《不等式的基本性质》同步练习题

合集下载

不等式的基本性质【同步练习】

不等式的基本性质【同步练习】

不等式的基本性质【同步练习】复习巩固1.如果a ,b 均为有理数,且b <0,则a ,a-b ,a+b 的大小关系是( )(A) a <a+b <a-b (B) a <a-b <a+b(C) a+b <a <a-b (D) a-b <a+b <a2.如果a >b ,且c <0,那么下面的不等式中①a+c >b+c ;②ac >bc ;③c b c a ->-;④ ac 2<bc 2成立的个数是( ).(A) 1 (B )2 (C) 3 (D) 43.如果22,7235>+->-c a a ,那么( ) (A) a-c >a+c (B) c-a >c+a (C) ac >-ac (D) 3a >2a4.有理数b 满足3<b ,并且有理数a 使得a <b 恒能成立,则a 的取值范围是( ).(A) 小于或等于3的有理数 (B )小于3的有理数(C) 小于或等于-3的有理数 (D) 小于-3的有理数5.不等式ax >b 的解集是ab x <,那么a 的取值范围为( ). (A) a ≤0 (B) a <0 (C) a ≥0 (D) a >06.若无理数a 满足不等式1<a <4,请写出你熟悉的两个无理数:(1) ; (2) .综合运用7.设有理数a ,b ,c ,d ,e 同时满足以下条件:(1)a >b ;(2)e-a=d-b ;(3)c-d <b-a ;(4)a+b=c+d ,则用“<”将a ,b ,c ,d ,e 连接起来的顺序是 .8.若-1<a <b <0,用“<”连接0,1,1,1ab b a 得 . 9.代数式1262+--m m 的最大值为10.已知a 、b 、c 、d 是正实数,且dc b a <,给出下列4个不等式: ①d c c b a a +>+;②d c c b a a +<+;③d c d b a b +>+;④d c d b a b +<+,其中正确的是 .11.若a ,b 是正数,且满足12345=(111+a)( 111-b)则a 与b 之间的大小关系是 .(A) a >b (B) a=b (C) a <b (D) 不能确定探索拓展12.a 1,a 2,…,a 2022都是正数,如果M=(a 1+a 2+…+a 2022)·(a 2+a 3+…+a 2022),N=(a 1+a 2+a 3+…+a 2022)(a 2+a 3+…+a 2022),那么M 、N 的大小关系是( ).(A) M >N (B) M=N (C) M <N (D )不能确定13.已知a+b+c=0,a >b >c ,则ac 的取值范围为 . 14.设x 1,x 2,…x 7为自然数,且x 1<x 2<…<x 6<x 7,又x 1+x 2+…+x 7=159,则x 1+x 2+x 3的最大值为 .同步练习 1. C 2. B 3. B 4. C 5. B 6. 如5,π等7.(3)+(4)得c-d+c+d <b-a+a+b 即2c <2b ,则c <b ,由(4)得a-d=c-b <0,则a <d ,由(2)知d-e=b-a <0,则d <e ,故c <b <a <d <e.8.不妨取特殊值ab a b 1011<<< 9.21)3(12622++-=+--m m m ≤2110.②③ 11. A 由(111+a)(111-b)=1112+111(a-b)-ab=12345,则111(a-b)-ab=24,即011124>+=-ab b a ,故a >b 12.A ,设a 1+a 2+…+a 2022=a ,a 2+a 3+…+a 2022=b ,则M-N=a 2022(a-b)>013.212-<<-a c ,因为b=-a-c ,-a-c <a ,2a >-c ,所以2->ac ,又把b=-a-c 代入b >c ,得:-a-c >c ,-a >2c ,21-<a c ,故212-<<-a c . 14.159=x 1+x 2+…x 7≥x 1+(x 1+1)+(x 1+2)+…+(x 1+6),解得:x 1≤7519,故x 1最大为19,同理可得x 2,x 3的最大值分别为20,22,故x 1+x 2+x 3的最大值为19+20+22=61.。

北师版八年级数学下册 2.2不等式的基本性质 同步练习(包含答案)

北师版八年级数学下册    2.2不等式的基本性质    同步练习(包含答案)

A.m-2<n-2 B.>D.<-3-4,则a必须满足(北师版八年级数学下册2.2不等式的基本性质同步练习一、选择题(共10小题,3*10=30)1.(广西中考)若m>n,则下列不等式正确的是()m n44C.6m<6n D.-8m>-8n2.若x<y成立,则下列不等式成立的是() A.-3x<-3yB.x-2<y-2C.-(x-2)<-(y-2)D.-x+3<-y+33.由a>b得到am<bm,需要的条件是() A.m>0B.m<0C.m≥0D.m≤04.如果a>b,那么下列结论一定正确的是() A.a-3<b-3B.1+a>1+bC.-3a>-3ba b335.若a<b,则下列式子不成立的是()A.a+1<b+1B.3a<3bC.如果c<0,那么ac<bcD.-0.5a>-0.5b6.若a<aA.a≠0B.a<0C.a>0D.a为任意数)11.用“<”或“>”填空:(1)若a-c<b-c,则a____b;(2)若a>b,则a____b;13.当0<x<1时,x2,x,的大小顺序是_____________.18.给出下列结论:①由2a>3,得a>;②由2-a<0,得a>2;③由a>b,得-3a>-3b;④由7.设A,B,C表示三种不同物体,先用天平称了两次,情况如图,则这三个物体按质量从大到小应为()A.A>B>C B.C>B>AC.B>A>C D.A>C>B8.把不等式2x>3-x化为x>a或x<a的形式是()A.x>3B.x<3C.x>1D.x<19.若3x>-3y,则下列不等式中一定成立的是()A.x+y>0B.x-y>0C.x+y<0D.x-y<010.若2a+3b-1>3a+2b,则a,b的大小关系为()A.a<b B.a>bC.a=b D.不能确定二.填空题(共8小题,3*8=24)115512.用“<”或“>”填空:(1)若a<b,则-a____-b;(2)若m<n,则2m_____m+n;1x14.如果关于x的不等式(a+1)x>a+1(a≠-1)可以变形为x<1,那么a的取值范围是________.15.小明用100元钱去购买笔记本和钢笔共30件,如果每支钢笔5元,每个笔记本2元,那么小明最多能买________支钢笔.16.有一本书共有300页,小明要在10天内(包括第10天)把它读完,他前5天读了100页,如果设从第6天起至少每天要读x页?依题意可列不等式为______________.17.点A,B在数轴上的位置如图所示,其对应的实数分别为a,b,则用不等号填空是:|b|_____2______|a|;1-2a______1-2b.32a>b,得a-9>b-9.其中,正确的结论有_________(填序号).三.解答题(共7小题,46分)(2)若 x <-1,则 x <-2. (1)3x -1 与 3y -1;(2)- x +6 与- y +6. 19.(6 分) 说明下列不等式是怎样变形的:(1)若 3<x +2,则 x >1;1 220.(6 分) 根据不等式的基本性质,用“<”或“>”填空.(1)若 a -1>b -1,则 a ________b ;(2)若 a +3>b +3,则 a ________b ;(3)若 2a>2b ,则 a ________b ;(4)若-2a>-2b ,则 a ________b.21.(6 分) 若 x <y ,试比较下列各式的大小,并说明理由:2 23 322.(6 分) 根据不等式的基本性质,把下列不等式化成 x >a 或 x <a 的形式:(1)x -5<1; (2)3x >x -4;23.(6分)若a>b,讨论ac与bc的大小关系.24.(8分)甲同学与乙同学讨论有关不等式的问题,甲说:当每个苹果的质量一样时,5个苹果的质量大于4个苹果的质量,设每个苹果的质量为x,则5x>4x.乙说:这肯定是正确的.甲又说:设a为一个有理数,那么5a一定大于4a,对吗?乙回答:这与5x>4x是一回事儿,当然也是正确的.请问:乙同学的回答正确吗?试说明理由.25.(8分)阅读下列材料:试判断a2-3a+7与-3a+2的大小.分析:要判断两个数的大小,我们往往用作差法,即若a-b>0,则a>b;若a-b<0,则a<b;若a-b=0,则a=b.解:∵(a2-3a+7)-(-3a+2)=a2-3a+7+3a-2=a2+5,又∵a2≥0,∴a2+5>0.∴a2-3a+7>-3a+2.a2-b2+2a2-2b2+1阅读后,应用这种方法比较与的大小.2313.x 2<x < (2) x <-1,两边都乘 2, (2) (1) ∵x <y ,∴- x <- y ∴- x +6>- y +63 3 参考答案1-5BBBBC6-10 CACAA11. <,>12. >,<1 x14. a <-115. 1316.100+5x≥30017. <,<,>18. ①②④19. 解:(1)3<x +2,两边都减去 2,得 1<x ,即 x >1;1 2得 x <-2;20. 解:(1) >;(2) >;(3) >;,(4) <.21. 解:(1) ∵x <y ,∴3x <3y∴3x -1<3y -12 23 32 222. 解:(1) ∵x -5<1,∴x -5+5<1+5 ∴x <6(2)∵3x >x -4,∴3x -x >x -4-x∴2x >-4,∴2x÷2>-4÷2,∴x >-223. 解:∵a>b ,∴当 c>0 时,ac>bc ;当 c =0 时,ac =bc ;当 c<0 时,ac<bc.24. 解:乙同学的回答不正确.理由:a 为一个有理数,应分三种情况讨论.= (a 2+b 2)+ .6 3 ∴ (a 2+b 2)+ >0,6 3 25. 解:∵ - 当 a >0 时,根据不等式的基本性质 2,得 5a >4a ;当 a <0 时,根据不等式的基本性质 3,得 5a <4a ;当 a =0 时,5a =4a.a 2-b 2+2 a 2-2b 2+1 2 31 1 12 1 =2a 2-2b 2+1-3a 2+3b 2-31 2又∵a 2+b 2≥0,1 2a 2-b 2+2 a 2-2b 2+1 ∴ > 2 3。

