社会统计知识学知识题和问答详解有关与回归分析结果汇报

合集下载

统计工作题库及答案详解

统计工作题库及答案详解

统计工作题库及答案详解统计工作是一项涉及数据收集、分析和解释的专业活动,广泛应用于经济、社会、科学研究等多个领域。

为了帮助统计学的学生和专业人士更好地掌握统计知识,以下是一些统计工作题库及答案详解。

1. 题目一:描述统计数据的类型。

答案详解:统计数据主要分为定性数据和定量数据。

定性数据反映的是事物的属性,如性别、种族等,通常用于分类。

定量数据则反映事物的数量特征,如年龄、收入等,可以进行数值运算。

2. 题目二:解释什么是中心趋势度量。

答案详解:中心趋势度量是用来描述数据集中趋势的统计量,常见的中心趋势度量包括均值、中位数和众数。

均值是所有数据值的总和除以数据的个数;中位数是将数据从小到大排序后位于中间位置的数值;众数是数据中出现次数最多的数值。

3. 题目三:什么是标准差,它在数据分析中的作用是什么?答案详解:标准差是衡量数据分布离散程度的一个统计量,它表示数据值与均值的平均偏差。

标准差越大,数据的离散程度越高;标准差越小,数据越集中。

在数据分析中,标准差常用于评估数据的稳定性和一致性。

4. 题目四:描述相关系数的概念及其类型。

答案详解:相关系数是衡量两个变量之间线性关系强度和方向的统计量。

常见的相关系数包括皮尔逊相关系数、斯皮尔曼等级相关系数和肯德尔等级相关系数。

皮尔逊相关系数适用于测量两个连续变量之间的线性关系;斯皮尔曼和肯德尔等级相关系数则适用于测量两个有序变量之间的相关性。

5. 题目五:解释什么是假设检验,以及它的基本步骤。

答案详解:假设检验是一种统计方法,用于基于样本数据对总体参数进行推断。

基本步骤包括:(1) 提出原假设和备择假设;(2) 选择适当的检验统计量和显著性水平;(3) 计算检验统计量的值;(4)根据检验统计量的值和显著性水平做出决策,接受或拒绝原假设。

6. 题目六:什么是回归分析,它在实际应用中的作用是什么?答案详解:回归分析是一种统计方法,用于研究一个或多个自变量与因变量之间的关系。

社会统计知识点总结

社会统计知识点总结

社会统计知识点总结一、社会统计学的基本概念社会统计学是一门研究社会现象的数量特征和变化规律的学科,它涉及人口、经济、社会、文化等各个方面的统计数据,通过对这些数据的研究,揭示社会问题的本质和规律。

社会统计学的研究对象主要包括社会现象的数量特征、数量关系、数量规律和数量变化等内容。

社会统计学的研究方法主要包括数据收集、数据整理、数据分析和数据解释等步骤。

社会统计学的研究成果主要包括统计数据、统计报告、统计分析和统计推断等内容。

社会统计学的研究目的主要包括为社会政策的制定和实施提供科学依据、揭示社会问题的本质和规律、为社会管理和发展提供科学指导等内容。

社会统计学主要的研究领域包括人口统计、经济统计、社会统计、文化统计等内容。

二、数据收集方法数据收集是社会统计学研究的第一步,它是获取社会现象的数量特征和变化规律的基础。

数据收集的方法主要包括调查、抽样、实验、观察、测量等内容。

调查是一种常用的数据收集方法,它可以通过问卷调查、访谈调查、电话调查等方式获取社会现象的数量特征和变化规律。

抽样是一种常用的数据收集方法,它可以通过简单随机抽样、分层抽样、整群抽样等方式获取代表性的样本数据。

实验是一种常用的数据收集方法,它可以通过对实验组和对照组进行比较研究来获取社会现象的数量特征和变化规律。

观察是一种常用的数据收集方法,它可以通过直接观察社会现象的数量特征和变化规律来获取数据。

测量是一种常用的数据收集方法,它可以通过对社会现象进行量化研究来获取数据。

三、数据分析技术数据分析是社会统计学研究的重要环节,它是对收集到的数据进行整理、分析和解释的过程。

数据分析的技术主要包括描述统计分析、推断统计分析、多元统计分析和时间序列分析等内容。

描述统计分析是对收集到的数据进行整理、汇总、分类和计算的过程,它可以通过频数分布、比例分布、平均数、标准差、相关系数等指标来描述数据的数量特征和变化规律。

推断统计分析是对收集到的数据进行推断和预测的过程,它可以通过抽样误差、置信区间、假设检验、回归分析等方法来推断数据的数量特征和变化规律。

回归分析的基本知识点及习题

回归分析的基本知识点及习题
值。
模型评估:线性 回归模型的评估 通常使用R方值、 调整R方值、残 差图等指标进行
评估。
参数估计与求解
最小二乘法:通过最小化误差的平 方和来估计线性回归模型的参数
梯度下降法:通过迭代更新参数, 使得损失函数最小化,从而得到最 优解
添加标题
添加标题
添加标题
添加标题
最大似然估计法:基于似然函数的 最大值来估计参数,使得观测到的 数据出现的概率最大
原理:通过引入 一个小的正则化 项来改进最小二 乘法的估计,以 减少过拟合和增 加模型的稳定性。
目的:在回归分析 中,岭回归分析用 于处理自变量之间 高度相关的情况, 通过加入正则化项 来减少过拟合,提 高模型的预测精度。
应用场景:岭回 归分析广泛应用 于统计学、机器 学习和数据分析 等领域,尤其在 处理共线性数据 问题时表现出色。
感谢您的观看
汇报人:
梯度下降法:通过 迭代更新参数来最 小化损失函数
牛顿-拉夫森方法 :利用泰勒级数展 开来求解参数
模型评估与优化
模型的准确性评估:通过比较实际值与预测值来评估模型的预测能力。
模型的可靠性评估:检查模型是否具有足够的稳定性和可靠性。
模型的优化方法:通过调整模型参数或改变模型结构来提高模型的预测能力和可 靠性。
假设:满足线性关系、误差项独立同分布、误差项无偏、误差项无自相关等假设。 模型建立:基于历史数据,通过最小二乘法等估计方法确定自变量和因变量的关系。 模型评估:通过残差分析、决定系数、调整决定系数等方法评估模型的拟合优度。
参数估计与求解
最小二乘法:通过 最小化误差的平方 和来估计参数
最大似然估计法: 基于似然函数的最 大值来估计参数
模型的适用性:确定模型是否适用于特定的数据集和问题类型。

初中社会调查与统计学知识点总结

初中社会调查与统计学知识点总结

初中社会调查与统计学知识点总结社会调查与统计学知识点总结社会调查是指通过一定的方法,对某一特定社会现象进行系统观察、收集和整理相关数据的过程。

而统计学作为社会调查的一种重要工具和方法论,主要负责对收集到的数据进行分析和解释。

在初中阶段,了解社会调查与统计学的基本概念、方法和原理,对于培养学生的社会观察能力和数据分析能力具有重要意义。

本文将根据初中社会调查与统计学内容,总结其中的主要知识点。

一、社会调查1.社会调查的定义与目的社会调查是指通过科学的方法,收集、整理、分析和解释数据,对特定的社会现象或问题进行研究,以了解社会现象的规律和特点,为社会问题的解决提供依据。

社会调查的目的包括:1)揭示社会现象与问题的本质;2)收集和整理社会数据,为社会决策提供客观依据;3)评估和改进社会政策和措施;4)提高公众对社会问题的认知和参与。

