电容式压力变送器原理

合集下载

压力变送器的原理和分类

压力变送器的原理和分类

压力变送器的原理和分类压力变送器是一种常用于工业自动化控制系统中的传感器设备,它能够将压力信号转换为标准的电信号输出,以实现对压力参数的测量、监测和控制。

本文将介绍压力变送器的基本原理和常见的分类。

一、压力变送器的原理1. 压力传感器原理压力传感器是压力变送器的核心部件,它通过感受被测介质的压力信号,将压力转换为电信号输出。

常见的压力传感器原理有压阻式、电容式和电感式等。

2. 传感器与变送器的结合传感器检测到的压力信号需要经过处理后才能输出为标准的电信号,以便与控制系统进行通信。

变送器的作用就是将传感器采集到的压力信号进行放大、线性化和隔离等处理,最终输出为标准的电信号。

二、压力变送器的分类根据测量原理和结构特点,压力变送器可分为以下几类:1. 压阻式压力变送器压阻式压力变送器采用特殊的压阻元件,当被测介质的压力作用于压阻元件时,其电阻值发生变化,通过对电阻值进行测量和处理,转换为相应的电信号。

它具有简单、可靠、价格较低等特点,广泛应用于工业控制和仪表领域中。

2. 容式压力变送器容式压力变送器采用能够随压力变化而发生形变的柔性膜片或隔膜作为感应元件,通过测量膜片或隔膜的形变程度来间接测量压力。

它具有高精度、高稳定性、抗冲击性好等特点,广泛应用于流量、液位等精密测量领域。

3. 振动式压力变送器振动式压力变送器利用悬挂在晶体上的微小质量块,并通过质量块在介质压力作用下发生的微小振动来检测压力变化。

它具有响应速度快、可测低压、不易受介质性质和温度影响等特点,广泛应用于石油、化工等工业领域。

4. 电容式压力变送器电容式压力变送器利用被测介质的压力改变感应电容器之间的电容值发生变化,通过测量电容值来间接测量压力。

它具有高精度、高稳定性、抗干扰能力强等特点,广泛应用于医疗、航空航天等领域。

5. 压电式压力变送器压电式压力变送器利用压电材料的压力感应特性,将被测介质的压力转换为相应的电荷输出或电压输出。

它具有体积小、抗振、可靠性高等特点,广泛应用于汽车、航空等领域。

电容式压力变送器原理

电容式压力变送器原理

电容式压力变送器原理电容式压力变送器是一种常用的压力测量仪器,它利用电容原理来实现对压力的测量和转换。

在工业生产中,电容式压力变送器被广泛应用于各种场合,如石油化工、电力、水利、制药等领域。

它具有测量精度高、稳定性好、抗干扰能力强等优点,因此备受青睐。

电容式压力变送器的工作原理主要包括两个部分,电容原理和压力测量原理。

首先是电容原理,电容式压力变送器是利用电容的变化来实现对压力的测量。

当压力作用在传感器上时,传感器内部的感应电极会产生位移,从而改变电容的数值。

其次是压力测量原理,通过测量电容的变化,可以准确地反映出压力的大小。

电容式压力变送器通过电路的放大和处理,将压力信号转换成标准的电信号输出,从而实现对压力的测量和控制。

电容式压力变送器的结构主要包括传感器、信号处理电路和输出电路。

传感器是电容式压力变送器的核心部件,它能够将压力信号转换成电容信号。

信号处理电路主要用于放大和处理电容信号,使其能够被准确地转换成标准的电信号。

输出电路则将处理后的电信号输出到控制系统中,实现对压力的测量和控制。

电容式压力变送器的应用范围非常广泛,可以用于测量气体、液体等各种介质的压力。

在工业自动化控制系统中,电容式压力变送器可以实现对压力的远程测量和控制,为生产过程提供了重要的数据支持。

同时,电容式压力变送器还可以与计算机、PLC等设备配合使用,实现对压力信号的处理和分析,为工艺优化和设备维护提供了重要的技术支持。

总的来说,电容式压力变送器以其精准的测量、稳定的性能和广泛的应用领域,在工业自动化控制系统中扮演着重要的角色。

随着科技的不断进步和应用需求的不断增加,电容式压力变送器将会迎来更广阔的发展空间,为工业生产提供更加可靠、精准的压力测量和控制技术支持。

电容式压力变送器结构原理

电容式压力变送器结构原理

变送器 转换放大
电路
感谢观看
2.动态特性好
电容差压变送器活动零件少,而且质量很好,本身具 有很高的自振频率,所以动态特性好。
电容式差压变送器的主要优点
3.能量损耗小
电容式差压变送器的工作是变化极板的间距,而电容 变化并不产生热量。
4.结构简单,适应性好
电容式差压变送器的主要结构是两块金属极板和绝缘层, 结构很简单,在振动、辐射环境下仍然能正常工作。
反馈电路
I0 4~20 mA
3 测量部件:将被测差压或差压变化转换成差动电容值的变化
4 测量原理分析
设d0-测量膜片与两电极间的原始距离,-极板间介质的介电常数,
A-极板间的有效面积, P=0时,得到
Ci1
Ci2
A d0
4 测量原理分析
Ci1
Ci2
A
d0
有差压作用时,感压膜片产生弹性变形,电容发生变化,即
零点迁移电路
放大电路ΔS↑
ΔPi↑ 感压 差动
δc↑ 电容-电流 Ii
放大和输出
I0
0~将10I0s电k膜Pa片流测信量部电号件容转换成转转换4换~电器2路0mA.DC统一标限准制电电路流信4号~2输0 m出A 。 反馈电路
2 电路工作Байду номын сангаас程
差动电容由高频振荡器供电。当差压P使感压膜片 产生位移时,电容Ci1增加,Ci2减小,流经Ci1、Ci2的高频 电流发生变化,经解调器解调,输出两组直流电流信号, 一组为i1-i2,即差动信号IS,另一组为i1+i2,即共模信号IC。
2 电路工作过程
其中共模信号IC反馈到一对标准电阻上形成反 馈电压与基准电压比较,使i1+i2=常数。