不等式的基本性质_习题精选

不等式的基本性质_习题精选

附: 优等生:潘 顺( 女) 程洋晴(女) 张 俊( 男) 石 鑫(男)中等生:廖茂林(男) 龚 成(女) 李 建(男) 王 朵(女)学困生:雷佳琪(女) 李 凤(女) 蒋子俊(男) 蒋子健(男)不等式的基本性质 同步练习一、选择题(1-5题优等生选作,6,7,8题学困生不做,中等生全做)1、如果m <n <0,那么下列结论中错误的是( )A 、m -9<n -9B 、-m >-nC 、11n m >D 、1m n> 2、若a -b <0,则下列各式中一定正确的是( )A 、a >bB 、ab >0C 、0a b < D 、-a >-b 3、由不等式ax >b 可以推出x <b a,那么a 的取值范围是( ) A 、a ≤0 B 、a <0 C 、a ≥0 D 、a >04、如果t >0,那么a +t 与a 的大小关系是( )A 、a +t >aB 、a +t <aC 、a +t ≥aD 、不能确定5、如果34a a <--,则a 必须满足( ) A 、a ≠0 B 、a <0 C 、a >0 D 、a 为任意数6、已知有理数a 、b 、c 在数轴上的位置如图所示,则下列式子正确的是( )a 0b cA 、cb >abB 、ac >abC 、cb <abD 、c +b >a +b7、有下列说法:(1)若a <b ,则-a >-b ; (2)若xy <0,则x <0,y <0;(3)若x <0,y <0,则xy <0; (4)若a <b ,则2a <a +b ;(5)若a <b ,则11a b >; (6)若1122x y --<,则x >y 。

其中正确的说法有( )A 、2个B 、3个C 、4个D 、5个8、2a 与3a 的大小关系( )A 、2a <3aB 、2a >3aC 、2a =3aD 、不能确定二、填空题(学困生9,10题必做,其余的选作,11-16题优等生,中等生必做,其余的选作)9、若m <n ,比较下列各式的大小:(1)m -3______n -3 (2)-5m______-5n (3)3m -______3n - (4)3-m______2-n (5)0_____m -n (6)324m --_____324n -- 10、用“>”或“<”填空:(1)如果x -2<3,那么x______5; (2)如果23-x <-1,那么x______23; (3)如果15x >-2,那么x______-10;(4)如果-x >1,那么x______-1; (5)若ax b >,20ac <,则x______b a. 11、x <y 得到ax >ay 的条件应是____________。

北师版初中八年级数学下册2.2《不等式的基本性质》同步练习题

北师版初中八年级数学下册2.2《不等式的基本性质》同步练习题

2.2 不等式的基本性质1.若x >y ,则下列式子中错误的是( ) A .x -3>y -3 B .x +3>y +3 C .-3x >-3yD.x 3>y32.下列不等式变形正确的是( ) A .由a >b 得ac >bc B .由a >b 得-2a >-2bC .由a >b 得-a <-bD .由a >b 得a -2<b -23.下列变形中,不正确的是( ) A .由x -5>0可得x >5 B .由12x >0可得x >0C .由-3x >-9可得x >3D .由-34x >1可得x <-434.因为-13x >1,所以x -3(填“>”或“<”),依据是 .5.用不等号填空:(1)若a >b ,则ac 2 bc 2;(2)若a >b ,则3-2a 3-2b .6.把不等式2x >3-x 化为x >a 或x <a 的形式是( ) A .x >3 B .x <3 C .x >1D .x <17.小明的作业本上有四道利用不等式的性质,将不等式化为x >a 或x <a 的作业题:①由x +7>8解得x >1;②由x <2x +3解得x <3;③由3x -1>x +7解得x >4;④由-3x >-6解得x <-2.其中正确的有( ) A .1题 B .2题 C .3题D .4题8.根据不等式的基本性质,可将“mx <2”化为“x >2m”,则m 的取值范围是 .9.已知x 满足-5x +5<-10,则x 的范围是 .10.根据不等式的基本性质,把下列不等式化成x >a 或x <a 的形式: (1)2x >-4; (2)x -4<-2; (3)-2x <1; (4)12x <2.11.某商店先在广州以每件15元的价格购进某种商品10件,后来又到深圳以每件12.5元的价格购进同种商品40件,如果商店销售这些商品时,每件定价为x 元,则会获得不少于12%的利润,用不等式表示以上问题中的不等关系,并把这个不等式变形为“x ≥a ”或“x ≤a ”的形式.12.某商贩去菜摊买西红柿,他上午买了30斤,价格为每斤x 元;下午,他又买了20斤,价格为每斤y 元,后来他以每斤x +y2元的价格卖完后.发现自己赔了钱,你知道是什么原因吗? 答案: 1. C 2. C 3. C4. < 不等式的基本性质35. > <6. C7. B8. m <09. x >310. 解:(1)x >-2 (2)x <2 (3)x >-12(4)x <411. 解:由题意得(10+40)x -(15×10+12.5×40)≥(15×10+12.5×40)×12%,∴x ≥14.56. 12. 解:由题意得:(30x +20y )-x +y2×50>0.整理得5x -5y >0.根据不等式的性质1,两边都加上5y ,得5x >5y ,所以x >y .即此商贩上午所买的西红柿的单价高于下午的单价,所以赔了钱.制定学习计划有什么好处?一、计划是实现目标的蓝图。

