恒流恒压源设计报告

恒流恒压源设计报告
恒流恒压源设计报告

稳压恒流源电源设计报告

学院:

班级:

组员:

必做题:用7812 设计一个输出0.5A 的恒流

选做题:基于反馈运算放大器的光电控制

目录

1、课程设计目的 (3)

2、课程设计任务和要求 (3)

3、设计思路 (3)

4、元器件清单 (6)

5、仿真波形截图 (6)

6、选做题 (9)

7、设计总结 (11)

1、课程设计目的:

(1)、结合所学的电子电路的理论知识完成直流稳压电源课程设计;

(2)、通过该设计学会并掌握常用电子元器件的选择和使用方法;

(3)、提高自己综合分析问题和解决问题的能力。

2、课程设计任务和要求

(1)、课程设计任务:

1)、用7812设计一个输出0.5A的恒流源;

2)、自行选作一个课外拓展题;

(2)、设计要求:

1)、画出系统电路图,并画出变压器输出、滤波电路输出及稳压输出的电压波形;画出变压器副边电流的波形。

2)、输入工频220V交流电的情况下,确定变压器变比;

3)、在满载情况下选择滤波电容的大小(取5倍工频半周期);

4)、求滤波电路的输出最大电压;

5)求电路中固定电阻阻值

3、设计思路

由输出电流确定稳压电路的形式,通过计算极限参数(电压,电流等)选择器件,有稳压电路所要求的直流电压,直流电流确定整流滤波电路的形式,选择整流二极管的滤波电容并确定变压器的副边电压U2的有效值。

说明:直流稳压电源是一种将220V 工频交流电转换成稳压输出的直流电压的装置,直流稳压电源包括变压器,整流,滤波,稳压电路,负载组成。其框图如图1 所示。

图1 稳压电源的组成框图及整流与稳压过程

在本次课程设计中我们采用桥式整流、电容滤波电路,集成稳压器选用

W7812,由于输入电压发生波动、负载和温度发生变化时,滤波电路输出的直流电压会随着变化。因此,为了维持输出电压稳定不变,还需加一级稳压电路。稳压电路的作用是当外界因素(电网电压、负载、环境温度)发生变化时,能使输出直流电压不受影响而维持稳定的输出。稳压电路一般采用集成稳压器和一些外围元件所组成。采用集成稳压器设计的稳压电源具有性能稳定、结构简单等优点。集成稳压器的类型很多,在小功率稳压电源中,普遍使用的是三端稳压器。按输出电压类型可分为固定式和可调式,此外又可分为正电压输出或负电压输出两种类型。本课程设计中采用的三端固定稳压器7812输出电压+12V,输出电流1A,最大输入电压35V 。

4、实验电路图

图2、实验原理图

图3稳压电源电路图

(1)、各部分功能的介绍和设计方案选择及详细参数的说明

1)、稳压电路说明:要求输出恒流源电流为0.5A,I=IQ+U/R, Iq是7812的

静态电流,其值很小,可以忽略,当R1变化时 7812 可以改变自身压差使

输出电流保持不变。故IL≈UOUT/R,7812 的输出电压为12V.所以R=UOUUT/IL=12/0.5=24Ω

注:7812 输入电压Ui的外围为15到17V,因为UI一般要比UOUT大3到5V才能保证集成稳压器工作在线性区。取 UI= 16V.