1151电容式模拟压力变送器技术培训教材

1151电容式模拟压力变送器技术培训教材

1151电容式模拟压力变送器技术培训教材1.仪表基本工作原理:仪表采用微位移电容传感器,被测压力作用丁膜头的隔离膜片,通过灌充硅油,传导到电容室(a室)的中心感压膜片,使之产生微位移从而改变了电容室的差分电容,经过特殊设计的电子电路,将此差分电容的相对值转换为电流信号加以放大输出.因此整个变送器除中心感应膜片的微小位移外,(仅0.1MM),无机械传动及调整装置.顾精度高, 稳定性好,抗静压和振动.由丁上述特点,罗斯蒙特核级压力变送器1152,1153及1154的基本原理均采用电容式传感器及配套的模拟电子电路.19 201,玻藕诡缘体2.海充液3.陶盆导管L负庆厕引医口5•员压惆隔离膜片&.中心感座慎片7.负压侧法兰5压蒯弧形电极匝沱路板正压侧郊形电檄11-世.正压的法兰13.函适蝶检■.焊接新封环15•正压侧引田口】土正困侧隔离膜片I了口型僚封环拙.鼓寤藉件基座19.密封管20,敏感那件充体电容式变送器测蚩部分结构图1- 1:核心部件的结构特点:参考上图,1151核心部件/俗称:模头的主要分为5部分:中心感压膜片6.是在施加予张力条件下焊接的.这样一来,既可使膜片的位移与输入差压成线性关系,乂可以大大减小正负压室法兰的张力和力矩影响而产生的误差.中心膜片两侧为弧型电极(Alphaline?),可以有效地克服静压的影响及单向过压保护的问题.除中心感压膜片6.外,(正,负压侧弧型电极8,10差动电容的固定电极),正,负压侧隔离膜片16,5,玻璃绝缘体1和敏感部件基座18构成&室.室中充满灌充液,(硅油或氟油),用以传递压力.为保证充液不会汽化,变送器的工作温度压力点必需落在其灌充液/油的汽化曲线的上方!(Y轴为绝压)1151——充硅油时,MAX:104C!@1 Atm.这与1152型核变是样的.Figure 1.4: The Vapor Pressure Curve中心感压膜片6与正,负压侧弧型电极8,10差动电容的固定电极构成两个差分电容,C-1,C-2;当输入压力为零时,该电容约为150pf.1-2:由上述特点得到的测量原理:电容式压力传感器的理论分析证明其传输特性为:1.差动电容的相对变化值^ Cid/ △ Cis与被测差压成线性关系.2.差动电容的相对变化值^ Cid/ △ Cis与灌充液的介电常数无关.这样一来, 传感器的温度系数大为改观.* Cid=两电容之差;* Cis=两电容之和;统性讽 塾电路糖普控制放大器1-3:转换放大部分的电子电路电路主要包括电容-电流转换电路和放大及输出限幅电路两部分.前者由振荡 器,解调器,振荡控制放大电路和线性调整电路 4部分组成;后者由电流放大,量 程调整,零点调整迁移电路,输出限幅电路及阻尼调整电路等构成.各电路的相互 联系请参考下图. 注意,电路的关键功能是输出一个与模头电容成正比的信号电流给后面的放大电 路.-8—/电流放大基播电1E转换放大部分原理框图A:电容/电流转换及线性调整电路:差动电容传感器的a 室由振荡器供电.因此,两个电容的电容量变化导致振荡器的 等效谐振电容变化,从而影响振荡频率,经解调器相敏整流后,被转化为电流的 变化,它输出两组信号:如忽略分布电容的影响,其差模信号Id 的大小与差动电容 的变化之差成正比;另一组为共模信号Ic 它与两电容之和Cis 成正比;—即:Id =i2 —i1 =(Ci2 —Ci1)Vpp* f式中:峰值电压25-32V,频率:32Khz.可见,共模与差模电流的平■均值不仅与差分电容有关,还与振荡器输出电压峰值及频率成正比.我们的问题就是要排除上述除差分电容以外的影响,让输出电流的平■均值仅与电容的变化率成线性关系.参照下图,并进行节点分析可得到上式电谷 > 电流转换电路电容 >电流转电路的工作原理:由电路图可知:Id =i2 -i1 =(Ci2 -Ci1)Vpp* fIc =i1 i2 =(Ci2 Ci1)Vpp* f式中Ic, Id分别为流过电容C1,C 2的交流平均电流之和与之差,与传感器的模片电容之和与之差成正比.I d = Ic%也Ci2 Ci1两式相除得:...Ci2-Ci1Id = Ic Ci2 Ci1该式表明,只要维持Ic的包定,即可使差动信号与差动电容的相对值成线性关系如何实现这一目的呢?这就是控制振荡器的任务!共模信号Ic作为振荡控制放大电路的输入,通过IC1的深度闭环负反馈作用来控制振荡器的供电电压(25-30V/32KHZ),即IC1的输出,也即振荡器的振幅,反过来实现Ic的包定.从而保证了Id与差压AP之间的单一因果关系.Id与调零信号及反馈信号(量程信号)迭加后经电流放大电路放大成4-20mA的输出电流Io.由丁深度的负立馈,Io号Id保持高度的线性.线性补偿电路:由丁传感器的a室的电容电极存在分布电容,该电容使得a室的总电容值(见下式分母)随差压的增加而增大的非线性因素无法忽略,从而使传感器的差模信号Id与AP之间不存在线性关系.为克服分布点容所造成的非线性误差,在变送器线路中设计了线性补偿电路.该电路使Ic随AP的增加而适当减少来补偿总电容值的变化,从而使Id输出保持线性.线性调整是通过电位器R24实现的.补偿的结果可使非线性误差小丁+/-1%..B:放大及输出限幅电路:放大及输出限幅电路的作用是把电容电流转换成符合仪表控制要求的标准信号如4-20MA.如同振荡控制电路,输出放大同样采用深度负反馈,通过电位器调整反馈量从而改变放大器的增益进行量程调整.要注意的是,该调整会影响零点!零点是通过对IC3的偏置电压进行调整实现的,同时,对偏置电压分挡调节实现零点的迁移.同样情况,零点的变动会影响满度值(但不是跨度),因此上述调整要反复进行!这与智能变送器不同!为了限制输出电流的最大值,电路利用晶体管饱和结电压,构成30MA限流电路. 上述电路将变送器的电路控制在2.7MA至30MA之间.C:阻尼电路:为使变送器具有抑制输入差压瞬间变动对输出电流的干扰,电路中设有阻容式时间常数电路,用来调整阻尼系数(0.2S-1.67S)D:零点及量程的温度补偿根据变送器模头的正,负温度系数,电子电路内设置了负温度系数的热敏电阻来补偿零点及量程的误差.零点的温度补偿电阻在仪表出厂时经过计算机测试系统的精确选定,以保证补偿的最佳结果.<1151电容式压力变送器电原理图>E:仪表的输入电路:D14的作用是为保证指示表头未接入时的输出电流通路,D13除起稳压作用外,还起电源反向保护作用.由丁变送器电子电路内部为电容藕合接地,因此,如使用兆欧表检查对地绝缘电阻时其输出电压不宜超过100V!2.仪表的选型安装:2-1: 1151的工作类型及相应量程:1151变送器按用途不同分为差压,表压,绝压等类型.除此以外,共有8种量程可选.表压范围从7.5Kpag到41369Kpag本压范围从7.5Kpa到6895 Kpa,绝压范围从37Kpa 到6895 Kpa.此技术指标1152型核表与其一样.2-2:静压的限制:静压范围对电力应用十分重要,因此有必要关注.例如:DP型变送器量程4,5,零点误差为2000Psi下+/-0.25%URL!量程误差可修正至:+/-0.25%输入读数./1000Psi.对于1151DP系列产品,任意一侧压力加至0-13.79Mpa时,不会引起损坏!同样,在上述静压范围内所有性能指标保持不变.对于1151HP系歹0产品,任意一侧压力加至0psia-4500psig(0-31Mpa)时,不会引起损坏!同样,在上述静压范围内所有性能指标保持不变对于1151AP系列产品,为13.79Mpa.对于1151GP系列产品,其安全使用范围示量程的不同而不同,范围应在13.79Mpa-51.71Mpa.2-3:量程可调范围:当使用差压变送器测量流量时,量程可调范围变得十分重要.量程可调范围的定义是:URV/MINIMUN SPAN!例如:1151S: 50:1; 1152D/A 6:12-4:安装不当对仪表的最终性能影响很大.常见的安装问题大致有:1.泄漏2.摩擦损失3.气体引压管中有液体或液体引压管中有气体.(压头误差)4.测差压时,引压管温度不等引起密度变化(压头误差)5.变送器安装不当.针对气体,液体,蒸汽应用的不同安装.FIGURE 2^2. BenchHook^.山SIJ L U1二二心二2-5:仪表的投运1. 把排气,排液工作.2. 测量液体,蒸气时应先行充液.3. 差压变送器投运时,应避免单向受压.即:开平衡阀 >高压侧 >低压侧 >关平衡阀4. 活零.5. 调阻尼.6. 手操器的应用.使用手操器可以大大方便用户对智能仪表的现场组态,调校及故障诊断.对使用 HART 通讯协议的仪表,其最小负载电阻为250欧姆!现有的最新手操器型号为375型.你必须了解每一个仪表的DDS 菜单以便熟练 操作. 通过操作培训,你可以掌握必要的步骤.常用的功能菜单包括:1. BASIC SETUP (基本设置)在此菜单下,你可以完成:A. 修改工程变量的单位及输出量程;B. 工艺位号;C. 输出变量的开方;D. 输出变量的阻尼时间常数.2. DIAGNOTICS AND SERVICE (诊断及服务)在此菜单下,你可以完成:A. 皴路测试;B. 传感器的校验,主要为传感器活零;(ZERO TRIM )2. PROCESS VARIABLES (过程变量)在此菜单下,你可以观察:压力变量;4-20MA输出等主要参数.275型手操器的外形与键盘分布function Keys■Action KeysAJpl^numeiic KeysShift KeysF -HARTG Gi m m E n 一G a -£ s e m E T I B oi D 二 F 1 DEVICE1 mocE%吝RUBLESM MZ O B T-O S含SER言E」甯MmnSETUP1 习eSSlfiB 2 PEKsntR 昌中3 Ana^og ou-PE1TESTDWOE3E E BK A T O 3RANGE至吉段帛一言5 IbansfEr3O U 2TOOHIWTIO H4口碧EEZ:T 萎>r:T ±-Se*-簧Z T R 1E A Z.A L 吕o m T wSBISO RT R B 3U1W K- 2 a m s ^^5 BU 骨ks n> MW M ft 阜0星 京『ME W孕_J_蠢lia 钮一2Iff 乏l*d Ig A Tg—i.zer o Tlim2 Lowe 「M w m cl —IS 33 uppg 「T3:m4 ¥$-'lTrmpw *WHABLES15W S 121^.褂号 1 z t r 'ol --«m 2 Lower 5Mlwi 「—l「m3 Uppg-肇5g-T「-m一勺可ENSURE 质至SR 工dMMEUHs MRiMLES2 RAHGEYALU席3fAThneleri m c cE <w wwmLEm 2WLQG T 3Ard&go £.pur AJa-B」X iOUTPUT1F mL o DEVICT MFO 3MmefTVP^3£s eci 151佟判活B VmSEO笠K T RSIu25EHSO R 5Em•料E1po=Md 「察 s 7Nunlt4r £tR ・0IUHE5蠡mMe3 Bltim L ET d *4-BLTBioptiontrDA intprtacEt*»PlTab Key△J *"* A @v®FunckKin key (for multipve^cy cornt>inatK>n fu^ctjonality)BASIC FEATURES AND FUNCTIONSTwin* 2-2 375 Field Cwnmunicator diagramMult-rfunetian LED3. 模拟输出仪表的调校:智能式压力变送器因采用高性能的微处理器,因此,其线性化和各种补偿均自动进行 但是,通常的模拟输出仪表(大多数核级变送器届丁此类)的补偿只能通过分立电子电 路经人工完成.1151变送器的现场调校包括:*安装零点的调整.*阻尼的调整.(0.2-1.67S)*迁移量的调整. *线性度矫正.*静压的补偿调校.*此5项功能1152与其一样!<37曲操器的键盘>Enter k#yB_ Pow »r wupdF 低iwrqmr, connection (sidejOnroFf k «yB »cK 晌 mad]u±tnk€nt hfi/Alphari Ltm? re keypadHART and fieldbus communndb^n. Status (back)Touch sc r «n dsplav4 Ext »an &S poet3-1. 现场调零FIGURE 3-4. Zerqand SpanAdjuslm&nl Screws.<5.5E.安装变送器,释放或平衡仪表压力,并送电.F.等待仪表稳定.G.松开仪表的名牌,使用改锥调正零点螺母,使仪表输出4MA.此调正不会影响20MA的状态.任何由丁安装引起的零点,可以用此法消除.3-2. 迁移:A.迁移量:指零点的位置与仪表的当前量程跨度的白分比%.B.迁移范围:迁移后的零点及量程不应超过仪表的最大允许量程C.大范围内的迁移须调整电子板上的跳线.(请参考跳线图)D.先进行零点基础上的量程校准,再进行迁移.E.负迁移为600%,正迁移为500%,迁移不影响SPAN.FIGURE 3-2. Zero Adjustfrerrt Range./(rrAI 600*% Zero Elevallan20 /(InHaO)1n i II iII600吼 Zero Elevation*"Grapihs- bwiMi on a rage 4 (0-25 lnH 2O to CM 501岫Q) 1151 with acalibrBle<i span of 25 inHjO.正负迁移图>ZERO ELEVATION :负迁移. ZERO SUPPRESSION:正迁移.Output500% Zero Suppires-slon 1FIGURE 3-3 Ele/aiorandSuppression JumperSetir^s.WLWLL迁移跳线>3-3. 线性化调整.A.通常无须进行.B.如需调整,则:1.加50%量程压力,2.记录该点的输出误差值.(mA)3.将此值乘以6后再乘以仪表的当前的量程比.4.如果上述值为负,则将其加在20mA上,反之减去.5.使用该输出值重校量程(即加满量程输入压力时调整阻尼电位器).下图为线性及阻尼调整电位器.3-4. 阻尼调整.可通过下图组尼调整螺钉进行.出厂时为0.2S,最大可调整为16.67S.3-5. 静压的补偿:Linearity AdjustmentScrewDamping AdjustmentScrewAccess to IknsarKy and damping adjustments Is gained by i amovingcov&ron circuit beard ^iclo.Location of linearity adjn stnient screws may vary slightly betw#^noutput codas.A.静压影响定义为:每1000Psig静压对仪表标定量程的偏移误差.仅对差压变送器有意义!B.有3种办法计算补偿量:1.计算输入的压力,调校20MA.例如:RANGE-4,0-150H2O,静压1500PSI,查表得知补偿系数为:-0.0087,则有 150+[(-0.0087X150)*1500/1000]=148.04H2O;施加上述压力作为量程值重新校准20MA.2.查表,找到给定压力下的输出值,加常压下的输入压力,调整量程电位器,校到此值.3.查表求得RANGE3-8的静压补偿系数.再计算相应输出.例如:RANGE-5 的系数为0.131,则,0.131*1500Psi/1000Psi=0.197ma.贝U CAL.POINT=20MA+0.197=20.197MA.将仪表输出标定到此值即可!<模头电路板>FlGlJlRE 5-3. Header Board Ccnnectlois.fGOMroiMENTSIDEUP)4:故障的判断及排除:4-1.当变送器出现故障时,应首先排除外部电路及应用安装方面的因素4-2.当确认仪表需要分解检查时,参照下图进行分解.3-5. 静压的补偿: <占sgLmsLL 4-3.如凭目视未发现有元器件损坏,则进行模头电容的接地和绝缘测试 4-4.参照模头电路板图,使用100V以下的兆欧表测试接插件1-4脚对 模头外壳的电阻,应大丁 10兆欧.4-5.测试接插件第8脚对模头外壳的电阻,应为0欧姆.4-6.如上述测试正常,仍无法确定故障,应进行电子板更换测试,必要时,更换 模头组件.<1151变送器分解图>FIGURE 6-1. Differential Pressure (DP) Transmitter Exploded View.。

