4~13个氢而不断键.如果断键,失去的最小碎片应为CH3,它的质量是15个质量单位.3)分子离子峰应为奇电子离子,它的质量数应符合氮规则:在有机化合物中,凡含有偶数氮原子或不含氮原子的,相对分子质量一定为偶数,反之,凡今吸奇数氮原子的,相对分子质量一定是奇数,这就是氮规则。

运用氮规则将有利于分子离子峰的判断和分子式的推定,经元素分析确定某化合物的元素组成后,若最高质量的离子的质量与氮规则不符,则该离子一定不是分子离子。

如果某离子峰完全符合上述3项判断原则,那么这个离子峰可能是分子离子峰;如果3项原则中有一项不符合,这个离子峰就肯定不是分子离子峰.应该特别注意的是,有些化合物容易出现M-1峰或M+1峰。

基峰研究高质量端离子峰, 确定化合物中的取代基M-15(CH3); M-16(O, NH2M-17(OH, NH3); M-18(H2O);M-19(F); M-26(C2H2);M-27(HCN, C2H3); M-28(CO, C2HM-29(CHO, C2H5); M-30(NO);M-31(CH2OH, OCH3); M-32(S, CHM-35(Cl); M-42(CH2CO, CHM-43(CH3CO, C3H7); M-44(CO2, CS(.CH3) M-27(O) M-28第二节: 基本原理2.1基本原理质谱是唯一可以确定分子式的方法。

质谱知识

质谱知识

1 电子轰击电离源(electron ionization
EI)
EI 离子源
优势:
自 1947 年 Nier A.O. 提出 EI 离子源至今,已发展了半个多世纪,十分成熟。 已积累了 20 多万个化合物的质谱图。 是快速鉴定化合物的手段。 目前仍然得到广泛的使用。
局限性:
要求样品能气化 (样品蒸气压 > 10 -2 Pa) 往往无分子峰 (降低电子动能无助于获得分子峰) 负离子 EI 灵敏度极低
被分析的样品置于涂有基质的样品靶上,激光照射到样品靶上,基质分子吸收 并传递激光能量,与样品分子一起蒸发到气相,并使样品分子电离。MALDI 属 于软电离 技术,它比较适合于生物大分子,如肽、蛋白质、核酸等。得到的质 谱主要是分子离子,准分子离子。常用的基质有:2,5-二羟基苯甲酸,芥子酸 、烟酸、肉桂酸等。
胆酸(MW:408):FAB (不同介质的影响)
溶于甘油 (MW: 92)
溶于含0.14 mol AgNO3的甘油
大气压电离 (API) 技术
• ESI 和APCI 共同点: • 使用高电压元件和充气喷雾法产生气 相离子 • 通常产生 (M+H)+ 或 (M-H)- 等准分子 离子 • 产生极少的碎片,但可以控制产生结 构碎片 • 非常灵敏的技术
Electrospray 1000 EI/CI APCI
Non-Polar
Polar
Ionisation vs. Fragmentation
API CI
Ionisation
EI
Soft
Hard
No Fragments
Fragments
6 基质辅助激光解吸电离(matrix assisted laser Desorption ionization, MALDI) 1)组成 脉冲激光器, 样品靶 基质:2,5二羟基苯甲酸,芥子酸,-氰 基-4-羟基肉桂酸 2)用于生物大分子的分析

质谱基本知识课件.ppt

质谱基本知识课件.ppt
第10页,共25页。
分子离子的判别
1 必须是化合物谱图中质量最高的离子 2.必须的奇电子离子、符合氮规则 3.必须能通过丢失合理的中性离子,产生谱图中高质量 区的重要离子
一、奇电子离子 计算不饱和度U,如果U为整数,则为奇电子离子(OE),为 半整数时为偶电子离子(EE) 二、氮规则 若一个化合物含有偶数个N原子,其分子离子的质量数一定是 偶数,若含有奇数个N原子,分子离子的质量数为奇数。(必 要条件,非充分条件) 三、合理碎片丢失
(a1+b1)n1(a2+b2)n2
第19页,共25页。
烷烃: “烷烃系列”
第20页,共25页。
第21页,共25页。
烯烃和炔烃
烯烃:烯丙基断裂 “烯系列” (27,41,55,69……)
环烯烃:逆D-A开裂
炔烃:β-开裂 容易发生β断裂,称烯丙基断裂。
第22页,共25页。
第23页,共25页。
第5页,共25页。
电子轰击
优点:碎片丰富,通过给出离子的碎裂方式可以帮助鉴定化合物 缺点:缺少分子离子峰
第6页,共25页。
电喷雾电离(ESI)
第7页,共25页。
第8页,共25页。
扇形磁场仪
第9页,共25页。
分子离子
化合物失去一个或多个电子形成的离子。有机无分子离子 丰度大小: 芳香环>共轭烯 >孤立烯>环状化合物>酮>醚>酯>胺>酸> 醇>直链烃>支链烃
芳烃
分子离子峰强,峰:39,51,65,77……,麦氏重排,随正 构烷基取代链越长,m/z91丰度越大。
第24页,共25页。
第25页,共25页。
质谱基本知识