2.社会调查的步骤与方法社会调查主要包括以下步骤:1)明确调查目的和问题;2)设计调查方案,确定调查内容和范围;3)采集数据,包括问卷调查、访谈、观察等;4)整理和分析数据,进行统计处理;5)解释和说明数据结果,得出结论;6)编写调查报告,呈现调查结果。

社会调查的方法包括:1)问卷调查:通过编制问卷,向受访者提出问题,收集信息。

2)访谈法:以面对面或电话等形式,向受访者提问,深入了解其观点和经历。

3)观察法:通过对特定现象或行为进行观察,收集数据。

4)统计法:通过对收集到的数据进行整理和分析,得出结论和规律。

3.数据的收集与整理数据的收集需要从受访者中获取相关信息,可以采用问卷调查、访谈或观察等方法。

在进行数据收集时,需要注意问题的设计和提问方式的合理性。

采集到的数据需要进行整理和分类,以便于后续的分析。

4.数据的分析与解释数据分析是社会调查的重要环节,主要通过统计学的方法对数据进行处理和分析。

常用的数据分析方法包括频数分析、平均数统计、图表分析等。

数据分析的目的是为了从数据中提取信息,揭示规律,并据此得出结论和解释。

2015年《统计学》第八章 相关与回归分析习题及满分答案

2015年《统计学》第八章 相关与回归分析习题及满分答案

2015年《统计学》第八章相关与回归分析习题及满分答案一、单选题1.相关分析研究的是( A )A、变量间相互关系的密切程度B、变量之间因果关系C、变量之间严格的相依关系D、变量之间的线性关系2.若变量X的值增加时,变量Y的值也增加,那么变量X和变量Y之间存在着(A )。

A、正相关关系B、负相关关系C、直线相关关系D、曲线相关关系3.若变量X的值增加时,变量Y的值随之下降,那么变量X和变量Y之间存在着(B)。

A、正相关关系B、负相关关系C、直线相关关系D、曲线相关关系4.相关系数等于零表明两变量(B)。

A.是严格的函数关系B.不存在相关关系C.不存在线性相关关系D.存在曲线线性相关关系5.相关关系的主要特征是(B)。

A、某一现象的标志与另外的标志之间的关系是不确定的B、某一现象的标志与另外的标志之间存在着一定的依存关系,但它们不是确定的关系C、某一现象的标志与另外的标志之间存在着严格的依存关系D、某一现象的标志与另外的标志之间存在着不确定的直线关系6.时间数列自身相关是指( C )。

A、两变量在不同时间上的依存关系B、两变量静态的依存关系C、一个变量随时间不同其前后期变量值之间的依存关系D、一个变量的数值与时间之间的依存关系7.如果变量X和变量Y之间的相关系数为负1,说明两个变量之间(D)。

A、不存在相关关系B、相关程度很低C、相关程度很高D、完全负相关8.若物价上涨,商品的需求量愈小,则物价与商品需求量之间(C)。

A、无相关B、存在正相关C、存在负相关D、无法判断是否相关9.相关分析对资料的要求是(A)。

A.两变量均为随机的B.两变量均不是随机的C、自变量是随机的,因变量不是随机的D、自变量不是随机的,因变量是随机的10.回归分析中简单回归是指(D)。

A.时间数列自身回归B.两个变量之间的回归C.变量之间的线性回归D.两个变量之间的线性回归11.已知某工厂甲产品产量和生产成本有直线关系,在这条直线上,当产量为10 00时,其生产成本为30000元,其中不随产量变化的成本为6000元,则成本总额对产量的回归方程为( A )A. y=6000+24xB. y=6+0.24xC. y=24000+6xD. y=24+6000x12.直线回归方程中,若回归系数为负,则(B) A.表明现象正相关B.表明现象负相关C.表明相关程度很弱D.不能说明相关方向和程度二、多项选择题1.下列属于相关关系的有(ABD )。

社会统计学习题和答案--相关与回归分析

社会统计学习题和答案--相关与回归分析

第十二章 相关与回归分析第一节 变量之间的相关关系 相关程度与方向·因果关系与对称关系 第二节 定类变量的相关双变量交互分类(列联表)·削减误差比例(PRE)·λ系数与τ系数 第三节 定序变量的相关分析同序对、异序对与同分对·Gamma 系数·肯德尔等级相关系数(τa 系数、τb与τc 系数)·萨默斯系数(d 系数)·斯皮尔曼等级相关(ρ相关)·肯德尔与谐系数第四节 定距变量的相关分析相关表与相关图·积差系数的导出与计算·积差系数的性质 第五节 回归分析线性回归·积差系数的PRE 性质·相关指数R 第六节 曲线相关与回归可线性化的非线性函数·实例分析(二次曲线指数曲线)一、填空1.对于表现为因果关系的相关关系来说,自变量一般都就是确定性变量,依变量则一般就是( 随机性 )变量。

2.变量间的相关程度,可以用不知Y 与X 有关系时预测Y 的全部误差E 1,减去知道Y 与X 有关系时预测Y 的联系误差E 2,再将其化为比例来度量,这就就是( 削减误差比例 )。

3.依据数理统计原理,在样本容量较大的情况下,可以作出以下两个假定:(1)实际观察值Y 围绕每个估计值c Y 就是服从( );(2)分布中围绕每个可能的c Y 值的( )就是相同的。

4.在数量上表现为现象依存关系的两个变量,通常称为自变量与因变量。

自变量就是作为( 变化根据 )的变量,因变量就是随( 自变量 )的变化而发生相应变化的变量。

5.根据资料,分析现象之间就是否存在相关关系,其表现形式或类型如何,并对具有相关关系的现象之间数量变化的议案关系进行测定,即建立一个相关的数学表达式,称为( 回归方程 ),并据以进行估计与预测。

这种分析方法,通常又称为( 回归分析 )。

6.积差系数r 就是( 协方差 )与X 与Y 的标准差的乘积之比。

社会统计学基本公式及社会统计学复习整理及社会统计学复习题(有答案)

社会统计学基本公式及社会统计学复习整理及社会统计学复习题(有答案)