压力变送器说明书

压力变送器说明书

一、1151压力变送器工作原理被测介质的两种压力通入高、低两压力室,作用在δ元件(即敏感元件)的两侧隔离膜片上,通过隔膜片和δ1151压力变送器原理图元件内的填充液传到预张紧的测量腊片两侧,测量膜片与两侧绝缘体上的电极各组成一个电容器,在无压力通入或两压力均等时测量膜片处于中间位置,两侧两电容器的电容量相等,当两侧压力不一致时,致使测量膜片产生位移,其位移量和压力差成正比,故两侧电容就不等,通过检测,放大转换成4-2OmA的二线制电流信号。

压力交送器和绝对压力交送器的工作原理和差压变送器相同,所不同的是低压室压力是大气压或真空元份结构图见右图二、电气原理图1151压力变松电气原理图三、主要特点电容式变送器有下列特点1.品种齐全、精度高、稳定性好,价格比同类进口仪表便宜2.采用二线制工作方式3.敏感元件采用固体化结构,小型坚固,抗振能力强4.主要部件可与1151同类产品进行互换,5.关键零部件、电子元件及接插件均采用国际上高质量产品。

本系列产品可靠性好,质量稳定,故障率少。

6.正迁移可达500%,负迁移可达600%(最小量程时)7.阻尼可调电容式变送器品种齐全,用户可按不同需要任意选用,自微差压至大差压,从低压力至高压力、绝对压力、高静压差压。