2)、整流电路说明:利用单向导电元件的正弦交流电变换成脉动的直流电选择整流二极管:负载电流为IL=0.5 A,所以通过二极管的电流为1/2

IL=0.25A 二极管所承受的最高反向电压为UM= *U2=20.5v 故选用二极管MDA2501(最大整流电流25A,反向工作峰值电压100V)。

3)、滤波电路说明:Rl*C=5*T\2=0.05(Rl是稳压电路及负载的戴维宁等效电阻,故Rl=16\0.5=32Ω;取五倍工频半周期)

得滤波电容值为C=0.05\R=1560uF

4)、电源变压器:是降压变压器,它将电网220V交流电压变换成符合需要的交电流电压,并送给整流电路,变压器的变比由变压器的副边电压确定。

电网电压为:220V

变压器副边有效值U2=16\1.1=13.3

变比n=U1/U2=220/13.3= 16.54

5、元器件:

变压器、桥式整理电路、电容、滑动变阻器、W7812、电阻

6、仿真波形截图

1)、变压器电流输出波形

图4变压器输出电流波形2)、变压器输出电压波形

图5变压器输入输出波形3)、滤波电路输出波形

图6滤波电容波形4)、稳压输出电压波形

图7稳压输出波形

7、选做题:基于反馈运算放大器的光电控制

在学校,机关,厂矿企业等单位的公共场所以及居民区的公共楼道,长明灯现象十分普遍, 这造成了能源的极大浪费. 另外, 由于频繁开关或者人为因素, 墙壁开关的损坏率很高,增大了维修量,浪费了资金.同时,为了加强我们对模拟电子技术合数字电子技术的理解合巩固,我们进行了声光控制开光的设计, 我们设计了一种电路新颖, 安全节电,结构简单,安装方便,使用寿命长的光控开关灯.通过设计,节电效果十分明显,同时也大大减少了维修量,节约了资金,使用效果良好.由于声光双控开关灯,白天光照好,不管发出多大声音,都不会是发光二极管发光.夜晚光暗,电路的拾音器只要检测到有碎发声响,发光二极管就会自动发光,过几十秒后又自动熄灭,节能节点.

本文主要介绍光控电路(声控部分不进行介绍)。

下图为光控电路电路图,连续变化的光电信号转换为离散信号(高、低电平),电流i随光照的强弱而变化。

图8附加题原理图

光电三极管:依据光照的强度来控制集电极电流的大小,其功能可等效为一直光电二极管与一只晶体管相连,并仅引出集电极与发电集。

图9 光电三极管

注:光电二极管、发光二极管在multisim中的仿真

图10结果对比

模拟结果:当光强度小时,电压<2V,灯不亮;

当光强度变大,电压>2V,灯发光。

8、实验总结:

本课程设计是关于集成稳压直流电源的设计,按照老师所给出的条件和要求设计了用7812 完成的输出0.5A 的恒流源。我们通过自己先设计的电路,然后

再参考一些书籍上的电路并经过修改和创造,设计成了最终符合要求的电路原理图,并进一步了解和学习了整个电路的各个部分的具体工作原理,达到了理想的要求。最后我们用Multisim软件对电路图进行了仿真,得出了理想的结果。这次的设计我们不仅进一步学习了稳压电路的原理和设计,以及对电路的更深一步的了解,特别是掌握了仿真的方法,学会了仿真软件的应用。同时也加起了同学之间的团结和凝聚力,获益匪浅。

CL1112 12W恒压-恒流LED电源驱动器

12W High Precision CC/CV Primary-Side PWM Driver FEATURES ◆ 5% Constant Voltage Regulation, 5%Constant Current Regulation at Universal AC input ◆ Primary-side Sensing and Regulation Without TL431 and Opto-coupler ◆ Low Start-up Current: 5μA (Typical) ◆ Low Operating Current: 2mA (Typical) ◆ Programmable CV and CC Regulation ◆ Adjustable Constant Current and Output Power Setting ◆ Built-in Secondary Constant Current Control with Primary Side Feedback ◆ Peak-Current-Mode Control ◆ Compensates for transformer inductance tolerances ◆ Compensates for cable voltage drop ◆ Fixed PWM Frequency at 60kHz with Frequency Hopping to Solve EMI Problems ◆ Power on Soft-start ◆ Built-in Leading Edge Blanking (LEB) ◆ Cycle-by-Cycle Current Limiting ◆ VDD Under-Voltage lockout (UVLO) ◆ VDD Over-Voltage Protection(OVP) APPLICATIONS below 12W AC/DC offline SMPS for ◆ Cell Phone Charger ◆ Digital Cameras Charger ◆ Small Power Adapter ◆ Auxiliary Power for PC, TV etc. ◆ Linear Regulator/RCC Replacement CL1112 is offered in SOP-8 and DIP-8 package. TYPICAL APPLICATIONS Pin Configuration The pin map is shown as below for SOP8/DIP8 CL1112