七年级数学下册《不等式的基本性质》练习

七年级数学下册《不等式的基本性质》练习

不等式的基本性质课后作业★不等式的基本性质1.不等式的基本性质1:如果a>b,那么a+c____b+c,a-c____b-c.不等式的基本性质2:如果a>b,并且c>0,那么ac_____bc.不等式的基本性质3:如果a>b,并且c<0,那么ac_____bc.2.设a<b,用“<”或“>”填空.(1)a-1____b-1;(2)a+1_____b+1;(3)2a____2b;(4)-2a_____-2b;(5)-a2_____-b2;(6)a2____b2.3.根据不等式的基本性质,用“<”或“>”填空.(1)若a-1>b-1,则a____b;(2)若a+3>b+3,则a____b;(3)若2a>2b,则a____b;(4)若-2a>-2b,则a___b.4.若a>b,m<0,n>0,用“>”或“<”填空.(1)a+m____b+m;(2)a+n___b+n;(3)m-a___m-b;(4)an____bn;(5)am____bm;(6)an_____bn;5.下列说法不正确的是()A.若a>b,则ac2>bc2(c 0)B.若a>b,则b<aC.若a>b,则-a>-bD.若a>b,b>c,则a>c★不等式的简单变形6.根据不等式的基本性质,把下列不等式化为x>a或x>a的形式:(1)x-3>1;(2)-23x>-1;(3)3x<1+2x;(4)2x>4.[学科综合]7.已知实数a、b、c在数轴上对应的点如图13-2-1所示,则下列式子中正确的是()A.bc>abB.ac>abC.bc<abD.c+b>a+b8.已知关于x的不等式(1-a)x>2变形为x<21-a,则1-a是____数.9.已知△ABC中三边为a、b、c,且a>b,那么其周长p应满足的不等关系是()A.3b<p<3aB.a+2b<p<2a+bC.2b<p<2(a+b)D.2a<p<2(a+b)。

(完整版)《不等式的基本性质》练习题

(完整版)《不等式的基本性质》练习题

2.2 《不等式的基本性质》练习题一、选择题(每题4分,共32分)1、如果m <n <0,那么下列结论中错误的是( )A 、m -9<n -9B 、-m >-nC 、11n m > D 、1mn >2、若a -b <0,则下列各式中一定正确的是( )A 、a >bB 、ab >0C 、0ab < D 、-a >-b3、由不等式ax >b 可以推出x <ba ,那么a 的取值范围是( )A 、a≤0B 、a <0C 、a≥0D 、a >04、如果t >0,那么a +t 与a 的大小关系是( )A 、a +t >aB 、a +t <aC 、a +t≥aD 、不能确定5、如果34a a<--,则a 必须满足( )A 、a≠0B 、a <0C 、a >0D 、a 为任意数6、已知有理数a 、b 、c 在数轴上的位置如图所示,则下列式子正确的是() a 0b cA 、cb >abB 、ac >abC 、cb <abD 、c +b >a +b7、有下列说法:(1)若a <b ,则-a >-b ; (2)若xy <0,则x <0,y <0;(3)若x <0,y <0,则xy <0; (4)若a <b ,则2a <a +b ;(5)若a <b ,则11a b >; (6)若1122x y--<, 则x >y 。

其中正确的说法有( )A 、2个B 、3个C 、4个D 、5个8、2a 与3a 的大小关系( )A 、2a <3aB 、2a >3aC 、2a =3aD 、不能确定二、填空题(每题4分,共32分)9、若m <n ,比较下列各式的大小:(1)m -3______n -3(2)-5m______-5n(3)3m -______3n - (4)3-m______2-n(5)0_____m -n(6)324m --_____324n -- 10、用“>”或“<”填空:(1)如果x -2<3,那么x______5; (2)如果23-x <-1,那么x______32; (3)如果15x >-2,那么x______-10;(4)如果-x >1,那么x______-1; (5)若ax b >,20ac <,则x______b a. 11、x <y 得到ax >ay 的条件应是____________。

不等式的基本性质 同步练习(含答案)

不等式的基本性质 同步练习(含答案)

8.1.2不等式的基本性质1.2x ﹣4≥0的解集在数轴上表示正确的是( )A 、B 、C 、D 、2.在下列表示的不等式的解集中,不包括-5的是 ( )A.x ≤ 4B.x ≥ -5 C .x ≤ -6 D .x ≥ -73.不等式 -21x > 1 的解集是 ( ) A.x >-21 B .x >-2 C.x <-2 D.x < -21 4.已知x <y ,下列不等式成立的有 ( )①x -3<y -3 ②-5x < -6y ③-3x +2 <-3y +2 ④-3x +2 > -3y +2A.①②B.①③C.①④D.②③5.若不等式(m -2)x > n 的解集为x > 1,则m ,n 满足的条件是 ( )A.m = n -2 且 m >2B. m = n - 2 且 m < 2C.n = m -2 且 m >2D. n = m -2且 m < 26.在二元一次方程12x +y = 8中,当 y <0 时,x 的取值范围是 ( )A. x < 32B. x >- 32C. x > 32D. x <- 32 7.不等式5(x – 1)< 3x + 1 的解集是8.若关于x 的方程kx – 1 = 2x 的解为正实数,则k 的取值范围是9.已知关于x 的不等式x – m <1的解集为x <3,则m 的值为10.解下列不等式:(1)21-x < 354-x (2)- 31+x > 3(3)2 -24+x ≥ 31x - (4)1- 23-y > 3 + 4y(5)21-x - 312+x < 6x (6)25+x - 1 < 223+x11.已知不等式5x -2 < 6x +1的最小正整数解是方程 3x - 23ax = 6的解,求 a 的值。

高中数学--不等式的基本性质-习题(含答案)

高中数学--不等式的基本性质-习题(含答案)