12231 3.322log 4×6i i i i i i i i i i i i u l u l u l u ll Rh N h R N AA B =-+-==+=+=====+第三章、组距 h (上限 下限)2、组中值 m 或 m 、斯特奇斯公式 (:组距 :全距 :总体单位)频数频率、频数密度 频率密度组距组距标准组距5、折合系数实际组距标准组距频数实际频数折合系数、基尼系数 G 111111n n i i i ii i PI P I --++===-∑∑ 或 G(i i P 是横轴上的累积百分数;I 是纵轴上的累计百分数)洛仑兹曲线P iI iAB1(2))(1)1221222d d X X X N fXX fN NN NN F L ==++-=+∑∑∑第四章1、算术平均数()()未分组资料 分组资料 注:对于单项数列分组,X即为变量值,若为组距式分组,则X为组中值 f:各组频数2、中位数(M 未分组资料 若N为奇数,则取第位上的变量值为中位数,若为偶数,则取第 位和第位上的两个变量值的平均数作为中位数()分组资料 M 112h h L : 2m m d m m m m m N F U f f f F F N---⨯=-⨯或 M 中位数所在组的下限: 中位数所在组的频数: 小于中位数所在组的各组频数之和(向上累计) h : 中位数所在组的组距 U: 中位数所在组的上限: 包括中位数所在组的各组频数之和(向上累计) 注: 中位数所在组由确定11111111133333334h :h 34h :N F l f F l f NF l f F l -=+⨯-=+⨯3、四分位数(1)第一四分位数 Q :小于第一四分位数所在组的各组累计频数(向上累计) 第一四分位数所在组的下限 :第一四分位数所在组的组距 :第一四分位数所在组的组距(2)第三四分位数 Q :小于第三四分位数所在组的各组累计频数(向上累计) 第三四分位数所在组的3311212h 1h :h 5o o o oo o f L L ∆=+⨯∆+∆∆∆下限 :第三四分位数所在组的组距 :第三四分位数所在组的组距4、众数(M )()未分组资料 先将所有数据顺序排列,观察某些变量值出现的次数最多,这些变量值就 是众数(2)分组资料 M 众数所在组的下限:众数所在组频数与前一组频数之差 :众数所在组频数与后一组频数之差 :众数所在组的组距、几何平均数11lg lg anti(lg )(2)1lg lg anti(lg )g g g g g gg g g X Nf X NX ========∑∑(M )()简单几何平均数 M 或 M M M 加权几何平均数M 或 M M M 注:若为组距式分组,则为组中值3112316)(1)111111...(2):312=23h h N h d o g h N Q Q NX X X X XNNf XX f X X -==++++==-≥≥-⋅∑∑、调和平均数(M 简单调和平均数(未分组) M 加权调和平均数(分组)M 注:若为组距式分组,为组中值 各组频数7、各种平均数的关系2M M M M 第五章、全距 R=X X 、四分位差 Q D、平均差=2=::X X Nf X XfX f X f -⋅-⋅∑∑(1)未分组资料 A D ()分组资料 A D 注:若为组距式分组,为组中值 各组频数4、标准差(S)(1)未分组资料(2)分组资料 注:若为组距式分组,为组中值 各组X X S-频数5、标准分 Z=社会统计学复习整理一、变量的测量层次61(2)37=1:83(o o oR R M M M o d o R X X SXN f f NNf X M X M X M S Sαα⋅⋅=-⋅=----==A D 、变异系数()全距系数 V =A D平均差系数 V =()标准差系数 V 、异众比率(非众数的频数与总体单位数的比值) V R 众数的频数、偏态系数())偏态=二、判断变量层次的技巧1.首先所有的变量都是定类变量。

社会统计学习题和问题详解--相关与回归分析报告

社会统计学习题和问题详解--相关与回归分析报告

第十二章 相关与回归分析第一节 变量之间的相关关系相关程度与方向·因果关系与对称关系 第二节 定类变量的相关双变量交互分类(列联表)·削减误差比例(PRE )·λ系数与τ系数 第三节 定序变量的相关分析同序对、异序对和同分对·Gamma 系数·肯德尔等级相关系数(τa 系数、τb与τc系数)·萨默斯系数(d 系数)·斯皮尔曼等级相关(ρ相关)·肯德尔和谐系数第四节 定距变量的相关分析相关表和相关图·积差系数的导出和计算·积差系数的性质 第五节 回归分析线性回归·积差系数的PRE 性质·相关指数R 第六节 曲线相关与回归可线性化的非线性函数·实例分析(二次曲线指数曲线)一、填空1.对于表现为因果关系的相关关系来说,自变量一般都是确定性变量,依变量则一般是( 随机性 )变量。

2.变量间的相关程度,可以用不知Y 与X 有关系时预测Y 的全部误差E 1,减去知道Y 与X 有关系时预测Y 的联系误差E 2,再将其化为比例来度量,这就是( 削减误差比例 )。

3.依据数理统计原理,在样本容量较大的情况下,可以作出以下两个假定:(1)实际观察值Y 围绕每个估计值c Y 是服从( );(2)分布中围绕每个可能的c Y 值的( )是相同的。

4.在数量上表现为现象依存关系的两个变量,通常称为自变量和因变量。

自变量是作为( 变化根据 )的变量,因变量是随( 自变量 )的变化而发生相应变化的变量。

5.根据资料,分析现象之间是否存在相关关系,其表现形式或类型如何,并对具有相关关系的现象之间数量变化的议案关系进行测定,即建立一个相关的数学表达式,称为( 回归方程 ),并据以进行估计和预测。

这种分析方法,通常又称为( 回归分析 )。

6.积差系数r 是( 协方差 )与X 和Y 的标准差的乘积之比。

二、单项选择1.当x 按一定数额增加时,y 也近似地按一定数额随之增加,那么可以说x 与y 之间 存在( A )关系。

回归知识点总结归纳

回归知识点总结归纳

回归知识点总结归纳随着社会的发展和科技的进步,人们对于回归知识点的重视日益增加。

回归分析是一种用来探索变量之间关系的统计方法,它可以帮助我们理解变量之间的关系,并对未来的趋势进行预测。

在本文中,我们将对回归知识点进行总结归纳,以便读者更好地掌握这一重要的统计学方法。

一、回归分析的基本概念1.1 回归分析的定义回归分析是指通过确定两个或多个变量之间的数理关系,来预测一个或多个变量的方法。

在回归分析中,通常将要预测的变量称为因变量,而用来预测的变量称为自变量。

1.2 回归分析的类型回归分析可以分为线性回归分析和非线性回归分析两种类型。

其中,线性回归分析是指因变量和自变量之间的关系是线性的,而非线性回归分析则是指因变量和自变量之间的关系是非线性的。

1.3 回归分析的应用领域回归分析广泛应用于各个学科领域,如经济学、金融学、社会科学、生物学等。

它可以帮助研究者了解变量之间的关系,并为决策提供依据。

二、线性回归分析2.1 简单线性回归分析简单线性回归分析是指只包含一个自变量和一个因变量的回归分析方法。

其数学表达式可以表示为Y = α + βX + ε,其中Y表示因变量,X表示自变量,α和β分别为截距和斜率,ε为误差。

2.2 多元线性回归分析多元线性回归分析是指包含两个或多个自变量和一个因变量的回归分析方法。

其数学表达式可以表示为Y = α + β1X1 + β2X2 + … + βnXn + ε,其中X1、X2、…、Xn为自变量,β1、β2、…、βn为自变量的系数。

2.3 线性回归分析的模型拟合线性回归分析的模型拟合是指通过最小二乘法来拟合模型,使得因变量Y和自变量X之间的残差平方和最小化。

这样可以得到最优的模型参数估计值。

2.4 线性回归分析的检验线性回归分析的检验包括回归系数的显著性检验、模型拟合度的检验、残差的独立性检验等。

这些检验可以帮助我们判断模型的有效性和可靠性。

三、非线性回归分析3.1 非线性回归分析模型非线性回归分析模型包括指数模型、对数模型、幂函数模型等。

社会统计学 相关与回归分析

社会统计学 相关与回归分析
序 号 9 5 月产量(千件)(x) 2.1 3.2 单位产本(元)(y) 91 86
1
3 2 8 4 6 7 合计
4.1
5.4 6.3 6.8 7.6 8.5 9.7 53.7
80
71 72 63 58 50 42 613
分组数据:有相关关系的两个变量中,只根据一个变量进行分组,另一个
不进行分组,只是计算其频数和平均值。
按受教育程度分组 人数(人) 研究生以上
本科 专科 中学
每组平均年可支配收入(万元) 5.0
4.65 2.63 1.6
4
6 72 64
小学
小学以下
110
124
1.58
1.56
合计
380
17.02
二、相关系数的计算
2 xy r x y
式中:r-相关系数 2 xy -变量x与变量y的协方差; x-变量x的标准差 -变量y的标准差
328 453.6 383.4 440.8
5
6 7 8
3.2
8.5 9.7 6.8
86
50 42 63
10.24
72.25 94.09 46.24
7396
2500 1764 3969
275.2
425 407.4 428.4
9
合计
2.1
53.7
91
613
4.41
370.65
8281
43899
191.1
y yc 0
2
y yc
为最小
由最小平方原理,可得:
b
n yx y x n x x
2