DP/GP型变送器带上各种远传装置后,就成为远传式差压、压力变送器。

采用ANSI标准,管道尺寸3",法兰等级150磅(2.5MPa),插入筒式远传装置后,插入筒长度一般结构尺寸八、1151变送器典型安装变送器可以直接安装在测量点处,可以安装在墙上,或者使用安装板(变送器附件)夹拼在2''(约φ50mm)的管道上。

变送器压力容室上的导压连接孔为1/4-18NPT螺纹孔,接头上的导压接孔为1/2-14NPT内锥管螺纹(或M2OXl.5-18外螺纹),根据需要可选择与引压接头1/2-14NPT锥管螺纹的过渡接头。

变送器可以轻而易举地从流程1艺管道上拆下,万法是拧下紧固接头的两个螺栓。

压力和差压变送器详细详解使用说明书

压力和差压变送器详细详解使用说明书

压力和差压变送器详细使用说明(一)差压变送器原理与使用本节根据实际使用中的差压变送器主要介绍电容式差压变送器。

1。

差压变送器原理压力和差压变送器作为过程控制系统的检测变换部分,将液体、气体或蒸汽的差压(压力)、流量、液位等工艺参数转换成统一的标准信号(如DC4mA~20mA 电流),作为显示仪表、运算器和调节器的输入信号,以实现生产过程的连续检测和自动控制.差动电容式压力变送器由测量部分和转换放大电路组成,如图1。

1所示。

图1.1 测量转换电路图1。

2 差动电容结构差动电容式压力变送器的测量部分常采用差动电容结构,如图1.2所示。

中心可动极板与两侧固定极板构成两个平面型电容H C和L C。

可动极板与两侧固定极板形成两个感压腔室,介质压力是通过两个腔室中的填充液作用到中心可动极板。

一般采用硅油等理想液体作为填充液,被测介质大多为气体或液体。

隔离膜片的作用既传递压力,又避免电容极板受损。

当正负压力(差压)由正负压导压口加到膜盒两边的隔离膜片上时,通过腔室内硅油液体传递到中心测量膜片上,中心感压膜片产生位移,使可动极板和左右两个极板之间的间距不相对,形成差动电容,若不考虑边缘电场影响,该差动电容可看作平板电容。

差动电容的相对变化值与被测压力成正比,与填充液的介电常数无关,从原理上消除了介电常数的变化给测量带来的误差。

2。

变送器的使用(1)表压压力变送器的方向低压侧压力口(大气压参考端)位于表压压力变送器的脖颈处,在电子外壳的后面。

此压力口的通道位于外壳和压力传感器之间,在变送器上360°环绕。

保持通道的畅通,包括但不限于由于安装变送器时产生的喷漆,灰尘和润滑脂,以至于保证过程通畅.图1.3为低压侧压力口。

图1.3 低压侧压力口(2)电气接线①拆下标记“FIELD TERMINALS”电子外壳。

②将正极导线接到“PWR/COMN”接线端子上,负极导线接到“-”接线端子上。

注意不得将带电信号线与测试端子(test)相连,因通电将损坏测试线路中的测试二极管。

电容式压力变送器工作原理

电容式压力变送器工作原理

电容式压力变送器工作原理1、主要特点1151系列智能电容式变送器除了一般电容式变送器的固有特点外,还具有如下特点:·智能电子部件仅由一块组成·量程比15:1或10:1·0-0.6-0-42000KPa·就地按鍵调整量程和零点·可更新现存的TY-1151(包括1151)各种模拟式变送器为智能仪表·符合HART协议,可用HART通讯器268、275与本智能表进行双向通讯而不中断输出信号·在采用HART协议的分散控制系统中同主机进行双向通讯·具有自诊断和远传诊断功能·带有EEPROM,不怕断电丢失数据2、工作原理被测介质的两种压力通入高、低两压力室,作用在δ元件(即敏感元件)的两侧隔离膜片上,通过隔离片和元件内的填充液传送到测量膜片两侧。

测量膜片与两侧绝缘片上的电极各组成一个电容器。

当两侧压力不一致时,致使测量膜片产生位移,其位移量和压力差成正比,故两侧电容量就不等,通过振荡和解调环节,转换成与压力成正比的信号。

压力变送器和绝对压力变送器的工作原理和差压变送器相同,所不同的是低压室压力是大气压或真空。

A/D转换器将解调器的电流转换成数字信号,其值被微处理器用来判定输入压力值。

微处理器控制变送器的工作。

另外,它进行传感器线性化。

重置测量范围。

工程单位换算、阻尼、开方,,传感器微调等运算,以及诊断和数字通信。

本微处理器中有16字节程序的RAM,并有三个16位计数器,其中之一执行A /D转换。

D/A转换器把微处理器来的并经校正过的数字信号微调数据,这些数据可用变送器软件修改。

数据贮存在EEPROM内,即使断电也保存完整。

数字通信线路为变送器提供一个与外部设备(如275型智能通信器或采用HART协议的控制系统)的连接接口。

此线路检测叠加在4-20mA信号的数字信号,并通过回路传送所需信息。

通信的类型为移频鍵控FSK技术并依据BeII202标准。

电容式压力变送器原理

电容式压力变送器原理

电容式压力变送器原理
电容式压力变送器是现代工业技术开发的一项关键技术,主要作用是把变得的
压力变化转变成对应的电信号,以满足对测量技术的要求。

电容式压力变送器原理是把外部压强作用到内部的压力感应电容上,进而使其
容量发生变化,并产生电信号,以实现压力传感和测量。

原理是压力变送器上的压力流体将压力作用到保持压力适中的压力容器上,此时压力容器的容量就发生变化,从而引起变压器的压力感应电容容量的变化,变化的大小与压力流量的压力有关,变压器上的电容接受这个变化,进而将它转换成电信号,最后输出电信号。

电容式压力变送器的优点在于其测量范围广,准确度高;整个系统工作稳定,
免维护,价格低,可以满足大部分工程上对压力测量的要求。

另外它还具有噪声少、可靠性强、小尺寸及模块功能完善等优点,使其应用范围越来越广。

总而言之,电容式压力变送器是一种简单易用、快速响应、准确度高的变送器,可以将外部压强变化转变成对应的电信号,以满足对测量技术的要求,是一种新兴的工业技术和测量技术。

讲得最透彻的电容式差压变送器原理(带图).

讲得最透彻的电容式差压变送器原理(带图).

各种电容式压力变送器外形图
低压侧 进气口 电子线 路位置
高压侧 进气口 内部不锈钢膜片的位置
各种电容式压力变送器外形图
各种电容式压力变送器外形图
法兰
变送器包括测量部分和转换放大电路两部分,其构成方 框如图所示。输入差压pi作用于测量部分的感压膜片, 使其产生位移,从而使感压膜片(即可动电极)与两固定 电极所组成的差动电容器之电容量发生变化。此电容变化 量由电容—电流转换电路转换成电流信号,电流信号与调 零信号的代数和同反馈信号进行比较,其差值送入放大电 路,经放大得到整机的输出电流I0。
电源 装置
变送器 现场 两线传输
接收 R仪表 控制室
采用两线制变送器不仅可节省大量电缆线和安装费 用,而且有利于安全防爆。因此这种变送器得到了 较快的发展。 要实现两线制变送器,必须采用活零点的电流信号。 由于电源线和信号线公用,电源供给变送器的功率 是通过信号电流提供的。在变送器输出电流为下限 值时,应保证它内部的半导体器件仍能正常工作。 因此,信号电流的下限值不能过低。国际统一电流 信号采用4~2OmA(DC) ,为制作两线制变送器创造了 条件。
调零 零点迁移 X 测量部分 zi+ z0 _ C zf 放大器 K 反馈部分 F y
由下图可以求得变送器输出与输入之间的关系为:
Kห้องสมุดไป่ตู้(CX Z 0 ) Y 1 KF
式中,K—放大器的放大系数;
F—反馈部分的反馈系数; C—测量部分的转换系数。 当满足深度负反馈的条件,即KF>>l时,上式变为:
R29 Vo1
BG1
T1 5 7 C19 6 C20 R30 9
振荡器原理图
振荡器由放大器IC1的输出电压Vo1供电,从而使IC1能 控制振荡器的输出幅度。