高中数学 不等式的基本性质 习题1.已知a >b >c ,a +b +c =0,则必有( ).A .a ≤0 B.a >0 C .b =0 D .c >02.若a <1,b >1,那么下列命题中正确的是( ).A .11a b >B .1b a> C .a 2<b 2 D .ab <a +b -13.设a >1>b >-1,则下列不等式中恒成立的是( ).A .11a b <B .11a b> C .a >b 2 D .a 2>2b 4.已知1≤a +b ≤5,-1≤a -b ≤3,则3a -2b 的取值范围是( ).A .B .C .D .5.已知a <0,b <-1,则下列不等式成立的是( ).A .2a a a b b >> B .2a a a b b >> C . 2a a a b b >> D .2a a a b b>> 6.已知-3<b <a <-1,-2<c <-1,则(a -b )c 2的取值范围是__________. 7.若a ,b ∈R ,且a 2b 2+a 2+5>2ab +4a ,则a ,b 应满足的条件是__________.8.设a >b >c >0,x =y =,z =x ,y ,z 之间的大小关系是__________.9.某次数学测验,共有16道题,答对一题得6分,答错一题倒扣2分,不答则不扣分,某同学有一道题未答,那么这个学生至少答对多少题,成绩才能在60分以上?列出其中的不等关系.10.已知等比数列{a n }中,a 1>0,q >0,前n 项和为S n ,试比较33S a 与55S a 的大小.参考答案1. 答案:B 解析:由a >b >c ,a +b +c =0知3a >0,故a >0.2. 答案:D 解析:由a <1,b >1得a -1<0,b -1>0,所以(a -1)(b -1)<0,展开整理即得ab <a +b -1.3. 答案:C 解析:取a =2,b =12-,满足a >1>b >-1,但11a b>,故A 错;取a =2,13b =,满足a >1>b >-1,但11a b <,故B 错;取54a =,56b =,满足a >1>b >-1,但a 2<2b ,故D 错,只有C 正确.4. 答案:D 解析:令3a -2b =m (a +b )+n (a -b ),则32m n m n +=⎧⎨-=-⎩,,所以125.2m n ⎧=⎪⎪⎨⎪=⎪⎩, 又因为1≤a +b ≤5,-1≤a -b ≤3, 所以115()222a b ≤+≤,5515()222a b -≤-≤, 故-2≤3a -2b ≤10. 5. 答案:C 解析:∵a <0,b <-1,则0a b >,b <-1,则b 2>1,∴211b <. 又∵a <0,∴0>2a b>a .∴2a a a b b >>.故选C. 6. 答案:(0,8) 解析:依题意0<a -b <2,1<c 2<4,所以0<(a -b )c 2<8. 7. 答案:a ≠2或b ≠12 解析:原不等式可化为(ab -1)2+(a -2)2>0.故a ≠2或b ≠12. 8. 答案:x <y <z 解析:x 2-y 2=a 2+(b +c )2-b 2-(c +a )2=2c (b -a )<0,所以x <y ,同理可得y <z ,故x ,y ,z 之间的大小关系是x <y <z .9. 答案:解:设至少答对x 题,则6x -2(15-x )≥60.10. 答案:解:当q =1时,333S a =,555S a =,所以3535S S a a <; 当q >0且q ≠1时,353511243511(1)(1)(1)(1)S S a q a q a a a q q a q q ---=---=23544(1)(1)10(1)q q q q q q q -----=<-, 所以有3535S S a a <.综上可知有3535S S a a <.。

不等式的基本性质--习题练习

不等式的基本性质--习题练习

不等式的基本性质一、填空.(1-4题每空2分,第5题4分,共32分)1、设a<b ,用“<”或“>”填空.(1)a+1_____b+1; (2)-2a_____-2b ; (3)-a2_____-b 2; (4)a 2____b 2.2、根据不等式的基本性质,用“<”或“>”填空.(1)若a -1>b -1,则a____b ; (2)若a+3>b+3,则a____b ;(3)若2a>2b ,则a____b ; (4)若-2a>-2b ,则a___b .3. ⑴ 如果a b >,则2a a b >+,是根据 ;⑵如果a b >,则a b -<-,是根据 ;⑶如果1a >,则2a a >,是根据 ;⑷ 如果1a <-,则2a a >-,是根据 . 4.已知ax +9=0的解是x=3,则a= ,此时不等式ax -6﹤0的解集为 .5.关于x 的不等式2x-a ≤-1的解集如图所示,则a 的值是 .二、选择 (6-10题每题4分,共20分)6.7.下列变形不正确的是( )A.由b>5得4a+b>4a+5B.由a>b 得b<aC.由-12x>2y 得x<-4yD.-5x>-a 得x>5a 8.如果不等式(b+1)x ﹤b+1的解集是x ﹥1,那么b 必须满足 ( )A.b <1B. b ≤1C.b >1D. b ≥19、下列说法不正确的是A .若a>b ,则ac 2>bc 2(c ≠0)B .若a>b ,则b<aC .若a>b ,则-a>-bD .若a>b ,b>c ,则a>c10、不等式6x+8>3x+8的解集是 ( ) A. x ﹥12 B. x ﹤0 C. x ﹥0 D. x ﹤1211、根据不等式的基本性质,把下列不等式化为x>a 或x>a 的形式,并用数轴把解集表示出来。

《不等式的基本性质》综合练习(有答案)

《不等式的基本性质》综合练习(有答案)

初中精品试卷3.2 不等式的基本性质◆回顾探索1.不等式性质 1,如果 a>b ,那么 a ±b______b ±c ,如果 a<b ,那么 a ±c_____b ±c .这就是说:不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向 b ________.2.不等式性质 2,如果 a>b ,并且 c____0,那么 ac>bc .3.不等式性质 3,如果 a>b ,并且 c_____0,那么 ac<bc .这就是说:不等式两边都乘以(或除以)同一个正数,不等号的方向______;不等式两边都乘以(或除以)同一个负数,不等号的方向________.测试点一1.( 1)若 x>3,那么 x-m_____3-m ;( 2)若 a<b ,那么 a+6_______b+6;( 3) a<-b ,那么 a+b______0; ( 4)若 7a-2m<7b-2m ,那么 7a____7b .2.不等式3+x ≥6的解集是()A .x=3B .x ≥ 3C .所有大于 3 的数D .大于或等于 3 的整数3.若代数式x-3的值为负数,则()A .x<3B . x<0C .x>3D .x>04.下列说法正确的是()A .方程 4+x=8 和不等式 4+x>8 的解是一样的 ;B .x=2 是不等式 4x>5 的唯一解C .x=2 是不等式 4x>15 的一个解 ;D .不等式 x-2<6 的两边都加上 1,则此不等式成立测试点二5.若 a>b ,且 c 为实数,则()A .ac>bcB .ac<bc 2222C . ac >bcD .ac ≥ bc 6.若 a<0,关于 a 的不等式 ax+1>0 的解集是()A .x<1B .x>1C .x<-1D .x>-1a a aa 7.若代数式 3x+4 的值不大于 0,则 x 的取值范围是()A .x>-4B .x ≥-4C .x<-4D .x ≤-43 3 338.解不等式 :(1)1x>-3(2)-2x<6(3)3x-6≤ 0(4)-12x-6>0 2测试点三1.若 a<b,用“ >或”“ <号”填空:(1)a+4_______b+4;( 2) a-2______b-2;(3)22;( 4) -2a______-2b.a_____b552.在下列各题的“ ____中”填写不等号并写出理由:(1)因为 x>5,所以 -x____-5,理由是 _______________.(2)因为 4x>12,所以 x_____3,理由是 _____________.(3)- 1x<-2,所以 x_______14,理由是 ________________.73.若 8+3a<8+3b,那么 a,b 的大小关系是()A.a=b B. a<b C.a>b D.以上都不对4.由 x<y,得 ax>ay,则 a 应满足的条件是()A.a≥ 0B.a≤ 0C.a>0D.a<0 5.求不等式 x+4≥ 3x-2 的非负整数解.6.利用不等式的性质,求下列不等式的解集,并把解集在数轴上表示出来.(1)x-3≥ 1(2)4x-15>3x-2( 3) 2x-3x<0(4)- 1x≥1 37.( 1)若( m+1)x<m+1 的解集是 x>1,求 m 的取值范围.( 2)若关于 x 的方程 x-3k+2=0 的解是正数,求 k 的取值范围.8.在行驶于公路的汽车上,我们会看到不同的交通标志图形,它们有着不同的意义如图所示,如果设汽车质量为 xkg,速度为 ykm/小时,宽度 L 米,高度为hm?请用不等式表示图中各标志的意义.◆拓展创新若 a>4.(1)试比较 a2与 4a 的大小 ;(2)比较 ab 与 4b 的大小.参考答案回顾探索1.> < 不变2.> 3.< 不变 改变测试点一、二1.(1)>(2)< (3)< (4)< 2.B 3.A 4.D5.D (点拨:因为 c 是实数,所以 c ≥0)6.C (点拨:不等式两边同除以一个负数,不等号方向改变)7.D (点拨:由题设可得不等式: 3x+4≤0) 8.( 1)x>-6 (2)x>-3(3)x ≤ 2 (4)x<-测试点三1.(1)<(2)< (3)< (4)>122.( 1)< 不等式两边同乘以同一个负数,不等号方向改变.(2)>不等式两边两边同除以同一个正数,不等号方向不变(3)>不等式两边同乘以(或除以)同一个负数,不等号方向改变3.B (点拨:不等式性质 1、2)4.D (点拨:不等式性质 3)5.0,1,2,3(点拨:原不等式的解集是: x ≤3)6.( 1)x ≥ 4 (2) x>13 (3)x>0( 4) x ≤-37.( 1)m<-1(点拨:由不等式的性质 m+1<0)(2)原方程的解为 x=3k-2,由解为正数得 3k-2>0,即 k> 2.38.x ≤ 5.5t , y ≤ 30, L ≤ 2m ,h ≤ 3.5m .拓展创新(1)a 2>4a (点拨:不等式性质 2)(2)因为 a>4,所以当 b>0 时, ab>4b ;当 b=0 时, ab=4b ;当 b<0 时, ab<4b .。