2
a y bx

回归分析习题及答案

回归分析习题及答案

回归分析习题及答案回归分析习题及答案回归分析是统计学中一种常用的分析方法,用于研究变量之间的关系。

它可以帮助我们了解变量之间的相关性,并预测未来的趋势。

在本文中,我们将提供一些回归分析的习题及其详细解答,帮助读者更好地理解和应用这一方法。

习题一:某公司想要了解其销售额与广告投入之间的关系。

公司收集了过去12个月的数据,包括每个月的广告投入(单位:万元)和当月的销售额(单位:万元)。

请利用这些数据进行回归分析,并给出相关的统计结果。

解答一:首先,我们需要将数据导入统计软件,比如SPSS或Excel。

然后,我们可以使用线性回归模型来分析销售额与广告投入之间的关系。

在SPSS中,可以选择“回归”分析,将销售额作为因变量,广告投入作为自变量,进行线性回归分析。

回归分析的结果包括回归方程、相关系数、显著性检验等。

回归方程可以用来描述销售额与广告投入之间的关系。

相关系数可以告诉我们这两个变量之间的相关程度,取值范围为-1到1,越接近1表示相关性越强。

显著性检验可以告诉我们回归方程是否显著,即广告投入是否对销售额有显著影响。

习题二:某研究人员想要了解学生的考试成绩与他们的学习时间之间的关系。

研究人员随机选择了100名学生,记录了他们的学习时间(单位:小时)和考试成绩(百分制)。

请利用这些数据进行回归分析,并给出相关的统计结果。

解答二:同样地,我们需要将数据导入统计软件,然后进行回归分析。

这次,我们将考试成绩作为因变量,学习时间作为自变量。

除了之前提到的回归方程、相关系数和显著性检验之外,我们还可以通过回归分析的结果来进行预测。

例如,我们可以利用回归方程来预测一个学生在给定学习时间下的考试成绩。

习题三:某研究人员想要了解一个人的身高与体重之间的关系。

研究人员随机选择了200名成年人,记录了他们的身高(单位:厘米)和体重(单位:千克)。

请利用这些数据进行回归分析,并给出相关的统计结果。

解答三:同样地,我们将数据导入统计软件,然后进行回归分析。

回归分析练习题及参考答案

回归分析练习题及参考答案

求:(1)人均GDP 作自变量,人均消费水平作因变量,绘制散点图,并说明二者之间的关系形态。

(2)计算两个变量之间的线性相关系数,说明两个变量之间的关系强度。

(3)求出估计的回归方程,并解释回归系数的实际意义。

(4)计算判定系数,并解释其意义。

(5)检验回归方程线性关系的显著性(0.05α=)。

(6)如果某地区的人均GDP 为5000元,预测其人均消费水平。

(7)求人均GDP 为5000元时,人均消费水平95%的置信区间和预测区间。

解:(1)可能存在线性关系。

(2)相关系数:(3)回归方程:734.6930.309y x=+回归系数的含义:人均GDP没增加1元,人均消费增加0.309元。

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 注意:图标不要原封不动的完全复制软件中的图标,要按规范排版。

系数(a)模型非标准化系数标准化系数t 显著性B 标准误Beta1 (常量)734.693 139.540 5.265 0.003人均GDP(元)0.309 0.008 0.998 36.492 0.000 a. 因变量: 人均消费水平(元)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%人均GDP对人均消费的影响达到99.6%。

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%注意:图标不要原封不动的完全复制软件中的图标,要按规范排版。

模型摘要模型R R 方调整的R 方估计的标准差1 .998(a) 0.996 0.996 247.303a. 预测变量:(常量), 人均GDP(元)。

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%(5)F 检验:回归系数的检验:t 检验注意:图标不要原封不动的完全复制软件中的图标,要按规范排版。

系数(a)模型 非标准化系数标准化系数t 显著性B 标准误 Beta1(常量) 734.693 139.540 5.2650.003 人均GDP (元)0.3090.0080.99836.4920.000a. 因变量: 人均消费水平(元)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%(6)某地区的人均GDP 为5000元,预测其人均消费水平为 734.6930.30950002278.693y =+⨯=(元)。

社会统计学知识点总结

社会统计学知识点总结

第一章数据与统计学数据分析所使用的方法大体上可分为描述统计和推论统计(推断统计),描述统计主要是利用图表形式对数据进行展示,或通过计算一些简单的统计量(诸如:比例、比率、平均数、标准差等)对数据进行分析。

推断统计主要研究如何根据样本信息来推断总体的特征,内容包括参数估计和假设检验两大类。

变量:是描述观察对象某种特征的概念,其特点是从一次观察到下一次观察可能会出现不同的结果(具有一个以上取值的概念)1、下列哪一个选项不是变量?( )A. 民族B. 智商C. 衣服的尺寸D. 女性答案:C2、下列变量属于数值型变量的是( )A. 工资收入B. 产品等级C. 学生对考试改革的态度D. 企业的类型答案:A解析:3、社会统计学的数据分析方法主要包括统计描述和( )A. 统计描述B. 统计推导C. 统计推论D. 统计分析答案:C4、能计算均值和标准差的必须是哪种变量( )A. 自变量B. 因变量C. 数值型变量D. 字符串型变量答案:C5、在SPSS中最多可以设置几个独立的缺失值?( )A. 3B. 4C. 5D. 8答案:A6、描述统计可以最恰当地表述为( )A.数据作概括性的表达B.对总体所作的结论C.测量操作的应用D.原始数据到标准分的转变答案:A解析:描述统计主要是利用图表形式对数据进行展示,或通过计算一些简单的统计量(诸如:比例、比率、平均数、标准差等)对数据进行分析。

第二章数据的描述性分析:图表展示1、欲以图形显示两变量X和Y的关系,最好创建( )。

A. 直方图B. 圆形图C. 柱形图D. 散点图答案:D第三章数据的描述性分析:概括性度量1、下列统计指标中,对极端值的变化最不敏感的是( )。

A. 众值B. 中位值C. 四分位差D. 均值答案:A2、经验法则表明,当一组数据正态分布时,在平均数加减1个标准差的范围之内大约有 ( )A. 50%的数据B. 68%的数据C. 95%的数据D. 99%的数据答案:B解析:根据标准得分可以判断一组数据中是否存在离群点。