质谱知识总结

质谱知识总结

第四章:质谱法第一节经验1)在正离子模式下,样品主要以[M+H]+、[M+Na]+、[M+K]+准分子离子被检测;在负离子模式下,样品则大多以[M-H]-、[M+Cl]-准分子离子被检测。

2) 正离子模式下,样品还会出现M-1(M-H),M-15(M—CH3), M-18(M-H2O),M—20(M-HF), M-31(M-OCH3)等得峰。

分子离子峰应具有合理得质量丢失.也即在比分子离子质量差在4-13,21-26,37—,50-53,65,66 就是不可能得也就是不合理得,否则,所判断得质量数最大得峰就不就是分子离子峰,.因为一个有机化合物分子不可能失去4~13个氢而不断键、如果断键,失去得最小碎片应为CH3,它得质量就是15个质量单位、3)分子离子峰应为奇电子离子,它得质量数应符合氮规则:在有机化合物中,凡含有偶数氮原子或不含氮原子得,相对分子质量一定为偶数,反之,凡今吸奇数氮原子得,相对分子质量一定就是奇数,这就就是氮规则、运用氮规则将有利于分子离子峰得判断与分子式得推定,经元素分析确定某化合物得元素组成后,若最高质量得离子得质量与氮规则不符,则该离子一定不就是分子离子。

如果某离子峰完全符合上述3项判断原则,那么这个离子峰可能就是分子离子峰;如果3项原则中有一项不符合,这个离子峰就肯定不就是分子离子峰、应该特别注意得就是,有些化合物容易出现M-1峰或M+1峰。

基峰研究高质量端离子峰, 确定化合物中的取代基M-15(CH3); M-16(O, NH2M-17(OH, NH3); M-18(H2O);M-19(F); M-26(C2H2);M-27(HCN, C2H3); M-28(CO, C2HM-29(CHO, C2H5); M-30(NO);M-31(CH2OH, OCH3); M-32(S, CHM-35(Cl); M-42(CH2CO, CHM-43(CH3CO, C3H7); M-44(CO2, CS15 (。

质谱知识点总结

质谱知识点总结

质谱知识点总结质谱的基本原理是利用质谱仪将待测样品中的化合物离子化,并通过一系列的质谱分析技术来测量离子的质量和相对丰度。

这些技术包括质谱仪的装置和操作原理、质谱图的解析和解释、以及质谱数据的处理和分析等方面。

质谱仪是质谱分析的基础设备,它由离子源、质量分析器和检测器组成。

离子源用来将待测样品中的分子离子化,质量分析器用来分离并测量不同质量的离子,检测器用来检测并记录离子的相对丰度。

常用的质谱仪包括质子转移反应质谱仪(PTR-MS)、气相色谱质谱仪(GC-MS)、液相色谱质谱仪(LC-MS)、高分辨质谱仪(HRMS)等。

质谱图是质谱实验的结果,它展现了待测样品中的分子离子的质量和相对丰度分布。

质谱图通常由质子峰、碎片峰和其他杂峰组成,每个峰表示一个离子种类,并且它们的相对丰度和质量可以提供待测样品的信息。

质谱图的解析和解释是质谱分析的重要环节,它涉及到峰的定性和定量分析,以及离子种类的识别和结构推断等内容。

质谱数据的处理和分析是质谱分析的关键步骤,它包括质谱图的峰归属和质量定量、离子种类的识别和结构推断、以及质谱数据的统计和分析等方面。

现代质谱数据处理软件已经可以实现自动化的数据处理和分析,极大地提高了质谱分析的效率和准确性。

在实际应用中,质谱技术已经被广泛应用于不同领域的分析和研究工作。

例如在化学领域,质谱技术可以用来确定化合物的分子式和结构、分析反应产物和中间体的构成、以及检测和鉴定化合物的污染物和杂质等。

在生物学领域,质谱技术可以用来研究蛋白质、核酸和代谢产物的结构和组成、分析细胞代谢和信号转导等。

在药学领域,质谱技术可以用来分析药物的结构和成分、研究药物的代谢和药效学等。

总之,质谱是一种强大而灵活的分析技术,它在科学研究和工业生产中有着重要的应用价值。

随着质谱仪和数据处理软件的不断进步,相信质谱技术在未来会发挥更加重要的作用,为科学研究和工业发展提供更多有力的支持。

质谱知识总结

质谱知识总结

第四章:质谱法第一节经验1)在正离子模式下,样品主要以[M+H]+、[M+Na]+、[M+K]+准分子离子被检测;在负离子模式下,样品则大多以[M-H]-、[M+Cl]-准分子离子被检测。