2.1不等式的基本性质(习题)

2.1不等式的基本性质(习题)

+≥−
移项,得
− ≥ − −
合并同类项,得
−≥ −
系数化为1,得

∴ 不等式的解集为{| ≤ }
()−< ( − ).
解:去括号,得
−< −
移项,得
−−< − −
合并同类项,得
− < −
系数化为1,得




∴ 不等式的解集为{| ≥ }
பைடு நூலகம்
4.若代数式 − 与代数式5 −之和不大于2,求的取值范围.
解:由题意得
( − ) − (−) ≤
∴ − − + ≤
∴ − − ≤
∴ − ≤
∴≥−
∴ 的取值范围为{| ≥ −}
B能力提升
1.设, 是两个不相等的实数,比较 − 与的大小.
正确
(4)若 > 且 < ,那么−> −;
正确
2.用符号“>”或“<”填空.
<
(1)


,

>
(2)如果 > ,那么, −
+ >


>−, +
+ , − +
+>,
<− +.
3.解下列不等式.
+
()
≥ − ;

解:去分母,得
第二章 不等式
2 . 1 不 等 式 的 基 本 性 质 ( 习 题 )
A知识巩固
习题2.1
1.判断下列结论是否正确,并说明理由.
(1)如果 > , c>0

不等式的基本性质练习题

不等式的基本性质练习题

不等式的基本性质一、选择题(本大题共13小题,共52分)1.若a>b,则下列式子正确的是()A.-0.5a>-0.5bB.0.5a>0.5bC.a+c<b+cD.a-c<b-c2.若a>b,则下列不等式中错误的是()A.-a5<−b5B.-2a>-2bC.a-2>b-2D.-(-a)>-(-b)3.下列四个不等式:(1)ac>bc;(2)-ma<mb;(3)ac2>bc2;(4)ab>1,一定能推出a>b的有()A.1个B.2个C.3个D.4个4.已知a<b,c是有理数,下列各式中正确的是()A.ac2<bc2B.c-a<c-bC.a-3c<b-3cD.ac <bc5.若a>b,则下列不等式一定成立的是()A.a-b<0B.a3<b3C.1-a<1-bD.-1+a<-1+b6.若a>b,那么下面关系一定成立的是()A.ac>bcB.ac2>bc2C.a-c>b-cD.a|c|>b|c|7.若a<b,则下列不等式变形错误的是()A.a+x<b+xB.3-a<3-bC.2a-1<2b-1D.a2-b2<08.下列变形中不正确的是()A.由a>b,得b<aB.由-a<-b,得b<aC.由-3x>a,得x>-a3D.由-x3>y,得x<-3y9.若x<y,则下列不等式中成立的是()A.2+x>2+yB.2x>2yC.2-x>2-yD.-2x<-2y10.若∣a|a=-1,则a只能是()A.a≤-1B.a<0C.a≥-1D.a≤011.如果a、b表示两个负数,且a<b,则()A.a b >1B.ab<1 C.1a<1bD.ab<112.若-a2<-a3,则a一定满足是()A.a>0B.a<0C.a≥0D.a≤013.当0<x<1时,x2、x、1x的大小顺序是()A.x2<x<1x B.1x<x<x2 C.1x<x2<x D.x<x2<1x二、填空题(本大题共7小题,共21分)14.当x <a <0时,x 2 ______ ax (填>,<,=)15.已知:x ≤1,含x 的代数式A=3-2x ,那么A 的值的范围是 ______ .16.若a >b ,则2-13a ______ 2-13b (填“<”或“>”).17.如果7x <4时,那么7x -3 ______ 1.(填“>”,“=”,或“<”).18.若a <b <0;则|a | ______ |b |,-a ______ -b .19.用不等号填空,并说明是根据不等式的哪一条性质:(1)若x +2>5,则x ______ 3,根据不等式的性质 ______ ;(2)若−34x <-1,则x ______ 43,根据不等式的性质 ______ .20.若a <b ,用“>”号或“<”号填空:-1+2a ______ -1+2b ,6-a ______ 6-b .三、计算题(本大题共1小题,共6.0分)21.根据不等式的基本性质,把下列不等式化成x >a 或x <a 的形式.(1)x -1<5.(2)4x -1≥3.(3)−12x +1≥4.(4)-4x <-10.四、解答题(本大题共2小题,共21分)22.根据不等式的性质,将下列不等式化成“x >a ”或“x <a ”的形式.(1)10x -1>7x ;(2)-12x >-1.23.【提出问题】已知x -y =2,且x >1,y <0,试确定x +y 的取值范围.【分析问题】先根据已知条件用一个量如y 取表示另一个量如x ,然后根据题中已知量x 的取值范围,构建另一量y 的不等式,从而确定该量y 的取值范围,同法再确定另一未知量x 的取值范围,最后利用不等式性质即可获解.【解决问题】解:∵x -y =2,∴x =y +2.又∵x >1,∴y +2>1,∴y >-1.又∵y <0,∴-1<y <0,…①同理得1<x <2…②由①+②得-1+1<y +x <0+2.∴x +y 的取值范围是0<x +y <2.【尝试应用】已知x-y=-3,且x<-1,y>1,求x+y的取值范围.。