2024年电大《社会统计学》期末考试试题及答案

2024年电大《社会统计学》期末考试试题及答案

2024年电大《社会统计学》期末考试试题及答案很抱歉,但我不能提供实际的考试试题和答案,尤其是在它们涉及到版权受保护的教育材料时。

不过,我可以帮您创建一份关于社会统计学概念的模拟试题和答案的文档示例。

请注意,以下内容仅用于教育和信息目的,并且不应被视为真实的考试内容或用于任何非法或未经授权的活动。

---2024年电大《社会统计学》期末考试试题及答案第一部分:选择题(每题2分,共计20分)1. 以下哪项是描述统计学的一个主要组成部分?A. 概率论B. 推断统计学C. 调查方法论D. 社会心理学答案:(A) 概率论2. 当研究者想要确定某个群体中某个特定特征的普遍性时,他们通常会使用哪种统计技术?A. 频数分布B. 标准差C. t检验D. 方差分析答案:(A) 频数分布3. 以下哪项不是解释方差分析(ANOVA)的基本假设之一?A. 数据应该满足正态性分布B. 各组之间的方差必须相等C. 观测值之间应该是独立的D. 数据应该满足同方差性答案:(D) 数据应该满足同方差性第二部分:简答题(每题10分,共计40分)4. 请解释什么是标准差,以及它在社会统计学中的应用。

答案:(标准差是衡量一组数据离散程度的统计量。

它是方差的平方根,用来描述数据点围绕平均值的分散程度。

在社会统计学中,标准差可以用来评估调查数据或实验数据的离散程度,帮助研究者理解变量变动的范围。

例如,在比较不同国家的平均收入时,标准差可以显示这些国家收入差异的大小。

)5. 请描述如何使用卡方检验来评估两个分类变量之间是否存在关联。

答案:(卡方检验是一种常用的统计方法,用来检验两个分类变量是否独立。

基本步骤包括:构建一个列联表来展示两个变量的交叉频数;计算卡方统计量,它基于观察频数和期望频数之间的差异;根据自由度和卡方分布表,确定卡方统计量的显著性水平。

如果卡方统计量的p值小于显著性水平(通常是0.05),则拒绝原假设,认为两个变量不独立。

)第三部分:案例分析(40分)6. 某研究者正在比较两个不同城市的犯罪率。

统计学课后知识题目解析第七章有关分析与回归分析

统计学课后知识题目解析第七章有关分析与回归分析

统计学课后知识题⽬解析第七章有关分析与回归分析第七章相关分析与回归分析⼀、单项选择题1.相关分析是研究变量之间的A.数量关系B.变动关系C.因果关系D.相互关系的密切程度2.在相关分析中要求相关的两个变量A.都是随机变量B.⾃变量是随机变量C.都不是随机变量D.因变量是随机变量3.下列现象之间的关系哪⼀个属于相关关系?A.播种量与粮⾷收获量之间关系B.圆半径与圆周长之间关系C.圆半径与圆⾯积之间关系D.单位产品成本与总成本之间关系4.正相关的特点是A.两个变量之间的变化⽅向相反B.两个变量⼀增⼀减C.两个变量之间的变化⽅向⼀致D.两个变量⼀减⼀增5.相关关系的主要特点是两个变量之间A.存在着确定的依存关系B.存在着不完全确定的关系C.存在着严重的依存关系D.存在着严格的对应关系6.当⾃变量变化时, 因变量也相应地随之等量变化,则两个变量之间存在着A.直线相关关系B.负相关关系C.曲线相关关系D.正相关关系7.当变量X值增加时,变量Y值都随之下降,则变量X和Y之间存在着B.直线相关关系C.负相关关系D.曲线相关关系8.当变量X值增加时,变量Y值都随之增加,则变量X和Y之间存在着A.直线相关关系B.负相关关系C.曲线相关关系D.正相关关系9.判定现象之间相关关系密切程度的最主要⽅法是A.对现象进⾏定性分析B.计算相关系数C.编制相关表D.绘制相关图10.相关分析对资料的要求是A.⾃变量不是随机的,因变量是随机的B.两个变量均不是随机的C.⾃变量是随机的,因变量不是随机的D.两个变量均为随机的11.相关系数A.既适⽤于直线相关,⼜适⽤于曲线相关B.只适⽤于直线相关C.既不适⽤于直线相关,⼜不适⽤于曲线相关D.只适⽤于曲线相关12.两个变量之间的相关关系称为A.单相关B.复相关C.不相关D.负相关13.相关系数的取值范围是A.-1≤r≤1B.-1≤r≤0C.0≤r≤1D. r=014.两变量之间相关程度越强,则相关系数B.愈趋近于0C.愈⼤于1D.愈⼩于115.两变量之间相关程度越弱,则相关系数A.愈趋近于1B.愈趋近于0C.愈⼤于1D.愈⼩于116.相关系数越接近于-1,表明两变量间A.没有相关关系B.有曲线相关关系C.负相关关系越强D.负相关关系越弱17.当相关系数r=0时,A.现象之间完全⽆关B.相关程度较⼩B.现象之间完全相关 D.⽆直线相关关系18.假设产品产量与产品单位成本之间的相关系数为-0.89,则说明这两个变量之间存在A.⾼度相关B.中度相关C.低度相关D.显著相关19.从变量之间相关的⽅向看可分为A.正相关与负相关B.直线相关和曲线相关C.单相关与复相关D.完全相关和⽆相关20.从变量之间相关的表现形式看可分为A.正相关与负相关B.直线相关和曲线相关C.单相关与复相关D.完全相关和⽆相关21.物价上涨,销售量下降,则物价与销售量之间属于A.⽆相关B.负相关C.正相关D.⽆法判断22.配合回归直线最合理的⽅法是A.随⼿画线法B.半数平均法C.最⼩平⽅法D.指数平滑法23.在回归直线⽅程y=a+bx中b表⽰A.当x增加⼀个单位时,y增加a的数量B.当y增加⼀个单位时,x增加b的数量C.当x增加⼀个单位时,y的平均增加量D.当y增加⼀个单位时, x的平均增加量24.计算估计标准误差的依据是A.因变量的数列B.因变量的总变差C.因变量的回归变差D.因变量的剩余变差25.估计标准误差是反映A.平均数代表性的指标B.相关关系程度的指标C.回归直线的代表性指标D.序时平均数代表性指标26.在回归分析中,要求对应的两个变量A.都是随机变量B.不是对等关系C.是对等关系D.都不是随机变量27.年劳动⽣产率(千元)和⼯⼈⼯资(元)之间存在回归⽅程y=10+70x,这意味着年劳动⽣产率每提⾼⼀千元时,⼯⼈⼯资平均A.增加70元B.减少70元C.增加80元D.减少80元28.设某种产品产量为1000件时,其⽣产成本为30000元,其中固定成本6000元,则总⽣产成本对产量的⼀元线性回归⽅程为:A.y=6+0.24xB.y=6000+24xC.y=24000+6xD.y=24+6000x29.⽤来反映因变量估计值代表性⾼低的指标称作A.相关系数B.回归参数C.剩余变差D.估计标准误差⼆、多项选择题1.下列现象之间属于相关关系的有A.家庭收⼊与消费⽀出之间的关系B.农作物收获量与施肥量之间的关系C.圆的⾯积与圆的半径之间的关系D.⾝⾼与体重之间的关系E.年龄与⾎压之间的关系2.直线相关分析的特点是A.相关系数有正负号B.两个变量是对等关系C.只有⼀个相关系数D.因变量是随机变量E.两个变量均是随机变量3.从变量之间相互关系的表现形式看,相关关系可分为A.正相关B.负相关C.直线相关D.曲线相关E.单相关和复相关4.如果变量x与y之间没有线性相关关系,则A.相关系数r=0B.相关系数r=1C.估计标准误差等于0D.估计标准误差等于1E.回归系数b=05.设单位产品成本(元)对产量(件)的⼀元线性回归⽅程为y=85-5.6x,则A.单位成本与产量之间存在着负相关B.单位成本与产量之间存在着正相关C.产量每增加1千件,单位成本平均增加5.6元D.产量为1千件时,单位成本为79.4元E.产量每增加1千件,单位成本平均减少5.6元6.根据变量之间相关关系的密切程度划分,可分为A.不相关B.完全相关C.不完全相关D.线性相关E.⾮线性相关7.判断现象之间有⽆相关关系的⽅法有A.对现象作定性分析B.编制相关表C.绘制相关图D.计算相关系数E.计算估计标准误差8.当现象之间完全相关的,相关系数为A.0B.-1C.1D.0.5E.-0.59.相关系数r =0说明两个变量之间是A.可能完全不相关B.可能是曲线相关C.肯定不线性相关D.肯定不曲线相关E.⾼度曲线相关10.下列现象属于正相关的有A.家庭收⼊愈多,其消费⽀出也愈多B.流通费⽤率随商品销售额的增加⽽减少C.产量随⽣产⽤固定资产价值减少⽽减少D.⽣产单位产品耗⽤⼯时,随劳动⽣产率的提⾼⽽减少E.⼯⼈劳动⽣产率越⾼,则创造的产值就越多11.直线回归分析的特点有A.存在两个回归⽅程B.回归系数有正负值C.两个变量不对等关系D.⾃变量是给定的,因变量是随机的E.利⽤⼀个回归⽅程,两个变量可以相互计算12.直线回归⽅程中的两个变量A.都是随机变量B.都是给定的变量C.必须确定哪个是⾃变量,哪个是因变量D.⼀个是随机变量,另⼀个是给定变量E.⼀个是⾃变量,另⼀个是因变量13.从现象间相互关系的⽅向划分,相关关系可以分为A.直线相关B.曲线相关C.正相关D.负相关E.单相关 14.估计标准误差是A. 说明平均数代表性的指标B.说明回归直线代表性指标C.因变量估计值可靠程度指标D.指标值愈⼩,表明估计值愈可靠E.指标值愈⼤,表明估计值愈可靠 15.下列公式哪些是计算相关系数的公式16.⽤最⼩平⽅法配合的回归直线,必须满⾜以下条件 A.∑(y-y c )=最⼩值 B.∑(y-y c )=0 C.∑(y-y c )2=最⼩值 D.∑(y-y c )2=0E.∑(y-y c )2=最⼤值 17.⽅程y c =a+bxA. 这是⼀个直线回归⽅程B.这是⼀个以X 为⾃变量的回归⽅程C.其中a 是估计的初始值D.其中b 是回归系数E.y c 是估计值18.直线回归⽅程y c =a+bx 中的回归系数b222222)()(.)()())((...))((.y y n x x n yx xy n r E y y x x y y x x r D L L L r C L L L r B n y y x x r A xxxy xyyyxx xy y x ∑-∑?∑-∑∑?∑-∑=-∑?-∑--∑===--∑=σσA.能表明两变量间的变动程度B.不能表明两变量间的变动程度C.能说明两变量间的变动⽅向D.其数值⼤⼩不受计量单位的影响E. 其数值⼤⼩受计量单位的影响19.相关系数与回归系数存在以下关系A.回归系数⼤于零则相关系数⼤于零B.回归系数⼩于零则相关系数⼩于零C.回归系数等于零则相关系数等于零D.回归系数⼤于零则相关系数⼩于零E.回归系数⼩于零则相关系数⼤于零20.配合直线回归⽅程的⽬的是为了A.确定两个变量之间的变动关系B.⽤因变量推算⾃变量C.⽤⾃变量推算因变量D.两个变量相互推算E.确定两个变量之间的相关程度21.若两个变量x和y之间的相关系数r=1,则A.观察值和理论值的离差不存在B.y的所有理论值同它的平均值⼀致C.x和y是函数关系D.x与y不相关E.x与y是完全正相关22.直线相关分析与直线回归分析的区别在于A.相关分析中两个变量都是随机的;⽽回归分析中⾃变量是给定的数值,因变量是随机的B.回归分析中两个变量都是随机的;⽽相关分析中⾃变量是给定的数值,因变量是随机的C.相关系数有正负号;⽽回归系数只能取正值D.相关分析中的两个变量是对等关系;⽽回归分析中的两个变量不是对等关系E.相关分析中根据两个变量只能计算出⼀个相关系数;⽽回归分析中根据两个变量只能计算出⼀个回归系数三、填空题1.研究现象之间相关关系称作相关分析。