浙大中控CJT型电容式智能压力变送器

浙大中控CJT型电容式智能压力变送器
非接液件材料
灌充液体:硅油。 螺栓和螺母:不锈钢。 电气壳体:低铜铝合金。 “O”形圈:丁腈橡胶。
引压管接口
法兰引压口:1/4-18NPT。
电气导线管接口
M20×1.5 两个接口。
外壳结构
IEC IP65 防护等级。
重量
约为 3.5kg(不包括选件)。
附件
连接块 (椭 圆法 兰): 可 将 导压管 接口 螺纹 转换为 1/2-14NPT,可选件。
明。
防爆结构
隔爆型:ExdⅡCT6。 本安型:ExiaⅡCT6。
量程和零点调整
可通过手持通讯器或变送器顶部的零点和量程按钮进 行调整;零位与量程可设定在量程范围内的任何值上。
正负迁移
零点可在各自量程段的极限范围内正负迁移。
阻尼
用手持通讯器进行调整,可设定在(0.1~16)s 之间。
报警
若变送器在自诊断时发现故障,则模拟量信号将输出高 报警(22mA)或低报警(3.8mA)电流以警告用户。
振动影响
在任意轴线上,S=0.15mm,频率为(10~55)Hz,引起 的误差为最大量程的±0.1%/g。
电源影响
小于输出量程的±0.05%/V。
负载影响
小于输出量程的±0.05%。
安装位置影响
最大可产生±0.24kPa 的零点误差,但可校正。
结构指标 接液件材料
隔离膜片:316L 不锈钢、哈氏合金 C。 排气/排液阀:316L 不锈钢。 法兰和接头:316L 不锈钢。 “O”形圈(与介质接触):氟橡胶。
输出
可选择线性或开方(4~20)mA 输出;叠加在(4~20)mA 信 号上的数字过程变量可提供给任何符合 HART 协议的主机。
电源

电容式压力变送器简介

电容式压力变送器简介
电容式压力变送器在天平中的应用
不象大多数实验室天平采用电磁平衡测量原理及绝大多数计数秤采用的应变片技术,美国Setra采用了自己发明的独特的”可变陶瓷电容技术” .这个设计提供了重量测量的牢靠,精度和合理的价格,两个放置平行的镀金条被热熔于陶瓷传感器模块中.两个电极间间距只有几百分子一毫米.当一负载放在天平的秤盘上,引起陶瓷梁的弯曲,改变两个电极间间距,电极被接入LC的震荡电路,震荡频率随负载测量电容而改变,从零负载到满负载(天平的标称量程),频率变化可达每秒2百万个周期.因为我们天平内的的微处理器可每秒内的每一个周器的变化,我们很多天平的型号可拥有极高的显示分辨(e.g., 1 part in 500,000),同样,工业计数秤也拥有非常高的内部分变率(如model 2000C可检测1 ppm的重量变化)这个测量重量的设计非常独特,Setra已取得若干个相关的专利,设计的简单性非常好的运用与相对小巧部件的计数,没有运动部件的设计又加强了可靠性. 1987年, ISWM(国际称重计量协会)授予Setra技术卓越奖,表彰Setra同时在新技术的发明对科学和测量工业的贡献和已被证明的商业上成功. Setra全力投身于发现新的很更好的方法测量重量,下一代高精度的电子天平和秤已在Setra研发部门展开.
Setra压力变送器的工作原理
Setra的压力变送器采用了结构简单、坚固耐用且极稳定的可变电容形式,下图为Setra压力变送器的结构示意图,可变电容由压力腔上的膜片和固定在其上的绝缘电极所组成,当感受到压力变化时,膜片要产生微微的翘曲变形,从而改变了两极的间距,采用Setra独特的检测电路测电容的微小变化,并进行线性处理和温度补偿。传感器输出与被测压力成正比的直流电压或电流信号。精巧的结构、高性能的材料及先进的检测电路的完美结合,赋予了Setra压力变送器以很高的性能。