八年级数学上册《第四章 不等式的基本性质》同步练习题及答案-湘教版

八年级数学上册《第四章 不等式的基本性质》同步练习题及答案-湘教版

八年级数学上册《第四章不等式的基本性质》同步练习题及答案-湘教版一、选择题1.若x>y,则下列式子中,错误的是( )A.x-3>y-3B.x3>y3C.x+3>y+3D.-3x>-3y2.如果a>b,那么下列结论中错误的是( )A.a-3>b-3B.3a>3bC.>D.-a>-b3.若x+5>0,则( )A.x+1<0B.x-1<0C.x5<-1 D.-2x<124.若m>n,且am<an,则a的取值应满足条件( )A.a>0B.a<0C.a=0D.a≥05.2a与3a的大小关系( )A.2a<3aB.2a>3aC.2a=3aD.不能确定6.由不等式ax>b可以推出x<,那么a的取值范围是( )A.a≤0B.a<0C.a≥0D.a>07.实数a、b满足a+b>0,ab<0,则下列不等式正确的是()A.|a|>|b|B.|a|<|b|C.当a<0,b>0时,|a|>|b|D.当a>0,b<0时,|a|>|b|8.若m+p<p,m-p>m,则m、p满足的不等式是()A.m<p<0B.m<pC.m<0,p<0D.p<m二、填空题9.如果a>0,b>0,那么ab 0.10.如果x-7<-5,则x ;如果-12x>0,那么x .11.当x 时,代数式2x-3的值是正数.12.若m+n>m-n,n-m>n,那么下列结论:(1)m+n>0,(2)n-m<0,(3)mn≤0,(4)<0中.正确的序号为________.13.满足-3x>-18的非负整数有___________.14.若关于x的不等式(1﹣a)x>2可化为x>a12,则a的取值范围是________.三、解答题15.在不等式2x>5x两边同除以x,得到2>5,为什么?16.指出下列各式成立的条件:(1)由mx<n,得x<n m ;(2)由a<b,得ma>mb;(3)由a>-5,得a2≤-5a;(4)由3x>4y,得3x-m>4y-m.17.能不能找到这样的a值,使关于x的不等式(1﹣a)x>a﹣5的解集是x<2.18.已知x<y,试比较下列各式的大小并说明理由.(1)3x-1与3y-1.(2)-23x+6与-23y+6.19.同桌甲和同桌乙正在对7a>6a进行争论,甲说:“7a>6a正确”,乙说:“这不可能正确”,你认为谁的观点对?为什么?20.某单位打算和一个体车主或一出租车公司签订月租合同.个体车主答应除去每月1 500元租金外,每千米收1元;出租车公司规定每千米收2元,不收其他费用.设该单位每月用车x千米时,乘坐出租车合算,请写出x的范围.参考答案1.D2.D3.D4.B5.D6.B7.D8.C9.答案为:>. 10.答案为:<2,<011.答案为:>32. 12.答案为:(4)13.答案为:0,1,2,3,4,514.答案为:a <1.15.解:2x >5x∴2x ﹣5x >0,﹣3x >0∴x <0即不等式的两边都除以一个负数x ,不等式的符号要改变,即2<5;16.解:(1)m>0.(2)m<0.(3)-5<a ≤0.(4)m 为任意实数.17.答案为:a=7/3.18.解:(1)∵x<y∴3x<3y(不等式的基本性质3)∴3x -1<3y -1(不等式的基本性质2).(2)∵x<y∴-23x>-23y(不等式的基本性质3)∴-23x+6>-23y+6(不等式的基本性质2).19.解:因为a的符号没有确定:①当a>0时,由性质2得7a>6a②当a<0时,由性质3得7a<6a③当a=0时,得7a=6a=0.所以两人的观点都不对.20.解:根据题意,得1 500+x>2x,解得x<1 500.∵单位每月用车x(千米)不能是负数∴x的取值范围是0<x<1 500.。

《北师大版》1.2不等式的基本性质同步练习

《北师大版》1.2不等式的基本性质同步练习

1.2 不等式的基本性质 同步练习(总分:100分 时间45分钟)一、选择题(每题4分,共32分)1、如果m <n <0,那么下列结论中错误的是( )A 、m -9<n -9B 、-m >-nC 、11n m >D 、1m n> 2、若a -b <0,则下列各式中一定正确的是( )A 、a >bB 、ab >0C 、0a b < D 、-a >-b 3、由不等式ax >b 可以推出x <b a,那么a 的取值范围是( ) A 、a ≤0 B 、a <0 C 、a ≥0 D 、a >04、如果t >0,那么a +t 与a 的大小关系是( )A 、a +t >aB 、a +t <aC 、a +t ≥aD 、不能确定5、如果34a a <--,则a 必须满足( ) A 、a ≠0 B 、a <0 C 、a >0 D 、a 为任意数6、已知有理数a 、b 、c 在数轴上的位置如图所示,则下列式子正确的是( )A 、cb >abB 、ac >abC 、cb <abD 、c +b >a +b7、有下列说法:(1)若a <b ,则-a >-b ; (2)若xy <0,则x <0,y <0;(3)若x <0,y <0,则xy <0; (4)若a <b ,则2a <a +b ;(5)若a <b ,则11a b >; (6)若1122x y --<,则x >y 。

其中正确的说法有( )A 、2个B 、3个C 、4个D 、5个8、2a 与3a 的大小关系( )A 、2a <3aB 、2a >3aC 、2a =3aD 、不能确定二、填空题(每题4分,共32分)9、若m <n ,比较下列各式的大小:(1)m -3______n -3 (2)-5m______-5n (3)3m -______3n - (4)3-m______2-n (5)0_____m -n (6)324m --_____324n -- 10、用“>”或“<”填空:(1)如果x -2<3,那么x______5; (2)如果23-x <-1,那么x______23;(3)如果15x >-2,那么x______-10;(4)如果-x >1,那么x______-1; (5)若ax b >,20ac <,则x______b a . 11、x <y 得到ax >ay 的条件应是____________。

(完整版)不等式的基本性质习题

(完整版)不等式的基本性质习题

不等式的基本性质习题一、选择题1.若m>n ,且am<an ,则a 的取值应满足条件( )A .a>0B .a<0C .a=0D .a ≥02.若m -n >0,则下列各式中一定正确的是( )A .m >nB .mn >0C .0mn < D .-m >-n3.下列说法正确的是 ( )A.若a 2>1,则a >1B.若a <0,则a 2>aC.若a >0,则a 2>a D .若,则4.如果x >0,那么a +x 与a 的大小关系是( )A .a +x >aB .a +x <aC .a +x≥aD .不能确定5.已知5<7,则下列结论正确的( )①5a <7a ②5+a <7+a ③5-a <7-aA. ①②B. ①③C. ②③D. ①②③6.如果a<b<0,下列不等式中错误的是( )A. ab >0B.C.D.7.-2a 与-5a 的大小关系( )A .-2a <-5aB .2a >5aC .-2a =-5bD .不能确定二、填空题1.用“<”或“>”填空.(1)若a -1>b -1,则a____b ; (2)若a+3>b+3,则a____b ;(3)若5a>5b ,则a____b ; (4)若-5a>-5b ,则a___b .2.x <y 得到ax >ay 的条件应是____________.3.若m +n >m -n ,n -m >n ,那么下列结论(1)m +n >0,(2)n -m <0,(3)mn≤0, 1<a a a <20<+b a 1<b a0<-b a(4)n m<0中,正确的序号为________. 4.满足-3x >-18的非负整数有________________________.5.若am <b ,ac 4<0,则m________.6.如果a -3>-5,则a ;如果-2a <0,那么n . 三、解答题1.如图所示,一个已倾斜的天平两边放有重物,其质量分别为a 和b ,如果在天平两边的盘内分别加上相等的砝码c ,看一看,盘子仍然像原来那样倾斜吗?2.同桌甲和同桌乙正在对7a>6a 进行争论,甲说:“7a>6a 正确”,乙说:“这不可能正确”,你认为谁的观点。