(完整版)《社会统计学》样题附答案

(完整版)《社会统计学》样题附答案

华南农业大学期末考试试卷(A卷)学年第学期考试科目:社会统计学考试类型:(开卷)考试时间:120 分钟一、单项选择题(请将正确选项的序号填在答题纸相应的位置。

)1.社会统计中的变量一般分四个层次,其中最高层次的变量是。

A、定类变量B、定序变量C、定距变量D、定比变量2.标准正态分布的均值一定。

A、等于1B、等于-1C、等于0D、不等于03.计算中位值时,对于未分组资料,先把原始资料按大小顺序排列成数列,然后用公式确定中位值所在位置。

A、n/2B、(n-1)/2C、(n+2)/2D、(n+1)/24.下列统计指标中,对极端值的变化最不敏感的是。

A、众值B、中位值C、四分位差D、均值5.如果原假设是总体参数不小于某一数值,即大于和等于某一数值,应采用的检验是。

A、两端检验B、右端检验C、左端检验D、无法判断6.在一个右偏的分布中,大于均值的数据个数将。

A、不到一半B、等于一半C、超过一半D、视情况而定7.下列关于“回归分析和相关分析的关系”的说法中不正确的是。

A、回归分析可用于估计和预测B、相关分析是研究变量之间的相互依存关系的密切程度C、相关分析不需区分自变量和因变量D、回归分析是相关分析的基础8.假定男性总是与比自己年轻3岁的女性结婚,那么夫妻年龄之间的积距相关系数r为。

A、-1 < r< 0B、0 < r< 1C、r = 1D、r = -19.“4、6、8、10、12、26”这组数据的集中趋势宜用测量。

A、众值B、中位值C、均值D、平均差10.某校期末考试,全校语文平均成绩为80分,标准差为4.5分,数学平均成绩为87分,标准差为9.5分。

某学生语文得了83分,数学得了92分,从相对名次的角度看,该生的成绩考得更好。

A、数学B、语文C、两门课程一样D、无法判断二、多项选择题(多选、错选均不得分,漏选得部分分。

请将正确选项的序号填在答题纸相应的位置。

)1.下列变量中属于定类层次的是。

统计学习题——回归分析

统计学习题——回归分析

回归分析例1、假定一个4家庭的随机样本的年收入和年节余如下表所示(单位:千元):1) 估计总体回归直线X Y βα+=2) 构造斜率β的95%置信区间;3) 作图画出4个样本点和拟合的直线,然后尽你所能在图中表示由2)的置信区间所给出的可接受的斜率(范围)。

解:(1) 方法1因为X Y βα+=,X =(4.8+7.2+8.5+9.5)/4=7.5 Y =(1.2+3.0+3.5+3.5)/4=2.8 记i x =i X -X ,i y =i Y -Y所以βˆ=∑∑2x iii xy=0.513732(代入数值计算过程略), =αˆY -βˆ*X = -1.052989 即估计总体回归方程为:Y=-1.052989+0.513732X.即估计总体回归方程为:Y=-1.052989+0.513732X. 说明结果一致。