2)正离子模式下,样品还会出现M-1(M-H), M-15(M-CH3), M-18(M-H2O), M-20(M-HF), M-31(M-OCH3)等的峰。

分子离子峰应具有合理的质量丢失.也即在比分子离子质量差在4-13,21-26,37-,50-53,65,66 是不可能的也是不合理的,否则,所判断的质量数最大的峰就不是分子离子峰,.因为一个有机化合物分子不可能失去4~13个氢而不断键.如果断键,失去的最小碎片应为CH3,它的质量是15个质量单位.3)分子离子峰应为奇电子离子,它的质量数应符合氮规则:在有机化合物中,凡含有偶数氮原子或不含氮原子的,相对分子质量一定为偶数,反之,凡今吸奇数氮原子的,相对分子质量一定是奇数,这就是氮规则。

运用氮规则将有利于分子离子峰的判断和分子式的推定,经元素分析确定某化合物的元素组成后,若最高质量的离子的质量与氮规则不符,则该离子一定不是分子离子。

如果某离子峰完全符合上述3项判断原则,那么这个离子峰可能是分子离子峰;如果3项原则中有一项不符合,这个离子峰就肯定不是分子离子峰.应该特别注意的是,有些化合物容易出现M-1峰或M+1峰。

基峰研究高质量端离子峰, 确定化合物中的取代基M-15(CH3); M-16(O, NH2M-17(OH, NH3); M-18(H2O);M-19(F); M-26(C2H2);M-27(HCN, C2H3); M-28(CO, C2HM-29(CHO, C2H5); M-30(NO);M-31(CH2OH, OCH3); M-32(S, CHM-35(Cl); M-42(CH2CO, CHM-43(CH3CO, C3H7); M-44(CO2, CSM-15(.CH3)M-27第二节: 基本原理2.1基本原理质谱是唯一可以确定分子式的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

液相色谱-质谱联用(lc/ms)的原理及应用液相色谱—质谱联用的原理及应用简介色谱质谱的在线联用将色谱的分离能力与质谱的定性功能结合起来,实现对复杂混合物更准确的定量和定性分析。

而且也简化了样品的前处理过程,使样品分析更简便。

色谱质谱联用包括气相色谱质谱联用(GC-MS)和液相色谱质谱联用(LC-MS),液质联用与气质联用互为补充,分析不同性质的化合物。

液质联用与气质联用的区别:气质联用仪(GC-MS)是最早商品化的联用仪器,适宜分析小分子、易挥发、热稳定、能气化的化合物;用电子轰击方式(EI)得到的谱图可与标准谱库对比。

液质联用(LC-MS)主要可解决如下几方面的问题:不挥发性化合物分析测定;极性化合物的分析测定;热不稳定化合物的分析测定;大分子量化合物(包括蛋白、多肽、多聚物等)的分析测定;没有商品化的谱库可对比查询,只能自己建库或自己解析谱图。

现代有机和生物质谱进展在20世纪80及90年代,质谱法经历了两次飞跃。

在此之前,质谱法通常只能测定分子量500Da以下的小分子化合物。

20世纪70年代,出现了场解吸(FD)离子化技术,能够测定分子量高达1500~2000Da 的非挥发性化合物,但重复性差。

20世纪80年代初发明了快原子质谱法(FAB-MS),能够分析分子量达数千的多肽。

随着生命科学的发展,欲分析的样品更加复杂,分子量范围也更大,因此,电喷雾离子化质谱法(ESI-MS)和基质辅助激光解吸离子化质谱法(MALDI-MS)应运而生。

目前的有机质谱和生物质谱仪,除了GC-MS的EI和CI源,离子化方式有大气压电离(API)(包括大气压电喷雾电离ESI、大气压化学电离APCI、大气压光电离APPI)与基质辅助激光解吸电离。

前者常采用四极杆或离子阱质量分析器,统称API-MS。

后者常用飞行时间作为质量分析器,所构成的仪器称为基质辅助激光解吸电离飞行时间质谱仪(MALDI-TOF-MS)。

API-MS的特点是可以和液相色谱、毛细管电泳等分离手段联用,扩展了应用范围,包括药物代谢、临床和法医学、环境分析、食品检验、组合化学、有机化学的应用等;MALDI-TOF-MS的特点是对盐和添加物的耐受能力高,且测样速度快,操作简单。

