中职概率与统计初步练习及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率与统计初步

例1.指出下列事件是必然事件,不可能事件,还是随机事件? ①某乒乓球运动员在某运动会上获得冠军。 ②掷一颗骰子出现8点。

③如果0=-b a ,则b a =。 ④某人买某一期的体育彩票中奖。

解析:①④为随机事件,②是不可能事件,③是必然事件。

例2.某活动小组有20名同学,其中男生15人,女生5人,现从中任选3人组成代表队参加比赛,A 表示“至少有1名女生代表”,求)(A P 。

例3.在50件产品中,有5件次品,现从中任取2件。以下四对事件那些是互斥事件?那些是对立事件?那些不是互斥事件?

①恰有1件次品和恰有2件次品 ②至少有1件次品和至少有1件正品 ③最多有1件次品和至少有1件正品 ④至少有1件次品和全是正品

例4.从1,2,3,4,5,6六个数字中任取两个数,计算它们都是偶数的概率。

例5.抛掷两颗骰子,求:①总点数出现5点的概率;②出现两个相同点数的概率。 例6.甲、乙两人各进行一次射击,如果两人击中目标的概率都是0.6,计算: ①两人都未击中目标的概率; ②两人都击中目标的概率;

③其中恰有1人击中目标的概率; ④至少有1人击中目标的概率。

例7.种植某种树苗成活率为0.9,现种植5棵。试求: ①全部成活的概率; ②全部死亡的概率;

③恰好成活4棵的概率; ④至少成活3棵的概率。

【过关训练】

一、选择题

1、事件A 与事件B 的和“B A ”意味A 、B 中( ) A 、至多有一个发生 B 、至少有一个发生 C 、只有一个发生 D 、没有一个发生

2、在一次招聘程序纠错员的考试中,程序设置了依照先后顺序按下h,u,a,n,g 五个键的密码,键盘共有104个键,则破译密码的概率为( )

A 、

51041P B 、51041C C 、1041 D 、104

5 3、抛掷两枚硬币的试验中,设事件M 表示“两个都是反面”,则事件M 表示( ) A 、两个都是正面 B 、至少出现一个正面

C 、一个是正面一个是反面

D 、以上答案都不对 4、已知事件A 、B 发生的概率都大于0,则( ) A 、如果A 、B 是互斥事件,那么A 与B 也是互斥事件 B 、如果A 、B 不是相互独立事件,那么它们一定是互斥事件 C 、如果A 、B 是相互独立事件,那么它们一定不是互斥事件

D 、如果A 、B 是互斥且B A 是必然事件,那么它们一定是对立事件

5、有5件新产品,其中A 型产品3件,B 型产品2件,现从中任取2件,它们都是A 型产品的概率是( )

A 、53

B 、52

C 、103

D 、20

3

6、设甲、乙两人独立地射击同一目标,甲击中目标的概率为0.9,乙击中目标的概

率为9

8

,现各射击一次,目标被击中的概率为( )

A 、98109+

B 、98109⨯

C 、981081⨯-

D 、90

89

7、一个电路板上装有甲、乙两个保险丝,若甲熔断的概率为0.2,乙熔断的概率为0.3,至少有一根熔断的概率为0.4,则两根同时熔断的概率为( )

A 、0.5

B 、0.1

C 、0.8

D 、以上答案都不对

8、某机械零件加工有2道工序组成,第1道工序的废品率为a ,第2道工序的废品率为b ,假定这2道工序出废品是彼此无关的,那么产品的合格率是( )

A 、1+--b a ab

B 、b a --1

C 、ab -1

D 、ab 21-

9、某厂大量生产某种小零件,经抽样检验知道其次品率是1﹪,现把这种零件每6件装成一盒,那么每盒中恰好含1件次品的概率是( )

A 、6)10099(

B 、0.01

C 、516)10011(1001-C

D 、4226)100

11()1001(-C 10、某气象站天气预报的准确率为0.8,计算5次预报中至少4次准确的概率是( )

A 、45445)8.01(84.0--⨯⨯C

B 、5555

5

)8.01(84.0--⨯⨯C C 、45445)8.01(84.0--⨯⨯C +5555

5

)8.01(84.0--⨯⨯C D 、以上答案都不对

11、同时抛掷两颗骰子,总数出现9点的概率是( ) A 、

41 B 、51 C 、61 D 、9

1 12、某人参加一次考试,4道题中解对3道则为及格,已知他的解题准确率为0.4,则他能及格的概率约是( )

A 、0.18

B 、0.28

C 、0.37

D 、0.48

二、填空题

1、若事件A 、B 互斥,且61)(=

A P ,3

2

)(=B P ,则=)(B A P 2、设A 、B 、C 是三个事件,“A 、B 、C 至多有一个发生”这一事件用A 、B 、C 的运算式可表示

3、1个口袋内有带标号的7个白球,3个黑球,事件A :“从袋中摸出1个是黑球,放回后再摸1个是白球”的概率是

4、在4次独立重复试验中,事件A 至少出现1次的概率是

81

80

,则事件A 在每次试验中发生的概率是

5、甲、乙两射手彼此独立地射击同一目标,甲击中目标的概率为0.8,乙击中目标的概率为0.9,则恰好有一人击中目标的概率为

三、解答题

1、甲、乙两人射击,甲击中靶的概率为0.8,乙击中靶的概率为0.7,现在,两人同时射击,并假定中靶与否是相互独立的,求:

(1)两人都中靶的概率; (2)甲中靶乙不中靶的概率; (3)甲不中靶乙中靶的概率。

2、将4封不同的信随机地投到3个信箱中,试求3个信箱都不空的概率。

3、加工某一零件共需经过三道工序,设第一、二、三道工序的次品率分别为2﹪、3﹪、5﹪,假定各道工序是互不影响的,问加工出来的零件的次品率是多少?

相关文档
最新文档