(2)∑2ie =∑2iy-2ˆβ∑2ix=3.58-0.513732*0.513732*12.38=0.312666(与上一致)2Òˆ=2n 2-∑ie =0.156333。

(n =4) Se(βˆ)=∑2Òˆix =0.11237。

所以β的95%置信区间为(βˆ-2/t a * Se(βˆ),βˆ+2/t a * Se(βˆ))=(0.513732-4.3027*0.11237,0.513732+4.3027*0.11237)=(0.0304,1.0027)(自由度为2)(3)在Eviews 中作X-Y 图如下:1.01.52.02.53.03.54.056789XY例2、从某单位随机地抽取了相互独立的两个样本(男、女职工收入),其月收入数据如下:男:2300,2500,3000,2800,2600; 女:2400,2200,2000,2500,2700 用Y 表示收入,用哑变量X 表示性别:其中对于男性X =1,对于女性X =0。

1) 画出Y 对X 的图形;2) 用眼睛拟合一条Y 对X 的回归线;3) 计算Y 对X 的回归线;与2)中用眼睛拟合的相比,后者的精度如何? 4) 构造一个斜率为95%的置信区间,用简单的语言解释一下它的意义; 5) 在 5%的错误水平下,检验收入是否与性别无关; 6) 4)和5)的结果是否度量了该单位对女性的歧视? 解:(1)在Eviews 中作X-Y 图如下:180020002200240026002800300032000.00.20.40.60.81.0XY(2)由上图用眼睛拟合拟合一条Y 对X 的回归线:Y=2390+200X (3) 利用Eviews 进行回归:即回归方程为:Y=2380+280X与(2)中直观看到的:我们发现在斜率差距较大。

社会统计学复习题(有答案)

社会统计学复习题(有答案)

社会统计学课程期末复习题一、填空题〔计算结果一般保留两位小数〕1、第五次人口普查南京市和上海市的人口总数之比为 比较 相对指标;某企业男女职工人数之比为 比例 相对指标;某产品的废品率为 结构 相对指标;某地区福利机构网点密度为 强度 相对指标。

2、各变量值与其算术平均数离差之和为 零 ;各变量值与其算术平均数离差的平方和为 最小值 。

3、在回归分析中,各实际观测值y 与估计值y ˆ的离差平方和称为 剩余 变差。

4、平均增长速度= 平均发展速度 —1〔或100%〕。

5、 正J 形 反J 形 曲线的特征是变量值分布的次数随变量值的增大而逐步增多; 曲线的特征是变量值分布的次数随变量值的增大而逐步减少。

6、调查宝钢、鞍钢等几家主要钢铁企业来了解我国钢铁生产的基本情况,这种调查方式属于 重点 调查。

7、要了解某市大学多媒体教学设备情况,则总体是 该市大学中的全部多媒体教学设备 ;总体单位是 该市大学中的每一套多媒体教学设备; 。

8、假设某厂计划规定A 产品单位成本较上年降低6%,实际降低了7%,则A 产品单位成本计划超额完成程度为100%7%A 100% 1.06%100%6%-=-=-产品单位成本计划超额完成程度 ;假设某厂计划规定B 产品产量较上年增长5%,实际增长了10%,则B 产品产量计划超额完成程度为100%10%100% 4.76%100%5%+=-=+B 产品产量计划超额完成程度 。

9、按照标志表现划分,学生的民族、性别、籍贯属于 品质 标志;学生的体重、年龄、成绩属于 数量 标志。

10、从内容上看,统计表由 主词 和 宾词 两个部分组成;从格式上看,统计表由总标题 、 横行标题 、 纵栏标题 和 指标数值〔或统计数值〕;四个部分组成。

11、从变量间的变化方向来看,企业广告费支出与销售额的相关关系,单位产品成本与单位产品原材料消耗量的相关关系属于 正 相关;而市场价格与消费者需求数量的相关关系,单位产品成本与产品产量的相关关系属于 负 相关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十二章 相关与回归分析第一节 变量之间的相关关系 相关程度与方向·因果关系与对称关系 第二节 定类变量的相关双变量交互分类(列联表)·削减误差比例(PRE )·λ系数与τ系数 第三节 定序变量的相关分析同序对、异序对和同分对·Gamma 系数·肯德尔等级相关系数(τa 系数、τb与τc 系数)·萨默斯系数(d 系数)·斯皮尔曼等级相关(ρ相关)·肯德尔和谐系数第四节 定距变量的相关分析相关表和相关图·积差系数的导出和计算·积差系数的性质 第五节 回归分析线性回归·积差系数的PRE 性质·相关指数R 第六节 曲线相关与回归可线性化的非线性函数·实例分析(二次曲线指数曲线)一、填空1.对于表现为因果关系的相关关系来说,自变量一般都是确定性变量,依变量则一般是( 随机性 )变量。

2.变量间的相关程度,可以用不知Y 与X 有关系时预测Y 的全部误差E 1,减去知道Y 与X 有关系时预测Y 的联系误差E 2,再将其化为比例来度量,这就是( 削减误差比例 )。

3.依据数理统计原理,在样本容量较大的情况下,可以作出以下两个假定:(1)实际观察值Y 围绕每个估计值c Y 是服从( );(2)分布中围绕每个可能的c Y 值的( )是相同的。

4.在数量上表现为现象依存关系的两个变量,通常称为自变量和因变量。

自变量是作为( 变化根据 )的变量,因变量是随( 自变量 )的变化而发生相应变化的变量。

5.根据资料,分析现象之间是否存在相关关系,其表现形式或类型如何,并对具有相关关系的现象之间数量变化的议案关系进行测定,即建立一个相关的数学表达式,称为(回归方程),并据以进行估计和预测。

这种分析方法,通常又称为(回归分析)。

6.积差系数r是(协方差)与X和Y的标准差的乘积之比。

二、单项选择1.当x按一定数额增加时,y也近似地按一定数额随之增加,那么可以说x与y之间存在( A )关系。

A 直线正相关B 直线负相关C 曲线正相关D 曲线负相关2.评价直线相关关系的密切程度,当r在0.5~0.8之间时,表示( C )。

A 无相关B 低度相关C 中等相关D 高度相关3.相关分析和回归分析相辅相成,又各有特点,下面正确的描述有( D )。

A在相关分析中,相关的两变量都不是随机的;B在回归分析中,自变量是随机的,因变量不是随机的;C在回归分析中,因变量和自变量都是随机的;D在相关分析中,相关的两变量都是随机的。

4.关于相关系数,下面不正确的描述是( B )。

≤r1时,表示两变量不完全相关;A当0≤B当r=0时,表示两变量间无相关;C两变量之间的相关关系是单相关;D如果自变量增长引起因变量的相应增长,就形成正相关关系。

5.欲以图形显示两变量X和Y的关系,最好创建( D )。

A 直方图B 圆形图C 柱形图D 散点图6.两变量X和Y的相关系数为0.8,则其回归直线的判定系数为( C )。

A 0.50B 0.80C 0.64D 0.907.在完成了构造与评价一个回归模型后,我们可以( D )。

A 估计未来所需样本的容量B 计算相关系数和判定系数C 以给定的因变量的值估计自变量的值D 以给定的自变量的值估计因变量的值8.两变量的线性相关系数为0,表明两变量之间( D )。