压力变送器的原理安装和使用

压力变送器的原理安装和使用

压力变送器的安装及使用压力是重要的工业参数之一, 正确测量和控制压力对保证生产工艺过程的安全性和经济性有重要意义;压力及差压的测量还广泛地应用在流量和液位的测量中;压力变送器的任务是将检测出来的非电量物理量大小转换为相应的电信号,传输到显示仪表中进行监视和控制,将非电量转换为电量的方法有:1电容式压力变送器2扩散硅压阻变送器3电感式变送器4振弦式变送器20世纪80年代中末期,国内开始引进国外生产的压力变送器,主要是非智能的,在选购变送器时,要根据生产工艺过程的不同压力检测点的压力,来选择不同压力变送器的量程,由于被测压力点数量多,订货时,所定压力变送器的规格多,同时,在备件上造成很大的资金积压;由于早期的压力变送器没有微处理器进行各种性能的补偿,容易受到环境的影响,造成仪表的漂移和测量不准确;美国霍尼韦尔HONEYWELL公司于1983年独家率先向全世界推出智能化现场仪表ST3000 100系列全智能压力变送器,这是对传统现场仪表的一次深刻变革它为工业自动化仪表及其系统应用,向更高层次的发展奠定了基础,全智能变送器的问世,开创了现场仪表的新纪元;美国霍尼韦尔公司在92年4月向中国推出了ST3000/900系列全智能变送器,它具有数字式全智能变送器的全部优越性能,而价格接近传统模拟式常规变送器;97年底,霍尼韦尔公司又推出可测高温的压力变送器,现场环境温度最高可达150℃;通过使用专用的手操器,可以对运行中的变送器进行零点、量程、变送器的工作温度、使用单位等很多参数的监测和修改,非常的方便;20世纪90年代中末期,引进的压力变送器的几乎是数字式全智能变送器,在此基础上,国内有不少厂家与国外的公司合作,生产智能仪表;智能型压力变送器智能型压力或差压变送器是在普通压力或差压传感器的基础上增加微处理器电路而形成的智能检测仪表,压力或差压变送器的精度为级,量程范围为100:1或50:1,时间常数在0~36s可调,仪表的电压范围为15~36VDC,正常工作电压为24VDC,两线制仪表,输出电流4~20mA,一般使用HART通讯协议;智能型压力变送器不仅能输出电流信号,还在电流信号的的基础上传输双向数字通讯信号;模拟、数字两种信号方式同时使用一对电缆,通过手持操作器,可以非常方便地对1500m 之内的现场变送器进行各种工作参数的设定、量程调整以及向变送器加入信息数据;智能型压力变送器具有自修正、自补偿、自诊断及错误方式告警等多种功能,大大提高了变送器的精确度,简化了调整、校准与维护过程,通过通讯使变送器与计算机控制系统直接组态;全智能变送器的主要特点:高安全、高可靠性高稳定性、重复性高精度宽量程比宽移率宽域温度静压补偿过程组态完善的自诊断功能双向数字通讯模拟、数字两种输出方式全数字技术;电容式压差传感器:电容式压差传感器的核心部分如图所示;1—高压侧进气口2—低压侧进气口3—过滤片4—空腔5—柔性不锈钢波纹隔离膜片6—导压硅油7—凹形玻璃圆片8—镀金凹形电极9—弹性平膜片10—腔它主要由测量膜片金属弹性膜片、金属凹形玻璃球面及基座组成;测量膜片左右空间被分隔成两个室; 在两室中充满硅油,当左右两室分别承受高压P2和低压P1时,硅油的不可压缩性和流动性,便能将压差ΔP=P2-P1传递到测量膜片的左右面上; 因为测量膜片在焊接前加有预张力, 所以当ΔP =0时处于中间平衡位置并十分平整, 此时定极板左右两电容的电容值完全相等, 即CH=CL,电容量的差值ΔC=0; 当有压差作用时, 测量膜片发生变形, 也就是动极板向低压侧定极板靠近, 同时远离高压侧定极板, 使得电容CH<CL;通过引出线将这个电容变化输送到电子转换电路,可实现对压力或压差的测量;压差变送器外形图压力变送器的工作原理比压差变送器简单,只有一个测量端,另一端不接压力管,参考压力为环境压力;压力变送器外形图压力的单位介绍:在国际单位制中, 压力的单位是帕斯卡, 简称帕, 代号为Pa; 它的定义是在每平方米面积上垂直作用1牛顿的力, 即实际使用中,常常有巴、毫米水柱、毫米汞柱、工程大气压等压力单位,它们之间的转换关系见下表:压力变送器的接线:目前,压力变送器更多的用于DCS控制系统中,在现场安装的压力变送器均带有4~20mA 输出和数字通讯功能,通过屏蔽电缆连接到现场电力室模件柜AI模件的输入端;压力变送器和手操器的接线手操器使用非常方便,可以在现场电力室内的DCS模件柜相应的端子上使用;通过手操器,可以检查和设置压力变送器的零点、量程、变送器工作点的温度、工程压力单位的选择,如Pa、Bar等工作情况,例如某一压力点的零点或量程需要改变,在电力室就可以通过使用手操器轻松改变;压力变送器的安装:压力变送器的安装有几种,目前经常用到的有:1直接管道安装方式,这种安装方式简单,用材少;直接管道安装压力变送器2法兰安装法兰安装主要应用于液位测量,利用液体的静压力对液位进行测量;3支架安装管装平支架大多采用此种安装方式,安装维护方便,以往在露天的位置使用仪表箱作为保护压力变送器免遭粉尘、雨淋,但现在的压力变送器的防护做的很好,防护等级在IP65,工作的环境温度-40~+75℃,耐震动、防尘、防雨,5年免维护;压力变送器的取气方式:压力变送器的取气分两种,第一种是压力变送器取气,见示意图:压力变送器取气管道实际连接图压差变送器的取气压差变送器取气管道实际连接图压力变送器不是直接安装在管道上,是通过直径14毫米的取气管道连接到压力变速器的连接接头,压力变送器本体安装在设备的旁边;在管道上安装的取气装置实际上是一个Φ50~75mm的金属管焊接此管时,焊接角度最好在45°左右,这样不容易造成积灰,另外,在金属管的头部有管螺纹,用丝堵拧紧不能漏气,在检查取气管时便于打开,检查取气管是否有积灰;仪表取气管焊接在取气管的上部,不容易造成积灰;压力变送器的取气管道上应装有4个仪表阀门,如果是被测压力低的空气管道,可以省去取气管上部的仪表阀门;这个阀门一般称作一次阀门,但是测量高压气体和水的测量不能省去此阀门;压力变送器工作时打开取气管道上部的阀门,打开三通上部的阀门,一般称为二次门,关闭最下部的阀门,一般称为排气阀门,缓慢打开接压力变送器的阀门,使压力变送器充压工作;压差变送器的安装,由于被测的是两个管路的压力差,所以要用两套取气装置,关键是在与压差变送器的连接上,连接压差变送器必须使用三阀组,压差变送器安装在三阀组上,压差变送器的两个进气管分为高压进气H口和低压进气口L,不要接错,否则测量不正确,三阀组的外形图如下图;三阀组外形图压差变送器的投入使用比压力变送器稍微复杂,因为所测量的气体或液体在流经测量元件上变径测量装置,如文丘里管,在变径处的两边会产生不同的压力,通过压差变送器测量变径管两端的压力;投入压差变送器前,须先将连接三阀组两端的仪表阀门关紧,不得让被测气体或液体流入,三阀组中间的仪表阀门打开,然后缓慢地打开取气管上部两个一次门、二次阀门,管道压力通过中间的阀门使被测压力两端的压力平衡;之后分别打开连接三阀组两边的阀门,最后关闭中间的仪表阀门,最后压差变送器投入正常使用;日常维护如果由于粉尘、杂物等原因造成仪表取气管道堵塞,造成压力变送器不能正常工作,就要对仪表取气管道进行清理,处理过程如下:将接在变送器处的阀门关闭,将工厂用的左右的压缩空气接在排气管上,缓慢打开排气阀门,用空气清扫取气管道;如果堵塞发生在取气管处一般容易发生在此处,可以松开丝堵,直接用棍棒物清堵;如果被测压力为正压,清理此处的积灰一定要注意安全,侧身松开丝堵,一般情况下,由于正压的关系,积灰能从管子内部冲出来,管道内如果是负压则比较安全,清扫完毕,恢复正常取气状态;在清扫差压变送器取气仪表管道时,一定要事先将压差变送器脱离正常测量状态,操作方法与投入运行状态相反,清扫管道时的安全注意事项如前所述;如果被测量是高压、高温流体、气体,则必须注意人身和设备的安全;。