大电流恒流源放电回路及其分析

大电流恒流源放电回路及其分析李冬梅(茂名学院计算机与电子信息学院) 摘要:在经济飞速发展的今天,各种大容量可高倍率放电的电池的需求量越来越多,在使用前,都需要放电测试,而通常的测试设备电流值太小,如何实现大电流恒流放电,同时又经济、安全、可靠,大电流和小电流放电对电路的要求差别很大,放电回路需要重点考虑。本文针对大电流恒流放电回路进行设计,并对其实际问题进行分析。 关键词:恒流源放电 0引言 随着电池使用的迅速增长,对电池产业化生产及产品质量提出了更高的要求。在电子信息时代,对移动电源的需求快速增长,对高容量、大电流工作的电池的需求越来越大。特殊的大容量可高倍率放电的电池的使用也越来越多。因此电池厂也就需要大电流的电池检测设备。本文根据电池的特点,设计了放电电流可达50A的放电电路。此电路经济、实用,简单、安全、可靠。 1恒流放电机理 此电路需要实现的功能是可以稳定的恒流,放电电流范围:1A~50A分200mA级可设置。要实现这两个功能,其组成部分应该有控制回路和放电回路两部分构成。 1.1控制回路放电的方式为恒流放电,根据需要设置电流,根据需要送来的控制数据,对电池放电进行实时控制。电流值从1A到50A可调。要实现50A这么大的电流,考虑管子的选取以及散热的需求,一路放电回路很难实现,因此采用两路并联的放电回路实现,要控制这两路并联的回路,根据显示要求电流并不需要连续可调,可以采用数字电位器9312提供可控的电位给放电回路。 此电路实现的功能是可以稳定的恒流,放电电流范围:1A~50A 分200mA级可设置。要实现这两个功能,其组成部分应该有控制回路和放电回路两部分构成。 如图所示,根据实际需要的设定,控制数字电位器9312向运放TL062提供需要的电位。实现放电电流分级设置,每级为200mA。 1.2恒流放电回路如果恒流放电时的电流不够稳定,对电池的测试有影响,因此恒流源电路采用负反馈恒流源电路,如图所示,由运算放大器、基准电压源和大电流MOS管负载组成,它的电流由基准电压决定,运放电路工作在负反馈放大状态[1]。MOS管工作在放大区。根据需要对电流值进行预制,采用合适的处理器输出相应的数字信号,通过数字电位器的基准电压,压控恒流源输出相应的电流,压控恒流源时闭环负反馈系统,实现恒流,电流需要采样后经A/D转换反馈到处理器,处理器根据反馈信号调整控制信号[2]。使用此种负反馈,实际测试时,放电电流测量准确度可达:±(0.5FS+0.3RD)%,实际电流表读数与显示测量小数点后一位有效数字相同。 此压控恒流源电路采用双运放和两个独立控制的MOS管组成,电流大小由运放的同相输入端决定,因电流较大故采用两组独立工作的电路。在多个电池同时放电时,采用循环采样的方式,采样电池两端的工作电压和两路放电电阻上的电压;电流采用计算的方法获得,采样放电电阻的电压,电流由电压和电阻计算得到,由于电阻的值不一定很一致,可以采用软件校准。采样完成后将数据送回主控制板后对电流进行实时控制。经实验验证,此电路稳定性很好,在50A电流放电时每路的电流都很稳定。 MOS管采用IRF3710,IRF3710参数:R DS(ON)=0.025I D=57A,V GS:±20V[3]。