A 完全相关B 无关系C 不完全相关D 不存在线性相关9.身高和体重之间的关系是( C )。

A 函数关系B 无关系C 共变关系D 严格的依存关系10.在相关分析中,对两个变量的要求是( A )。

A 都是随机变量B 都不是随机变量C 其中一个是随机变量,一个是常数D 都是常数11.在回归分析中,两个变量( D )。

A 都是随机变量B 都不是随机变量C 自变量是随机变量D 因变量是随机变量12.一元线性回归模型和多元线性回归模型的区别在于只有一个( B )。

A 因变量B 自变量C 相关系数D 判定系数13.以下指标恒为正的是( D )。

A 相关系数rB 截距aC 斜率bD 复相关系数14.下列关系中,属于正相关关系得是( A )。

A 身高与体重B 产品与单位成本C 正常商品的价格和需求量D 商品的零售额和流通费率三、多项选择1.关于积差系数,下面正确的说法是(ABCD )。

A 积差系数是线性相关系数B 积差系数具有PRE性质C 在积差系数的计算公式中,变量X和Y是对等关系D 在积差系数的计算公式中,变量X和Y都是随机的2.关于皮尔逊相关系数,下面正确的说法是()。

A 皮尔逊相关系数是线性相关系数B 积差系数能够解释两变量间的因果关系C r公式中的两个变量都是随机的D r的取值在1和0之间E 皮尔逊相关系数具有PRE性质,但这要通过r2加以反映3.简单线性回归分析的特点是(ABE )。

A 两个变量之间不是对等关系B 回归系数有正负号C 两个变量都是随机的D 利用一个回归方程,两个变量可以互相推算E 有可能求出两个回归方程4.反映某一线性回归方程y=a+bx好坏的指标有(ABD )。

A 相关系数B 判定系数C b的大小D 估计标准误E a的大小5.模拟回归方程进行分析适用于(ACDE )。

A 变量之间存在一定程度的相关系数B 不存在任何关系的几个变量之间C 变量之间存在线性相关D 变量之间存在曲线相关E 时间序列变量和时间之间6.判定系数r2=80%和含义如下(ABC )。

A 自变量和因变量之间的相关关系的密切程度B 因变量y的总变化中有80%可以由回归直线来解释和说明C 总偏差中有80%可以由回归偏差来解释D 相关系数一定为0.64E 判定系数和相关系数无关7.回归分析和相关分析的关系是(ABE )。

A 回归分析可用于估计和预测B 相关分析是研究变量之间的相互依存关系的密切程度C 回归分析中自变量和因变量可以互相推导并进行预测D 相关分析需区分自变量和因变量E 相关分析是回归分析的基础8.以下指标恒为正的是(BC )。

A 相关系数B 判定系数C 复相关系数D 偏相关系数E 回归方程的斜率9.一元线性回归分析中的回归系数b可以表示为(BC)A 两个变量之间相关关系的密切程度B 两个变量之间相关关系的方向C 当自变量增减一个单位时,因变量平均增减的量D 当因变量增减一个单位时,自变量平均增减的量E 回归模型的拟合优度10.关于回归系数b,下面正确的说法是()。

A b也可以反映X和Y之间的关系强度。

;B 回归系数不解释两变量间的因果关系;C b公式中的两个变量都是随机的;D b的取值在1和-1之间;E b也有正负之分。

四、名词解释1.消减误差比例变量间的相关程度,可以用不知Y与X有关系时预测Y的误差E,减去知道Y与X有关系时预测Y的误差E,再将其化为比例来度量。

将削减误差比例记为PRE。

12.确定性关系当一个变量值确定后,另一个变量值夜完全确定了。

确定性关系往往表现成函数形式。

3.非确定性关系在非确定性关系中,给定了一个变量值,另一个变量值还可以在一定范围内变化。

4.因果关系变量之间的关系满足三个条件,才能断定是因果关系。

1)连个变量有共变关系,即一个变量的变化会伴随着另一个变量的变化;2)两个变量之间的关系不是由其他因素形成的,即因变量的变化是由自变量的变化引起的;3)两个变量的产生和变化有明确的时间顺序,即一个在前,另一个在后,前者称为自变量,后者称为因变量。

5.单相关和复相关单相关只涉及到两个变量,所以又称为二元相关。

三个或三个以上的变量之间的相关关系则称为复相关,又称多元相关。

6.正相关与负相关正相关与负相关:正相关是指一个变量的值增加时,另一变量的值也增加;负相关是指一个变量的值增加时,另一变量的值却减少。

7.散点图散点图:将相关表所示的各个有对应关系的数据在直角坐标系上画出来,以直观地观察X 与Y 的相互关系,即得相关图,又称散点图。

8.皮尔逊相关系数r皮尔逊相关系数是协方差与两个随机变量X 、Y 的标准差乘积的比率。

9.同序对在观察X 序列时,如果看到i j X X <,在Y 中看到的是i j Y Y <,则称这一配对是同序对。

10.异序对在观察X 序列时,如果看到i j X X <,在Y 中看到的是i j Y >Y ,则称这一配对是异序对。

11.同分对如果在X 序列中,我们观察到i j X =X (此时Y 序列中无i j Y =Y ),则这个配对仅是X 方向而非Y 方向的同分对;如果在Y 序列中,我们观察到i jY =Y (此时X 序列中无i j X =X ),则这个配对仅是Y 方向而非X 方向的同分对;我们观察到i j X =X ,也观察到i j Y =Y ,则称这个配对为X 与Y 同分对。

五、判断题1.由于削减误差比例的概念不涉及变量的测量层次,因此它的优点很明显,用它来定义相关程度可适用于变量的各测量层次。

(√)2.不管相关关系表现形式如何,当r=1时,变量X和变量Y都是完全相关。

(√)3.不管相关关系表现形式如何,当r=0时,变量X和变量Y都是完全不相关。

(×)4.通过列联表研究定类变量之间的关联性,这实际上是通过相对频数条件分布的比较进行的。

而如果两变量间是相关的话,必然存在着Y的相对频数条件分布相同,且和它的相对频数边际分布相同。

(×)5.如果众数频数集中在条件频数分布列联表的同一行中, 系数便会等于0,从而无法显示两变量之间的相关性。

(√)6.从分析层次上讲,相关分析更深刻一些。

因为相关分析具有推理的性质,而回归分析从本质上讲只是对客观事物的一种描述,知其然而不知其所以然。

(×)六、计算题1.对某市市民按老中青进行喜欢民族音乐情况的调查,样本容量为200人,调查结果示于下表,试把该频数列联表:①转化为相对频数的联合分布列联表②转化为相对频数的条件分布列联表;③指出对于民族音乐的态度与被调查者的年岁有无关系,并说明理由。

2.已知十名学生身高和体重资料如下表,(1)根据下述资料算出身高和体重的皮尔逊相关系数和斯皮尔曼相关系数;(2)根据下述资料求出两变量之间的回归方程(设身高为自变量,体重为因变量)。

【皮尔逊相关系数:0.889,斯皮尔曼相关系数:0.94,回归方程:Y=-54.48+0.66X 】3.假定有不同文化程度的35~45岁育龄妇女100人的生育情况如下表,求文化程度与平均生育数的相关系数r 。

4.某市有12所大专院校,现组织一个评审委员会对各校校园及学生体质进行评价,结果如下,试求环境质量与学生体质的关系的斯皮尔曼相关系数和肯得尔等级相关系数。

【斯皮尔曼相关系数:0.94,肯德尔等级相关系数:0.83】5.以下是婚姻美满与文化程度的抽样调查的结果,请计算婚姻美满与文化程度之Gamma 系数和肯德尔相关系数τc 。

相关文档
最新文档