质谱原理简介:质谱分析是先将物质离子化,按离子的质荷比分离,然后测量各种离子谱峰的强度而实现分析目的的一种分析方法。

以检测器检测到的离子信号强度为纵坐标,离子质荷比为横坐标所作的条状图就是我们常见的质谱图。

常见术语:质荷比: 离子质量(以相对原子量单位计)与它所带电荷(以电子电量为单位计)的比值,写作m/Z.峰: 质谱图中的离子信号通常称为离子峰或简称峰.离子丰度: 检测器检测到的离子信号强度.基峰: 在质谱图中,指定质荷比范围内强度最大的离子峰称作基峰. 总离子流图;质量色谱图;准分子离子;碎片离子;多电荷离子;同位素离子总离子流图:在选定的质量范围内,所有离子强度的总和对时间或扫描次数所作的图,也称TIC图.质量色谱图指定某一质量(或质荷比)的离子其强度对时间所作的图.利用质量色谱图来确定特征离子,在复杂混合物分析及痕量分析时是LC/MS测定中最有用的方式。

当样品浓度很低时LC/MS的TIC上往往看不到峰,此时,根据得到的分子量信息,输入M+1或M+23等数值,观察提取离子的质量色谱图,检验直接进样得到的信息是否在LC/MS 上都能反映出来,确定LC条件是否合适,以后进行MRM等其他扫描方式的测定时可作为参考。

1.0指与分子存在简单关系的离子,通过它可以确定分子量.液质中最常见的准分子离子峰是[M+H]+ 或[M-H]- .在ESI中, 往往生成质量大于分子量的离子如M+1,M+23,M+39,M+18......称准分子离子,表示为:[M+H]+,[M+Na]+等碎片离子:准分子离子经过一级或多级裂解生成的产物离子.碎片峰的数目及其丰度则与分子结构有关,数目多表示该分子较容易断裂,丰度高的碎片峰表示该离子较稳定,也表示分子比较容易断裂生成该离子。

Ephedrine, MW = 165多电荷离子:指带有2个或更多电荷的离子,常见于蛋白质或多肽等离子.有机质谱中,单电荷离子是绝大多数,只有那些不容易碎裂的基团或分子结构-如共轭体系结构-才会形成多电荷离子.它的存在说明样品是较稳定的.采用电喷雾的离子化技术,可产生带很多电荷的离子,最后经计算机自动换算成单质/荷比离子。

同位素离子由元素的重同位素构成的离子称为同位素离子.各种元素的同位素,基本上按照其在自然界的丰度比出现在质谱中,这对于利用质谱确定化合物及碎片的元素组成有很大方便, 还可利用稳定同位素合成标记化合物,如:氘等标记化合物,再用质谱法检出这些化合物,在质谱图外貌上无变化,只是质量数的位移,从而说明化合物结构,反应历程等如何看质谱图:(1)确定分子离子,即确定分子量氮规则:含偶数个氮原子的分子,其质量数是偶数,含奇数个氮原子的分子,其质量数是奇数。

与高质量碎片离子有合理的质量差,凡质量差在3~8和10~13,21~25之间均不可能,则说明是碎片或杂质。

(2)确定元素组成,即确定分子式或碎片化学式高分辨质谱可以由分子量直接计算出化合物的元素组成从而推出分子式低分辨质谱利用元素的同位素丰度,例:(3)峰强度与结构的关系丰度大反映离子结构稳定在元素周期表中自上而下,从右至左,杂原子外层未成键电子越易被电离,容纳正电荷能力越强,含支链的地方易断,这同有机化学基本一致,总是在分子最薄弱的地方断裂。

不同类型有机物有不同的裂解方式相同类型有机物有相同的裂解方式,只是质量数的差异需要经验记忆。

质谱解析的一般步骤(适于低分辨小分子谱图,若已经是高分辨质谱图得到元素组成更好) (1)核对获得的谱图,扣除本底等因素引起的失真,考虑操作条件是否适当(2)综合样品其他知识:例如熔点,沸点,溶解性等理化性质,样品来源,光谱,波谱数据等.(3) 尽可能判断出分子离子。

(4) 假设和排列可能的结构归属:高质量离子所显示的,在裂解中失去的中性碎片,如M-1,M-15,M-18,M-20,M-31......意味着失H,CH3,H2O,HF,OCH3......(5)假设一个分子结构,与已知参考谱图对照,或取类似的化合物,并作出它的质谱进行对比。