9.1.2不等式的性质同步练习含答案

9.1.2不等式的性质同步练习含答案

9.1.2 不等式的性质要点感知不等式的性质有:不等式的性质1 不等式的两边加(或减)同一个数(或式子),不等号的方向__________,即如果a>b,那么a±c__________b±c.不等式的性质 2 不等式的两边乘(或除以)同一个__________数,不等号的方向不变,即如果a>b,c>0,那么ac__________bc(或ac__________bc).不等式的性质 3 不等式的两边乘(或除以)同一个__________数,不等号的方向改变,即如果a>b,c<0,那么ac__________bc(或ac__________bc).预习练习1-1若a>b,则a-b>0,其依据是( )A.不等式性质1B.不等式性质2C.不等式性质3D.以上都不对1-2若a<b,则3a__________3b,-7a+5__________-7b+5(填“>”“<”或“=”).知识点1 认识不等式的性质1.如果b>0,那么a+b与a的大小关系是( )A.a+b<aB.a+b>aC.a+b≥aD.不能确定2.下列变形不正确的是( )A.由b>5得4a+b>4a+5B.由a>b得b<aC.由-12x>2y得x<-4y D.-5x>-a得x>5a3.若a>b,am<bm,则一定有( )A.m=0B.m<0C.m>0D.m为任何实数4.在下列不等式的变形后面填上依据:(1)如果a-3>-3,那么a>0;______________________________.(2)如果3a<6,那么a<2;______________________________.(3)如果-a>4,那么a<-4.______________________________.5.利用不等式的性质填“>”或“<”.(1)若a>b,则2a+1__________2b+1;(2)若-1.25y<-10,则y__________8;(3)若a<b,且c<0,则ac+c__________bc+c;(4)若a>0,b<0,c<0,则(a-b)c__________0.知识点2 利用不等式的性质解不等式6.利用不等式的性质,求下列不等式的解集.(1)x+13<12;(2)6x-4≥2;(3)3x-8>1;(4)3x-8<4-x.知识点3 不等式的实际应用7.(2019·绵阳)设“▲”、“●”、“■”分别表示三种不同的物体,现用天平秤两次,情况如图所示,那么▲、●、■这三种物体按质量从大到小排列应为( )A.■、●、▲B.▲、■、●C.■、▲、●D.●、▲、■8.某单位打算和一个体车主或一出租车公司签订月租合同.个体车主答应除去每月1 500元租金外,每千米收1元;出租车公司规定每千米收2元,不收其他费用.设该单位每月用车x 千米时,乘坐出租车合算,请写出x 的范围.9.(2019·梅州)若x >y ,则下列式子中错误的是( )A.x-3>y-3B.3x >3y C.x+3>y+3 D.-3x >-3y 10.(2019·长春)不等式2x <-4的解集在数轴上表示为( )11.(2019·恩施)下列命题正确的是( )A.若a >b ,b <c ,则a >cB.若a >b ,则ac >bcC.若a >b ,则ac 2>bc 2D.若ac 2>bc 2,则a >b12.若式子3x+4的值不大于0,则x 的取值范围是( )A.x <-43B.x ≥43C.x <43D.x ≤-4313.利用不等式的基本性质求下列不等式的解集,并说出变形的依据.(1)若x+2 012>2 013,则x__________;(______________________________)(2)若2x>-13,则x__________;(______________________________) (3)若-2x>-13,则x__________;(______________________________) (4)若-7x >-1,则x__________.(______________________________) 14.指出下列各式成立的条件:(1)由mx<n,得x<n m; (2)由a<b,得ma>mb ;(3)由a>-5,得a 2≤-5a ;(4)由3x>4y ,得3x-m>4y-m.15.利用不等式的性质解下列不等式,并把解集在数轴上表示出来.(1)x+3<-2;(2)9x>8x+1;(3)12x≥-4;(4)-10x≤5.16.已知x<y,试比较2x-8与2y-8的大小,并说明理由.挑战自我17.有一个两位数,个位上的数是a,十位上的数是b,如果把这个两位数的个位与十位上的数对调,得到的两位数大于原来的两位数,那么a与b哪个大?参考答案课前预习要点感知不变> 正> > 负< <预习练习1-1 A1-2<>当堂训练1.B2.D3.B4.(1)不等式的性质1(2)不等式的性质2(3)不等式的性质35.(1)> (2)> (3)> (4)<6.(1)x<16. (2)x≥1. (3)x>3. (4)x<3.8.根据题意,得1 500+x>2x,x<1 500.又由于单位每月用车x(千米时)不能是负数.因此,x的取值范围是x>0且x<1 500. 课后作业9.D 10.D 11.D 12.D13.(1)>1 不等式两边同时减去2 012,不等号方向不变(2)>-16不等式两边同时除以2,不等号方向不变(3)<16不等式两边同时除以-2,不等号方向改变(4)<7 不等式两边同时乘以-7,不等号方向改变14.(1)m>0.(2)m<0.(3)-5<a≤0.(4)m为任意实数.15.(1)利用不等式性质1,两边都减3,得x<-5.在数轴上表示为(2)利用不等式性质1,两边都减8x,得x>1.在数轴上表示为(3)利用不等式性质2,两边都乘以2,得x≥-8.在数轴上表示为(4)利用不等式性质3,两边都除以-10,得x≥-1 2 .在数轴上表示为16.2x-8<2y-8.理由:∵x<y,∴利用不等式性质2,两边都乘以2,得2x<2y.再利用不等式性质1,两边都减8,得2x-8<2y-8.17.根据题意,得10a+b>10b+a.10a-a>10b-b.9a>9b.a>b.。

高二不等式基本性质同步练习

高二不等式基本性质同步练习

高二不等式基本性质同步练习一、选择题1、下列命题正确的是 ( )A.若a>b ,则ac 2>bc 2B.若a>b , c>d ,则ac>bdC.若22c a >22cb ,则a>b D.若a>b , ab>0,则a 1<b 1. 2、 设a<b<0,则下列不等式中不成立的是 ( ) A.a 1>b 1. B.b -a 1>a1 C.|a |>|b | D.a 2>b2 3、 若0,10a b <-<<,则下列不等式中正确的是 ( ) A. a>ab>ab 2 B.ab 2>ab>a C.ab>a>ab 2 D.ab>ab 2>a4、若a>b>c ,a+b+c =0,则下面不等式中恒成立的是 ( )A. ab>acB. ac>bcC. a |b |>|b |cD.a 2>b 2>c 25、若a+d =b+c ,||||a d b c -<-,则ad 与bc 的关系是 ( )A.ad =bcB.ad<bcC.ad>bcD.ad 与bc 的大小不确定6、已知0<a<b<1,则a a b b ba log ,,log 1的大小关系是 ( ) A.a ab b b a log log 1<< B.b b a a a b <<log log 1 C.b a b a b a <<1log log D.a b a b ab log log 1<<7、设甲:a 和b 满足⎩⎨⎧<<<+<3042ab b a ,乙:a 和b 满足⎩⎨⎧<<<<3210b a ,那么 ( ) A.甲是乙的充分但不必要条件. B.甲是乙的必要但不充分条件.C.甲是乙的充要条件.D.甲不是乙的充分条件,也不是乙的必要条件.8、若a ,b 为实数,下列命题正确的是A 、22b a b a >⇒>B 、22||b a b a >⇒> C 、22||b a b a >⇒> D 、b a b a >⇒>229、设f(x)=|lgx |,若0<a<b<c ,且f(a)>f(c)>f(b),则下列命题成立的是 ( )A. (1)(1)0a c -->B. 1ac >C. 1ac =D. 1ac <10、已知a ,b ,c ,d ∈R ,且 ①d>c ,②a+b =c+d , ③a+d<b+c ,则下面不等式中正确的是( )A. d b a c >>>B. b c d a >>>C. b d c a >>>D. b d a c >>>11、不等式①a a 222>+,②()1222--≥+b a b a ,③()02222≠+>+b a ab b a 恒成立的个数是A 、0B 、1C 、2D 、3 12、若2≠a 或1-≠b ,b a b a M 2422+-+=,5-=N ,M 与N 的大小关系是A 、N M >B 、N M <C 、N M =D 、不能确定二、填空题13、若a>b>c>0,则ab ,bc ,ac ,c 从小到大的顺序是 ________.14、以下四个不等式:(1)a<0<b (2)b<a<0 (3)b<0<a (4)0<b<a ,其中使a 1<b1成立的充分条件是________.15、若a ,b ,m ∈R +,且a b <ma mb ++,则a 与b 的大小关系是_____________. 16、已知“11,a b a b a b >->-”同时成立,则ab 应满足的条件是____.三、解答题17、已知:44xy y x a +=,3223y x y x b +=(x,y 均为正数),比较a 与b 的大小。

