微电网控制策略研究

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微电网控制策略研究Last revision on 21 December 2020

微电网控制策略研究1.分布式电源及其等效模型

1.1分布式电源的定义

国际上关于分布式发电的定义较多,没有形成对分布式发电的统一定义,不仅不同国家和组织,甚至是同一国家的不同地区对分布式发电的理解和定义都不尽相同,以下是几种比较有代表性的:(1)国际能源署对分布式发电的定义为:服务于当地用户或当地电网的发电站,包括内燃机、小型或微型燃气轮机、燃料电池和光伏发电技术,以及能够进行能量控制及需求侧管理的能源综合利用系统;(2)美国《公共事业管理政策法》对分布式发电的定义为:小规模、分散布置在用户附近,可独立运行、也可以联网运行的发电系统;(3)丹麦对分布式发电的定义为:靠近用户,不连接到高压输电网,装机规模小于10MW的能源系统;(4)德国对分布式发电的定义为:位于用户附近,接入中低压配电网的电源。接入电压等级限制为20kV,主要包括光伏、风电和小水电;(5)法国对分布式发电的定义为:接入低压配电网,直接向用户供电的电源。接入电压等级限制为20kV,容量限制为10MW,主要是热电联产、小水电和柴油机。综合以上几种定义的共同点,可以认为分布式电源指的是以新能源发电为主,容量较小且靠近负荷中心的发电设备,如小型风力发电机和光伏电池等。

目前,微电网示范工程中的分布式电源主要包括柴油机、微型燃气轮机、小型水力发电机、小型风机、燃料电池和光伏电池,此外,还有少数的生物柴油机、液流电池、超级电容、飞轮储能等。

1.2分布式电源的并网方式

虽然各种分布式电源都可以接入微电网为负荷供电,但由于它们自身的一下特点和微电网对电能质量及供电可靠性的要求,各类分布式电源的并网方式不尽相同。小型水力发电机、鼠笼型异步风机和柴油机等小型常规发电机输出稳定,可直接并网。光伏电池、燃料电池和直流风机等直流分布式电源输出直流电,通常需要经逆变器接入交流微电网,这种并网方式称为直—交式并网。微型燃气轮机和同步风力发电机输出幅值频率变化的交流电电气量,需要整流逆变后才能并网,这种并网方式称为交—直—交并网,对应的分布式电源统称交直

交分布式电源。

为了保证分布式电源的灵活性和可靠性,在微电网设计中主要采用经逆变器接入的分布式电源,包括直流分布式电源和交直交分布式电源。另外,微电网设计中还加入了大量的储能装置,如蓄电池、超级电容和液流电池等,它们也需要经过双向逆变器与微电网连接。

本文把直流分布式电源和交直交分布式电源统称为逆变型分布式电源(Inverter Basic Distributed Generation,下文简称IBDG),并对其进行建模。

1.3分布式电源建模

无论直流分布式电源,还是交直交分布式电源,为了使逆变器输入端电压满足要求(电压等级和电压稳定性要求),逆变器前端通常需要加入DC-DC变换器,因此逆变器前端可以看做直流稳压电源,IBDG也就可以看做直流稳压电源和逆变器的串联模型,如所示。IBDG等效模型中的PWM逆变器为电压型逆变器,下文对逆变器的分析均针对电压型逆变器。

图1 IBDG等效模型图

2.逆变器常用的控制方法

根据上文,IBDG由直流环节经电压型逆变器并网,逆变器输出端的电压电流频率由逆变器的控制策略决定,电压的幅值由逆变器输入端直流电压和逆变器控制策略共同决定。因此,逆变器的控制策略在整个微电网控制中就显得尤为重要。常用的控制方法有PQ控制,VF控制和下垂控制。

2.1PQ控制

PQ控制指的是逆变器输出的有功功率P和无功功率Q的大小可控,均可以根据设定值输出。

图2 PQ双环控制框图

PQ双环控制框图如所示。在逆变器与电网连接线上测量电流和电压,并对测定得值进行dq变换,dq变换得到电压的d轴分量u d和q轴分量u q,电流的d轴分量i d和q轴分量i q。瞬时功率模块根据基于dq变换的瞬时功率计算方法计算时候逆变器输出的有功功率P和无功功率Q,并将所得结果P和Q输出。功率外环控制模块根据有功功率的设定值P ref和无功功率的设定值Q ref以及逆变器输出的实时有功功率P和无功功率Q生成电流直轴分量参考值i d_ref和交轴分量参考值i q_ref并输出。电流内环控制模块根据i d_ref,i q_ref,i d和i q,生成脉宽调制系数d轴分量P md和q轴分量P mq。逆变驱动信号生成模块根据P md和

P mq生成逆变器驱动信号驱动逆变器工作,使逆变器输出功率与设定值接近,从而实现了逆变器的PQ控制。

图3 PQ外环控制框图

PQ双环控制包括PQ外环控制和电流内环控制。PQ外环控制框图如所示,逆变器输出的实时有功功率P与参考值P ref作比较得到差值ΔP,实时有功功率Q与参考值Q ref作比较得到差值ΔQ,对ΔP和ΔQ分别进行PI控制输出电流直轴分量参考值i dref和交轴分量参考值i qref。本文中,考虑到实际中逆变器均有限流环节,所以对参考电流进行了限幅控制。限幅控制通过中的dq分量限幅模块实现。

图4电流内环控制框图

电流内环控制如所示,i d_ref和i d差值通过比例积分控制输出脉宽调制系数d轴分量P md,i q_ref和i q差值通过比例积分控制输出脉宽调制系数q轴分量

P mq。逆变驱动信号生成模块根据P md和P mq以及PWM相关算法(本文选择SPWM算法)生成逆变器驱动信号驱动逆变器开关管导通和关断,控制逆变器工作。

PQ控制下的逆变器,只要有功功率的设定值Pref和无功功率的设定值Qref设置得当,不超过逆变器的容量和最大允许电流,则逆变器输出的有功功率有功功率P和无功功率Q跟随设定值,因而实现了PQ控制。

PQ控制方式通过将有功功率和无功功率解耦,对电流进行控制。在微电网并网运行模式下,微电网内的负荷波动、频率和电压扰动均由大电网承担,各分布式电源不参与微电网频率和电压的调节,直接采用电网频率和电压作为支撑。

综上,PQ控制的优势在于,可以根据需要动态调节有功功率的设定值Pref和无功功率的设定值Qref,将其应用到光伏发电和风力发电等发电量不稳定系统中,可以最大限度地提高新能源的利用率。其缺点在于,采用该种控制

相关文档
最新文档