只要采取足够的散热措施,IRF3710完全可以满足需要。要在短时间将电池能量释放出来,对散热设备的设计需要充分考虑。MOS管与散热器之间可以采用导热绝缘的钢片,因为此电路是大电流放电,会在短时间内将电池能量以热能的形式释放,因此在使用时还需要考虑采用风扇散热。 在进行采样设计时,要考虑到两路电路很难做到完全对称,电流采样采用两路分别采样,在10A以下,单路导通,10A以上,两路同时导通。由于电流很大,不能直接采样,需要接采样电阻R13和R28,放电回路的R1和R30的阻值很小,在62mΩ左右,采用鏮铜丝做成,由于此部分不能做到完全一致,因此计算的电流不准,这方面需要通过软件校准。通过软件校准后,工作情况良好,达到实际需要和精度要求。 2结语 此回路采用两个数字电位器实现对放电电流的控制,采用压控恒流源负反馈电路实现大电流放电功能。使用并联回路,如果需要更大电流时,可以再并联恒流源回路。在控制过程中采用需要的处理器,合理设计接口电路和解决散热问题,就可以使用在各种大电流放电的电池检测设备中。 参考文献: [1]崔玉文,艾学忠,杨潇.实用恒流源电路设计[J].电子测量技术.2002年第五期:25-26. [2]李婷婷,李洪波.数控大功率精密恒流源设计[J].通信电源技术.2006年9月.第23卷第5期:35-37. [3]https://www.360docs.net/doc/b23786357.html,. 至少6头,多至60头以上,随着灌装头数的增加,灌装能力也不断提高,虽然灌装机的头数有多有少,但其基本工作原理是一样的。灌装阀是储液箱、气室(充气室、排气室、真空室等)和灌装容器三者之间的流体通路开关,根据灌装工艺要求,能依次对有关通路进行切换。 2.4真空系统是由真空泵、空气过虑装置和电气控制系统组成。该系统直接影响灌装速度和精度。本机选用了进口真空泵(水环式真空泵),确保了真空系统的可靠性。 真空泵由变频器控制,同时,真空表可随时反映灌装时的真空度,并可通过阀门控制量的大小,待真空泵的负压值达到所需值后,一般真空度保持在0.01~0.06Mpa之间,按下变频器面板上的按钮,灌装机开始转动。 参考文献: [1]刘姗姗,宋秋红.屋顶包饮品纸盒灌装机气动理盖机构的设计研究[J].食品工业.2007.05. [1]Liu Shanshan,Song Qiuhong.Resarch&Development For Spout Applicator of Gable Top Beverage Filler[J].The Food Industry,2007,05. [2]丁毅,贾向丽,李国志.基于ADAMS的润滑脂灌装机的设计[J].包装与食品机械.2007.06. [2]DING Yi,JIA Xiang-li,LI Guo-zhi.The Design of Lubricate Grease Fill Machine Based on ADAMS[J].Packaging and Food Machinery, 2007,06. 图1恒流源放电电路 (上接第255页) 实用科技 256

