电能质量分析教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
XXXXXXXX 电能质量分析培训教案
培训人:XXXXXX XXXX年XX月XX日
电能质量优化及控制分析
概述:
目前,电力系统已发展成为集中发电、远距离输电的大型互联网络系统,电能质量已逐渐成为我们重要关注的问题。电能质量指标的偏离,是发电、输变电和用电三部分造成的,同时也给自身和其他两个部分带来不同程度的危害。改善电能质量对于电网和用户电气设备的安全、经济运行,进而促进电力行业发展有重要意义。此次培训班将对电能质量方面的新问题、改善及治理方案等进行系统讲解,使我们能更好地做好电能质量优化及控制工作。
一、电能质量概念
电能质量是指通过公用电网供给用户端的交流电能的品质。理想状态的公用电网应以恒定的频率、正弦波形和标准电压对用户供电。同时,在三相交流系统中,各相电压和电流的幅值应大小相等、相位对称且互差120°。但由于系统中的发电机、变压器和线路等设备非线性或不对称,负荷性质多变,加之调控手段不完善及运行操作、外来干扰和各种故障等原因,这种理想的状态并不存在,因此产生了电网运行、电力设备和供用电环节中的各种问题,也就产生了电能质量的概念。
从本质上讲,电能质量包括电压质量、电流质量和频率质量三个方面。(1)电压质量又称电压辐值质量,一般认为电压辐值质量主要受供电侧影响,用实际电压及理想电压间的广义偏差反映供电水平。
(2)电流质量,主要受用户影响,电流质量问题一般就是指谐波。(3)频率质量一般就是指系统供电的同步频率不满足系统的额定偏差范围的规范,在电源较弱的地区,随着大容量的有功负荷的较快变化,系统频率会出现周期性或非周期性的偏移,目前的调频控制技术和发电管理已经能够较好地控制频率变动。此外,有学者指出电能质量还应包括非技术成分质量问题。
从现有的统计和研究结果来看,破坏程度较为严重的是电压辐值质量问题。
二、主要的电能质量问题
从电力系统和电力用户共同关心的问题来看,电能质量可以归结为:电能质量=供电质量=电压质量+供电可靠性。其中供电可靠性包含系统的容量(储备满足供电需求的能力)和安全性(承受突发扰动的能力)。而对于电压质量,国际上的IEC和IEEE给出了比较详细的定义。
IEC(1000-2-2/4)标准对电能质量是这样定义的:电能质量是指供电装置在正常工作情况下不中断和干扰用户使用电力的物理特性。最严重的电能质量问题是电压跌落和电压完全中断。
IEEE给出的电能质量问题的一般解释为:在供电过程中导致电气设备出现误动作或故障损坏的任何异常现象。
针对过去对各种扰动引起的电能质量问题的提法不一,IEEE第22标准统筹委员和其它国际委员会推荐如下几种术语来描述主要的电能质量干扰。
电压跌落:电压或电流有效值降至额定值的10%-90%,持续时间为0.5个周期至一分钟。
电压中断:在一相或多相线路中完全失去电压(低于额定值的10%)一段时间。持续时间0.5个周期至3s为瞬时中断;持续时间3s 至60s为暂时中断;持续时间大于60s为持续中断。
电压上升:电压或电流有效值升至额定值的110%以上,典型值为额定值的110%一180%,持续时间为0.5个周期至一分钟。
电压瞬变:指在一定时间间隔内两个稳态量之间的变化。电压瞬变可以是任意极性的单方向脉冲或是第一个峰值为任意极性的衰减振荡波。
过电压:电压为额定值的110%一120%,持续时间大于1分钟。
欠电压:电压为额定值的80%-90%,持续时间大于1分钟。
谐波:频率为电源基波频率整数倍的正弦电压或电流。由电力系统中的装置和负载的非线性特性引起的波形畸变可分解为基波和谐波之和。
间谐波:电压和电流的频率不是基波频率的整数倍。间谐波主要由静止变频器、周波变频器、感应电机和电弧设备产生,电力载波信号也认为是一种间谐波。
电压缺口:持续时间小于0.5个周期的周期性的电压扰动。电压缺口主要是电力电子装置由一相换至另一相时参及换相的电路瞬时短路造成的,及电压缺口有关的频率分量很高,采用谐波分析仪测量可能是很困难的。
电压波动(闪变):电压波动(闪变)是指电压幅值在一定范围内有规律地或随机地变化。其电压幅值的变化通常为额定值的90%-110%。这种电压波动常称为电压闪变。闪变一词是从电压的波动引起电灯的闪动得来的。在输电和配电系统中电压闪变主要是由电弧炉引起的。
1、电压跌落
基本概念:电压跌落是交流电力系统中最常见的一种电压质量干扰,要保证电能质量安全可靠,首先就要考虑电压跌落的问题。
电压跌落是电压短暂下降的一种电压波动现象,典型的电压跌落持续时间一个电压周期到一秒钟的时间,或者持续几十毫秒至几百毫秒。持续时间小于半个电压周期的电压降低称为瞬时频率下降,持续时间过长(超过一分钟)的电压降低称为“欠电压”。
电压跌落波形图
电压跌落一般由于负荷的突然增加引起,例如线路的短路或故障、电机启动、或者电热器的开启等等。或者由于电源阻抗的突然增加,代表性的原因就是线路连接不紧密。
电压跌落是最为常见的一种电能干扰现象,在典型工业企业中,其用户引入线上每年出现几次电压跌落是很寻常的事情,而在终端设备上出现电压跌落的次数要多得多。
电压跌落可能产生于电力线路上,但是主要的电压跌落产生在建筑内。例如,在住宅线路中出现的电压跌落,通常是由于电冰箱或者空调的压缩机启动时产生的起始冲击电流。
电压跌落情况下的不同负荷系统之间的性能差别是十分明显的(城市及乡村、高空和地下),在新的电能质量等级规范中就不能不考虑这些重要因素的影响。瞬时断路情况下的性能要求也是十分重要的内容,因为它是电力用户遇到的特殊问题,而且在可靠性评估中并没有考虑。
需要提醒的是,电压跌落必须是两个导体之间的电压干扰现象,因此一定是相间电压跌落或者是相及中线之间的电压跌落,而不存在单纯的A相电压跌落。
电压跌落的产生原因:电力系统中存在非零阻抗,因此任何强度的电流增加都会引起相应的电压下降。通常情况下这种因为电流增加而引起的电压下降很小,仍然保持正常的电压接受范围内。但是,当遇到电流突然增量很大或者系统的阻抗很高的情况,电压下降就是很显著的了。所以从原理上说,电压跌落有两个原因:大电流增量和高系统阻抗。而实际上,大多数的电压跌落都是由于电流增加引起的。
我们可以把电力系统形象地比喻成一个大树,敏感的负荷设备就挂在树的末梢上,树干或者树枝上的任何电压跌落都会引起末梢负荷