湘教版-数学-八年级上册-数学4.2不等式的基本性质同步测试

湘教版-数学-八年级上册-数学4.2不等式的基本性质同步测试

4.2不等式的基本性质同步测试一、选择题1.若b>a>0,则下列式子正确的是()A. B. C. D. ﹣b>﹣a2.如果a+b>0,ab>0,那么()A. a>0,b>0B. a<0,b<0C. a>0,b<0D. a<0,b >03.四个小朋友玩跷跷板,他们的体重分别为P,Q,R,S,如图所示,则他们的体重大小关系是()A. P>R>S>QB. Q>S>P>RC. S>P>Q>RD. S>P>R>Q4.对于命题“a、b是有理数,若a>b,则a2>b2”,若结论保持不变,怎样改变条件,命题才是真命题,给出下列以下四种说法:①a、b是有理数,若a>b>0,则a2>b2;②a、b是有理数,若a>b,且a+b>0,则a2>b2;③a、b是有理数,若a<b<0,则a2>b2;④a、b 是有理数,若a<b且a+b<0,则a2>b2.其中,真命题的个数是()A. 1个B. 2个C. 3个D. 4个5.若x>y,则下列式子中错误的是()A. x+ >y+B. ﹣3>y﹣3C. >D. ﹣3x >﹣3y6.已知a<b,则下列不等式一定成立的是()A. a+5>b+5B. ﹣2a<﹣2bC. a> bD. 7a﹣7b <07.如果a>b,那么不等式变形正确的是()A. a﹣2<b﹣2B. 0.5a<0.5bC. ﹣2a<﹣2bD. ﹣a>﹣b8.已知实数a、b,若a>b,则下列结论正确的是()A. a﹣5<b﹣5B. 2+a<2+bC.D. 3a >3b9.已知a>b,则下列各式的判断中一定正确的是()A. 3a>3bB. 3﹣a>3﹣bC. ﹣3a>﹣3bD. 3÷a>3÷b10.如果,则下列不等式中一定能成立的是______A. B. C. D.二、填空题11.如果2x﹣5<2y﹣5,那么﹣x________﹣y(填“<、>、或=”)12.若2x>3y,则﹣2x ________﹣3y.13.式子a2x>x(a2+1)成立,则x满足的条件是 ________14.若关于x的不等式(1﹣a)x>2可化为x>,则a的取值范围是________.15.已知x<y,试比较大小:﹣2x________﹣2y.16.若a>b,c<0,用“>”或“<”号填空:ac________bc.17.若x>y且(3﹣a)x<(3﹣a)y,则a的取值范围是 ________18.若a>b,且c为有理数,则ac2________ bc2.三、解答题19.证明:若a>b>0,则an>bn(n∈N,n≥1).20.能不能找到这样的a值,使关于x的不等式(1﹣a)x>a﹣5的解集是x<2.21.把下列不等式化成x>a或x<a的形式.(1)2x+5>3;(2)﹣6(x﹣1)<0.22.若a>b,讨论ac与bc的大小关系.23.已知实数a,b,c满足不等式|a|≥|b+c|,|b|≥|c+a|,|c|≥|a+b|,求证:a+b+c=0.参考答案一、选择题1.C2.A3.D4.D5.D6.D7.C8.D9.A 10.C二、填空题11.>12.<13.x<0 14.a<1 15.>16.<17.a>3 18.≥三、解答题19.证明:∵a>b>0,n≥1,∴an>bn.20.解:∵关于x的不等式(1﹣a)x>a﹣5的解集是x<2,∴1﹣a<0,=2,解得:a=,经检验a=是方程=2的解,即能找到这样的a值,使关于x的不等式(1﹣a)x>a﹣5的解集是x<2.21.解:(1)移项,得2x>3﹣5,合并同类项,得2x>﹣2,系数化为1,得x>﹣1;(2)去括号,得,﹣6x+6<0,移项,得﹣6x<﹣6,系数化为1,得x>1.22.解:a>b,当c>0时,ac>bc,当c=0时,ac=bc,当c<0时,ac<bc.23.证明:∵|a|≥|b+c|,|b|≥|c+a|,|c|≥|a+b|∴a2≥(b+c)2,b2≥(c+a)2,c2≥(a+b)2∴a2+b2+c2≥(b+c)2+(c+a)2+(a+b)2=2(a2+b2+c2)+2ab+2bc+2ca ∴a2+b2+c2+2ab+2bc+2ca≤0∴(a+b+c)2≤0,而(a+b+c)2≥0∴a+b+c=0.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.2 不等式的基本性质
1.若x >y ,则下列式子中错误的是( ) A .x -3>y -3 B .x +3>y +3 C .-3x >-3y
D.x 3>y
3
2.下列不等式变形正确的是( ) A .由a >b 得ac >bc B .由a >b 得-2a >-2b
C .由a >b 得-a <-b
D .由a >b 得a -2<b -2
3.下列变形中,不正确的是( ) A .由x -5>0可得x >5 B .由1
2x >0可得x >0
C .由-3x >-9可得x >3
D .由-34x >1可得x <-4
3
4.因为-1
3x >1,所以x -3(填“>”或“<”),依据
是 .
5.用不等号填空:(1)若a >b ,则ac 2 bc 2;(2)若a >b ,则3-2a 3-2b .
6.把不等式2x >3-x 化为x >a 或x <a 的形式是( ) A .x >3 B .x <3 C .x >1
D .x <1
7.小明的作业本上有四道利用不等式的性质,将不等式化为x >a 或x <a 的作业题:①由x +7>8解得x >1;②由x <2x +3解得x <3;③由3x -1>x +7解得x >4;④由-3x >-6解得x <-2.其中正确的有( ) A .1题 B .2题 C .3题
D .4题
8.根据不等式的基本性质,可将“mx <2”化为“x >2
m
”,则m 的取值范围
是 .
9.已知x 满足-5x +5<-10,则x 的范围是 .
10.根据不等式的基本性质,把下列不等式化成x>a或x<a的形式:(1)2x>-4; (2)x-4<-2;
(3)-2x<1; (4)1
2
x<2.
11.某商店先在广州以每件15元的价格购进某种商品10件,后来又到深圳以每件12.5元的价格购进同种商品40件,如果商店销售这些商品时,每件定价为x 元,则会获得不少于12%的利润,用不等式表示以上问题中的不等关系,并把这个不等式变形为“x≥a”或“x≤a”的形式.
12.某商贩去菜摊买西红柿,他上午买了30斤,价格为每斤x元;下午,他又
买了20斤,价格为每斤y元,后来他以每斤x+y
2
元的价格卖完后.发现自己赔
了钱,你知道是什么原因吗?
答案:
1. C
2. C
3. C
4. <不等式的基本性质3
5. ><
6. C
7. B
8. m<0
9. x>3
10. 解:(1)x>-2 (2)x<2
(3)x>-1
2
(4)x<4
11. 解:由题意得(10+40)x-(15×10+12.5×40)≥(15×10+
12.5×40)×12%,∴x≥14.56.
12. 解:由题意得:(30x+20y)-x+y
2
×50>0.整理得5x-5y>0.根据不等式
的性质1,两边都加上5y,得5x>5y,所以x>y.即此商贩上午所买的西红柿的单价高于下午的单价,所以赔了钱.。

相关文档
最新文档