最简单地恒流源LED驱动电路

WMZD系列专门为LED照明做温度补偿的电阻,采用热敏电阻补偿法的LED恒流源,具有电路简洁,可靠性好,组合方便,经济实用,适用各种LED头灯,日光灯,路灯;车船灯,太阳能LED庭院灯;LED显示屏等对恒流的需求。是专门针对LED照明出现的由于温度引起的LED PN结电压VF下降,即-2mV/℃,称为PN结的负温效应。该特性在发光应用上是个致命的缺陷,直接影响到LED器件的发光效率、发光亮度、发光色度。比如,常温25℃时LED最佳工作电流20mA,当环境温度升高到85℃时,PN结电压VF下降,工作电流急剧增加到35mA~37mA,此时电流的增加并不会产生亮度的增加,称为亮度饱和。更为严重的是,温度的上升,引起光谱波长的偏移,造成色差。如长时工作在此高温区还将引起器件老化,发光亮度逐步衰减。同样,当环境温度下降至-40℃时,结电压VF上升,最佳工作电流将从20mA减小到8mA~10mA,发光亮度也随电流的减少而降低,达不到应用场所所需的照度。 为了避免上述特性带来的不足,一般在LED灯的相关产品上,通常采用如下措施:1.将LED装在散热板上,或风机风冷降温。2.LED采用恒流源的供电方式,不因LED随温度上升引起使回生电流增加,防止PN结恶性升温。或这两种方法并用。实践证明,这两种方法用于大功率LED灯(如广告背景灯、街灯)。确实是行之有效的措施。但当LED 灯进入寻常百姓家就碰到如下问题了:散热板和风冷能否集成在一个普通灯头的空间内;采用集成电路或诸多元器件组成的恒流源电路,它的寿命不取于LED,而取决整个系统的某块“短板”;有没有吸引眼球的价格。用热敏电阻补偿法来解决LED恒流源问题,既经济又实用。 我公司采用具有正温度系数的热敏电阻(+2mV/℃)与负温度特性的LED(-2mV/℃)串联,互补成一个温度系数极小电阻型负载。一旦工作电压确定后,串联回路中的电流,将不会随温度变化而变化,通俗地讲,当LED随温度升高电流增加时,热敏电阻也随温度升高电阻变大,阻止了回路电流上升,当LED 随温度下降电流减小时,热敏电阻也随温度下降电阻变小,阻止了回路电流的减少,如匹配得当,当环境温度在-40℃-85℃范围内变化时,LED的最佳工作电流不会明显变化,见图1电流曲线Ⅱ。 2:应用: 从图1可见,采用热敏电阻温度补偿方法与采用集成电路等元件组成的恒源相比,热敏电阻温度补偿法只用1个热敏电阻元件就可解决LED恒流源问题,其价格、体积、寿命等优势不言而喻。我们采用的

基于51单片机恒压恒流源的设计

恒压、恒流源的设计 学校: 专业:电气工程及其自动化 带队教师: 参赛队员: 第一章前言 (3) 第二章方案论证 (4) 第三章整体设计思路 (5) 1)、整体主电路框图 2)、整体框图 3)、电源主体 4)、控制电路

第四章单元电路 (7) 1)、充电电流取样检测电路 2)、充电电压取样检测电路 3)、检查及保护电路 4)、时钟芯片DS1302辅助电路 5)、1602液晶显示模块 第五章软件设计 (13) 第七章结论 (14) 附页 前言 铅酸蓄电池是目前世界上广泛使用的一种化学电源,该产品具有良好的可逆性,电压特性平稳,使用寿命长,适用范围广,原材料丰富(且可再生使用)及造价低廉等优点而得到了广泛的使用。是社会生产经营活动中不可缺少的产品。但是,若使用不当,其寿命将大大缩短。影响铅酸蓄电池寿命的因素很多,而采用正确的充电方式,能有效延长蓄电池的使用寿命。研究发现:电池充电过程

对电池寿命影响最大,放电过程的影响较少。也就是说,绝大多数的蓄电池不是用坏的,而是“充坏”的。由此可见,一个好的充电器对蓄电池的使用寿命具有举足轻重的作用。而且,传统充电器的充电策略比较单一,只能进行简单的恒压或者恒流充电,以致充电时间很长,充电效率降低。另外,充电即将结束时,电池发热量很大,从而造成电池极化,影响电池寿命。针对上述问题,设计了一种智能充电器,尽量延长铅酸蓄电池的使用寿命。 第二章方案论证 一、方案论证与比较 控制器的选择 方案1:采用AT89S52单片机,该单片机做为经典单片机,方便使用,价格便宜,较长使用;但其功能单一,使用中需要外加多个其他电路,增加外围电路的设计及成本; 方案2:选择STC12C5A60S2单片机,此款作为本控制器自身带有AD转换、捕捉、PWM等功能,可减少外围设计且价格适中,开发周期短,编程及调试环境简单,容易实现;