电容式压力变送器的原理及应用

电容式压力变送器的原理及应用

电容式压力变送器的原理及应用原理介绍电容式压力变送器是一种常用的压力传感器,通过测量被测介质(液体或气体)对传感器内部两个电极之间的电容变化来实现对压力的测量。

其原理可简要归结为以下几个步骤:1.电容传感器结构:电容式压力变送器通常由两个平行金属电极(通常是不锈钢)组成的电容传感器构成。

这两个电极之间形成一个可变的电容,该电容的大小随着被测介质的压力变化而变化。

2.电容变化测量:压力传感器通过改变两个电极之间的电容值来测量被测介质的压力变化。

当被测介质施加压力时,介质会压缩或膨胀,导致电容的变化。

这个电容的变化可以通过电容传感器测量电路来进行检测和转换。

3.信号转换:测量到的电容变化信号通过变送器的电路进行处理和转换,通常转换为电流信号(如4-20mA)或电压信号(如0-10V),以便传输和读取。

应用场景电容式压力变送器具有广泛的应用领域,以下是一些常见的应用场景:•工业自动化:电容式压力变送器常用于工业自动化系统中,用于监测和控制液体或气体的压力。

例如,在流程控制、液位测量、气体输送等方面都可以使用电容式压力变送器。

•石油和天然气行业:在石油和天然气行业中,电容式压力变送器被广泛用于监测和控制油井、管道和储存设备中的压力。

它们可以提供稳定和准确的压力测量,确保系统的安全和可靠性。

•医疗设备:电容式压力变送器在医疗设备中也有广泛的应用。

例如,在血压监测仪、呼吸机和体外循环设备中都可以使用电容式压力变送器来监测和控制内部压力。

•环境监测:电容式压力变送器可以用于环境监测领域,如大气压力、水深测量等。

它们可以具备防水、防腐蚀等功能,在恶劣的环境条件下仍能正常工作。

•汽车工业:在汽车工业中,电容式压力变送器通常用于监测发动机和制动系统中的油压。

它们能够提供准确的压力测量值,确保发动机和制动系统的安全和可靠运行。

优势和注意事项电容式压力变送器具有以下优势和注意事项:•高精度:电容式压力变送器可以实现高精度的压力测量,在工业和科学领域中得到广泛应用。

电容式压力变送器原理

电容式压力变送器原理

电容式压力变送器原理电容式压力变送器是一种广泛应用于工业控制领域的压力测量仪器。

它通过测量电容的变化来获取被测介质的压力值,并将其转化为标准电信号输出,以实现对压力的精确监测和控制。

其基本原理是利用电容量与压力之间的关系,通过变化电容的大小来反映被测介质的压力变化。

电容是指由两个电极之间形成的电场中所储存的电量。

在电容式压力变送器中,压力传感器的一个电极由一个具有弹性的隔膜构成,另一个电极则由外壳构成。

当被测介质的压力作用在隔膜上时,隔膜会发生微小的变形。

这个微小的变形会导致电极之间的距离发生变化,从而改变电容量。

通常情况下,隔膜的一侧与被测介质相连,另一侧则与空气或真空相连,形成差压。

由于电容与电极之间的距离成反比,因此差压越大,电容量就越小。

为了测量电容的变化,电容式压力变送器通常采用两种主要的测量方法:容量悬臂杆和平行板电容。

容量悬臂杆是将一个具有电容性的弹性梁(悬臂杆)与压力腔连接起来。

当压力作用于腔体时,腔体会发生微小的形变,进而改变悬臂杆的位置。

这个位置的变化会导致电容的变化。

通过测量电容变化的大小,可以得到被测介质的压力值。

平行板电容是将一个可变电容的平行板结构放置在隔膜上。

当压力作用于隔膜时,隔膜会发生微小的形变,从而改变平行板之间的距离。

通过测量电容变化的大小,可以计算出被测介质的压力值。

无论是容量悬臂杆还是平行板电容,电容式压力变送器往往需要配套使用一个信号调理器,用于将电容变化转化为标准信号输出。

信号调理器通常包括一个变压器、一个放大器和一个滤波器。

变压器用于将电容变化转化为更大的电压信号,放大器用于放大电压信号的幅值,滤波器用于去除噪声干扰,使得输出信号更加稳定和准确。

总之,电容式压力变送器利用电容量与压力之间的关系,通过测量电容的变化来获取被测介质的压力值。

它具有结构简单、精度高、使用便捷等优点,在工业控制领域得到了广泛的应用。

电容式压力变送器工作原理

电容式压力变送器工作原理

电容式压力变送器工作原理
电容式压力变送器是一种常用的压力测量仪器,其工作原理是利用两块金属电极之间的电容变化来实现压力测量。

它主要由两个金属平板电极组成,当有压力作用在电容器的绝缘层上时,其中一个电容器的电极会随着压力的变化而发生位移。

当没有压力作用在电容器上时,两个金属电极之间的电容C0
为静态电容。

当有压力作用在电容器上时,导致电容器的一个电极发生位移,使得两个电极之间的距离发生变化,进而导致电容C发生变化。

通过测量电容C和静态电容C0的差值,可
以得到压力的大小。

为了测量电容的变化,通常会将电容式压力变送器与一定的电路进行连接。

这个电路可以将电容的变化转换为输出信号,常用的转换方式包括通过改变电容器的谐振频率、利用电容的电量变化等。

经过一定的放大、滤波和线性校正处理,最终可以得到与压力大小成正比的电压或电流信号。

值得注意的是,电容式压力变送器的电容变化与压力的变化成正比,即压力越大,电容变化越大。

通过校准和调整,可以使得输出信号与实际压力之间的关系达到良好的线性。

电容式压力变送器具有量程宽、测量精度高、响应速度快等特点,被广泛应用于工业自动化控制系统中的压力测量与控制领域。

电容式压力变送器测量液位的工作原理

电容式压力变送器测量液位的工作原理

电容式压力变送器测量液位的工作原理概述电容式压力变送器是一种应用广泛的工业仪表,它可以用来测量液位、压力和重量等物理量。

测量液位是其主要的应用之一。

本文将介绍电容式压力变送器测量液位的工作原理。

一、液位的定义和测量方法液体是一种没有固定形状的物质,它会根据容器的形状而变化。

液位是指液体表面和容器上方的空气界面之间的距离,通常是以毫米或英寸为单位的。

1.机械式液位计:机械式液位计通常由浮子、指针和刻度盘组成。

当浮子随着液位的升降而上下移动时,指针也随之移动,指向刻度盘上相应的液位刻度。

该种液位计具有机械结构复杂、易损坏、测量范围受限等缺点。

2.雷达液位计:雷达液位计是利用无线电波测量液位的一种方法。

它通过将电磁波向液面发射,然后接收反射的电磁波,根据电磁波的时间延迟计算出液位。

该种液位计具有功耗大、成本高等缺点。

3.压力式液位计:压力式液位计是利用液体的压力和下方的压力传感器之间的差值来测量液位的。

该种液位计需进行现场校准,在寒冬或炙热的夏季,液体的密度也会发生变化,导致测量不准确。

4.电容式液位计:电容式液位计是利用电容变化与液位变化的关系来测量液位的。

电容式液位计具有结构简单、测量范围广、精度高等优点,成为一种应用广泛的液位测量方法。

二、液位测量仪的组成电容式液位计主要由测量电极、槽体(容器)和信号处理电路组成。

测量电极:测量电极是一个嵌入液体中的金属杆或井,它与槽体的底部保持一定距离,测量电极的长度则取决于测量范围。

当测量电极与槽体内的液面之间存在一个空气间隙时,就会形成一个电容器。

槽体:槽体是储存或运输液体的容器,它可以是金属、塑料或陶瓷等不同的材料,具体取决于它的应用环境。

信号处理电路:信号处理电路是电容式液位计的核心部分,它从测量电极处接收到电容变化的信号,经过处理和计算后,将液位高度转换成标准信号输出到PLC或DCS控制器。

三、电容原理在了解电容式液位计的工作原理之前,我们需要先了解电容原理。

压力变送器的原理及应用是什么

压力变送器的原理及应用是什么

压力变送器的原理及应用1. 压力变送器的原理1.1 什么是压力变送器压力变送器是一种用于测量和转换压力信号的设备。

它将压力信号转换为标准的电信号输出,用于监测和控制压力参数。

1.2 压力变送器的工作原理压力变送器的工作原理基于压阻效应或电容效应。

主要有以下两种类型:1.2.1 压阻式压力变送器压阻式压力变送器利用金属箔片的压阻效应来测量压力。

当外部压力作用到压阻器时,金属箔片的电阻值会发生变化。

通过测量电阻值的变化,可以确定压力的大小。

1.2.2 电容式压力变送器电容式压力变送器利用电容效应来测量压力。

它包含两个金属电极,当外部压力改变时,电容值也会发生变化。

通过测量电容值的变化,可以确定压力的大小。

2. 压力变送器的应用压力变送器广泛应用于各个行业,主要用于以下方面:2.1 工业自动化在工业自动化领域,压力变送器可用于测量和控制各种液体和气体的压力。

例如,在化工生产过程中,通过使用压力变送器监测压力变化,可以实时调整生产设备的工作状态,确保生产的安全和稳定。

2.2 石油和天然气行业在石油和天然气行业,压力变送器是必不可少的设备。

它们用于测量油井的压力、管道系统的压力以及储罐的液位。

这些数据对于确保油气的安全生产和输送至关重要。

2.3 汽车制造压力变送器在汽车制造中被广泛应用。

例如,在汽车发动机中,压力变送器用于测量发动机的压缩缸压力,以监测引擎的工作状态。

此外,压力变送器还用于测量制动系统的液压压力,确保制动系统的稳定性和安全性。

2.4 医疗设备在医疗设备中,压力变送器用于测量和监测血压、呼吸机压力等生命参数。

这些数据对于医疗人员提供准确的诊断和治疗非常重要。

2.5 环境监测压力变送器可以用于环境监测,例如测量大气压力、水深等参数。

这些数据对于气象预测、海洋研究等领域具有重要意义。

结论压力变送器是一种用于测量和转换压力信号的重要设备。

它的工作原理基于压阻效应或电容效应,可以广泛应用于工业自动化、石油和天然气行业、汽车制造、医疗设备以及环境监测等领域。

电容式差压变送器的组成及工作原理

电容式差压变送器的组成及工作原理

电容式差压变送器的组成及工作原理下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!1. 介绍电容式差压变送器是一种常用于测量流体压力差的传感器装置,广泛应用于工业控制和监测系统中。

常见压力变送器的原理及其应用

常见压力变送器的原理及其应用

工业上普遍需要测量各类电量与非电物理量,例如电流(AD)、电压(VD)、功率(WD)、频率(FD)、温度(TT)、重量(LD)、位置(PT)、压力、转速(RT)、角度等,都需要转换成可接收的直流模拟量电信号才能传输到几百米外的控制室或显示设备上。