有机质谱的特点优点:(1)定分子量准确,其它技术无法比。

(2)灵敏度高,常规10-7—10-8g,单离子检测可达10-12g。

(3)快速,几分甚至几秒。

(4)便于混合物分析,LC/MS,MS/MS对于难分离的混合物特别有效, 其它技术无法胜任。

(5)多功能,广泛适用于各类化合物。

局限性:(1)异构体,立体化学方面区分能力差。

(2)重复性稍差,要严格控制操作条件。

所以不能象低场NMR,IR等自己动手,须专人操作。

(3)有离子源产生的记忆效应,污染等问题。

(4)价格稍显昂贵,操作有点复杂。

质谱仪器:质谱仪由以下几部分组成数据及供电系统┏━━━━┳━━━━━╋━━━━━━┓进样系统离子源质量分析器检测接收器┗━━━━━╋━━━━━━┛真空系统真空系统质谱仪的离子源、质量分析器和检测器必须在高真空状态下工作,以减少本底的干扰,避免发生不必要的离子-分子反应。

所以质谱反应属于单分子分解反应。

利用这个特点,我们用液质联用的软电离方式可以得到化合物的准分子离子,从而得到分子量。

由机械真空泵(前极低真空泵),扩散泵或分子泵(高真空泵)组成真空机组,抽取离子源和分析器部分的真空。

只有在足够高的真空下,离子才能从离子源到达接收器,真空度不够则灵敏度低。

进样系统把分析样品导入离子源的装置,包括:直接进样,GC,LC及接口,加热进样,参考物进样等。

离子源使被分析样品的原子或分子离化为带电粒子(离子)的装置,并对离子进行加速使其进入分析器,根据离子化方式的不同,有机质谱中常用的有如下几种,其中EI,ESI最常用。

EI(Electron Impact Ionization):电子轰击电离—硬电离。

CI(Chemical Ionization):化学电离—核心是质子转移。

FD(Field Desorption):场解吸—目前基本被FAB取代。

FAB(Fast Atom Bombardment):快原子轰击—或者铯离子 (LSIMS,液体二次离子质谱 ) 。

ESI(Electrospray Ionization):电喷雾电离—属最软的电离方式。

适宜极性分子的分析,能分析小分子及大分子(如蛋白质分子多肽等) APCI(Atmospheric Pressure Chemical Ionization):大气压化学电离—同上,更适宜做弱极性小分子。

APPI(Atmospheric Pressure PhotoSpray Ionization):大气压光喷雾电离—同上,更适宜做非极性分子。

MALDI(Matrix Assisted Laser Desorption):基体辅助激光解吸电离。

通常用于飞行时间质谱和FT-MS,特别适合蛋白质,多肽等大分子.其中ESI,APCI,APPI统称大气压电离(API)实验室现有的离子源:ESI电喷雾电离源APCI大气压化学电离源电喷雾(ESI)的特点通常小分子得到[M+H]+ ]+,[M+Na]+ 或[M-H]-单电荷离子,生物大分子产生多电荷离子,由于质谱仪测定质/荷比,因此质量范围只有几千质量数的质谱仪可测定质量数十几万的生物大分子。

电喷雾电离是最软的电离技术,通常只产生分子离子峰,因此可直接测定混合物,并可测定热不稳定的极性化合物;其易形成多电荷离子的特性可分析蛋白质和DNA等生物大分子;通过调节离子源电压控制离子的碎裂(源内CID)测定化合物结构。

大气压化学电离(APCI)特点大气压化学电离也是软电离技术,只产生单电荷峰,适合测定质量数小于2000Da的弱极性的小分子化合物;适应高流量的梯度洗脱/高低水溶液变化的流动相;通过调节离子源电压控制离子的碎裂。

电喷雾与大气压化学电离的比较电离机理:电喷雾采用离子蒸发,而APCI电离是高压放电发生了质子转移而生成[M+H]+或[M-H]-离子。

样品流速:APCI源可从0.2到2 ml/min;而电喷雾源允许流量相对较小,一般为0.2-1 ml/min.断裂程度;APCI源的探头处于高温,对热不稳定的化合物就足以使其分解.灵敏度:通常认为电喷雾有利于分析极性大的小分子和生物大分子及其它分子量大的化合物,而APCI更适合于分析极性较小的化合物。

多电荷:APCI源不能生成一系列多电荷离子NanoSpray 离子源专门设计的 NanoSpray 离子源特别适合于做微量的生化样品,其流速范围可从 5nL/min到luL/min。

相关文档
最新文档