这种将被测物理量转换成可传输直流电信号的设备称为变送器。

工业上通常分为电量变送器(常见型号如:GP/FP 系列、S3/N3系列、STM3系列等)和非电量变送器。

变送器的传统输出直流电信号有0-5V、0-10V、1-5V、0-20mA、4-20mA等,目前最广泛采用的是用4~20mA电流来传输模拟量。

工业上最广泛采用的是用4~20mA电流来传输模拟量。

采用电流信号的原因是不容易受干扰。

并且电流源内阻无穷大,导线电阻串联在回路中不影响精度,在普通双绞线上可以传输数百米。

上限取20mA是因为防爆的要求:20mA的电流通断引起的火花能量不足以引燃瓦斯。

下限没有取0mA的原因是为了能检测断线:正常工作时不会低于4mA,当传输线因故障断路,环路电流降为0。

常取2mA作为断线报警值。

电流型变送器将物理量转换成4~20mA电流输出,必然要有外电源为其供电。

最典型的是变送器需要两根电源线,加上两根电流输出线,总共要接4根线,称之为四线制变送器。

当然,电流输出可以与电源公用一根线(公用VCC或者GND),可节省一根线,称之为三线制变送器。

其实大家可能注意到,4-20mA电流本身就可以为变送器供电,如图1C 所示。

变送器在电路中相当于一个特殊的负载,特殊之处在于变送器的耗电电流在4~20mA 之间根据传感器输出而变化。

显示仪表只需要串在电路中即可。

这种变送器只需外接2根线,因而被称为两线制变送器。

工业电流环标准下限为4mA,因此只要在量程X围内,变送器至少有4mA供电。

这使得两线制传感器的设计成为可能。

在工业应用中,测量点一般在现场,而显示设备或者控制设备一般都在控制室或控制柜上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电容式压力变送器原理
电容式压力变送器简介
科学技术的不断发展极大地丰富了压力测量产品的种类,现在,压力传感器的敏感原理不仅有电容式、压阻式、金属应变式、霍尔式、振筒式等等但仍以电容式、压阻式和金属应变式传感器最为多见。

金属应变式压力变送器是一种历史较长的压力传感器,但由于它存在迟滞、蠕变及温度性能差等缺点,其应用场合受到了很大的限制。

压阻式传感器是利用半导体压阻效应制造的一种新型的传感器,它具有制造方便,成本低廉等特点,但由于半导体材料对温度极为敏感,所以其性能受温度影响较大,产品的一致性较差。

电容式压力变送器是应用最广泛的一种压力变送器,其原理十分简单。

一个无限大平行平板电容器的电容值可表示为:
C= ε s/d(ε 为平行平板间介质的介电常数,d 为极板的间距, s 为极板的覆盖面积)
改变其中某个参数,即可改变电容量。

由于结构简单,几乎所有电容式压力变送器均采用改变间隙的方法来获得可变电容。

电容式压力变送器的初始电容值较小,一般为几十皮法,它极易受到导线电容和电路的分布电容的影响,因而必须采用先进的电子线路才能检测出电容的微小变化。

可以说,一个好的电容式传感器应该是可变电容设计和信号处理电路的完美结合。

Setra 压力变送器的工作原理
Setra 的压力变送器采用了结构简单、坚固耐用且极稳定的可变电容形式,下图为 Setra 压力变送器的结构示意图,可变电容由压力腔上的膜片和固定在其上的绝缘电极所组成,当感受到压力变化时,膜片要产生微微的翘曲变形,从而改变了两极的间距,采用 Setra 独特的检测电路测电容的微小变化,并进行线性处理和温度补偿。

传感器输出与被测压力成正比的直流电压或电流信号。

精巧的结构、高性能的材料及先进的检测电路的完美结合,赋予了 Setra 压力变送器以很高的
性能。

Setra 压力变送器的特点
高性能
为了保证产品的高性能,Setra 压力变送器采用材料构成可变电容,由于这些材料具有极稳定的物理化学性能,使产品具有极高的性能。

根据用户需要 Setra 可提供高达± 0.02%FS 的传感器,稳定性优于± 0.05%FS ,如此高的性能是采用其它敏感原理的产品难以达到的。

此外,采用 Setra 先进的检验电路可检测出敏感电容极微小的变化,从而使传感器具有很高的分辨率,如 Setra 的 Model270 大气压力变送器的分辨率可达 0.005%FS。

机械变形
敏感电容模极板间距的微小的变化,即可产生可测量的电压信号变化,小的机械变形使传感器的迟滞和非重复性误差大大降低,同时传感器的速度也得到很大提高。

测量范围宽
Setra 的压力变送器具有很宽的测量范围,它可对 25Pa ~ 70MPa 范围的压力进行精确的测量,
且具有极高的稳定性。

上图为 Setra Model239高精度差压力变送器的结构示意图,此传感器最小测量范围为 0 ~125Pa ,测量精度可达 0.073%FS ,静压可从真空至 1.7MPa。

在 0 ~65 ℃范围内,温度影响< ± 1.8%FS/100 ℃,过载能力最高可达 FS 的 270 倍。

长期稳定性好
Setra 的压力变送器与其他同类产品相比具有更高的稳定性,与其它传感器如金属应变式传感器不同,电容式压力变送器的蠕变,时效和温度影响均很小。

几乎所有不利因素对电容式传感器输出稳定性的影响均小于其他形式的传感器。

Setra 压力变送器的零点稳定性可达到 0.05%FS/
年。

高输出信号
Setra 压力变送器的电路可将电容的微小变化直接转换成高输出信号,而无需进行信号放大,压阻式传感器(薄模式, C 式)输出信号低,易受外界信号干扰等缺点,而这通常是传感器稳定性差,受温度影响大,易受电磁波干扰的主要原因。

防腐性能好
Setra 压力变送器与介质相接触的材料均采用优质不锈钢材料,因而可与许多酸碱溶液,腐蚀性
气体或液体很好地相容。

抗电磁场干扰
高输出信号、抗干扰设计及采用金属外壳和,使 Setra 压力变送器对外部电磁场具有很高的抑制能力,它具有与可编程控制相当的抗干扰能力。

在恶劣环境中工作
Setra 的压力变送器非常经久耐用,它的工业级的产品可承受最小 10 7 次测满量程压力循环,如果工作压力不,传感器的循环寿命几乎可达到无限长,而且其工业的产品均能承受 100 ~
200kg 的冲击和最小 10 ~ 20 的振动。

电容式压力变送器在天平中的应用
不象大多数实验室天平采用电磁平衡测量原理及绝大多数计数秤采用的应变片技术, 美国Setra 采用了自己发明的独特的” 可变陶瓷电容技术” . 这个设计提供了重量测量的牢靠, 精度和合理的价格,两个放置平行的镀金条被热熔于陶瓷传感器模块中. 两个电极间间距只有几百分子一毫米. 当一负载放在天平的秤盘上, 引起陶瓷梁的弯曲, 改变两个电极间间距, 电极被接入LC 的震荡电路, 震荡频率随负载测量电容而改变, 从零负载到满负载(天平的标称量程), 频率变化可达每秒2百万个周期. 因为我们天平内的的微处理器可每秒内的每一个周器的变化,我们很多天平的型号可拥有极高的显示分辨 (e.g., 1 part in 500,000), 同样, 工业计数秤也拥有非常高的内部分变率(如 model 2000C 可检测1 ppm 的重量变化) 这个测量重
量的设计非常独特,Setra已取得若干个相关的专利,设计的简单性非常好的运用与相对小巧部件的计数, 没有运动部件的设计又加强了可靠性. 1987年, ISWM(国际称重计量协会) 授予Setra 技术卓越奖, 表彰Setra 同时在新技术的发明对科学和测量工业的贡献和已被证明的商业上成功. Setra 全力投身于发现新的很更好的方法测量重量,下一代高精度的电子天平和
秤已在Setra 研发部门展开.。

相关文档
最新文档