几种简单恒流源电路1

几种简单的恒流源电路 恒流电路应用的范围很广,下面介绍几种由常用集成块组成的恒流电路。 1.由7805组成的恒流电路,电路图如下图1所示: 电流I=Ig+VOUT/R,Ig的电流相对于Io是不能忽略的,且随Vout,Vin及环境温度的变化而变化,所以 这个电路在精度要求有些高的场合不适用。 2.由LM317组成的恒流电路如图2所示,I=Iadj+Vref/R,他的恒流会更好,另外他是低压差稳 压IC。 摘要:本文论述了以凌阳16位单片机为控制核心,实现数控直流电流源功能的方案。设计采用MOSFET和精密运算放大器构成恒流源的主体,配以高精度采样电阻及12位D/A、A/D转换器,完成了单片机对输出电流的实时检测和实时控制,实现了10mA~2000mA范围内步进小于2mA恒定电流输出的功能,保证了纹波电流小于0.2mA,具有较高的精度与稳定性。人机接口采用4×4键盘及LCD液晶显示器,控制界面直观、简洁,具有良好的人机交互性能。 关键字:数控电流源 SPCE061A 模数转换数模转换采样电阻 一、方案论证 根据题目要求,下面对整个系统的方案进行论证。 方案一:采用开关电源的恒流源 采用开关电源的恒流源电路如图1.1所示。当电源电压降低或负载电阻Rl降低时,采样电阻RS上的电压也将减少,则 SG3524的12、13管脚输出方波的占空比增大,从而BG1导通时间变长,使电压U0回升到原来的稳定值。BG1关断后,储能元件L1、E2、E3、E4保证负载上的电压不变。当输入电源电压增大或负载电阻值增大引起U0增大时,原理与前类似,电路通过反馈系统使U0下降到原来的稳定值,从而达到稳定负载电流Il的目的。 图 1.1 采用开关电源的恒流源 优点:开关电源的功率器件工作在开关状态,功率损耗小,效率高。与之相配套的散热器体积大大减小,同时脉冲变压器体积比工频变压器小了很多。因此采用开关电源的恒流源具有效率高、体积小、重量轻等优点。 缺点:开关电源的控制电路结构复杂,输出纹波较大,在有限的时间内实现比较困难。 方案二:采用集成稳压器构成的开关恒流源 系统电路构成如图1.2所示。MC7805为三端固定式集成稳压器,调节,可以改变电流的大小,其输出电流为: ,式中为MC7805的静态电流,小于10mA。当较小即输出电流较大时,可以忽略,当负载电阻 变化时,MC7805改变自身压差来维持通过负载的电流不变。

压控恒流源2

数控恒流源设计 摘要:设计利用集成运放、场效应管对电流放大与单片机的自动控制来实现数控直流电流源。系统有控制模块与恒流源模块组成。控制模块使用AT89S52结合按键与四位数码管显示,实现对恒流源的数控和预设值的显示。恒流源模块采用OP07与IRF640组成的反馈放大电路实现对电流的放大。控制到恒流源的信号转换采用DAC0832来实现;实测显示模块有ADC0809组成的显示电路来显示。并使用自制电源进行供电。 关键词:AT89S51,恒流源,ADC0809,DAC0832,OP07 1硬件电路设计与分析 1.1 恒流源模块: 恒流源分为流控式与压控式,由于压控式易于实现,电路实现相对简单;因此本模块使用了压控式恒流源。压控式恒流源可以有集成运放芯片与晶体复合管或场效应管来实现;但由于晶体复合管实现起来比较复杂,发热量相对MOS管相

对较大,性能参数相对MOS管较差;因此本模块采用高精度集成运放芯片OP07与大功率场效应管IRF640相结合构成的恒流源。 压控恒流源是系统的重要组成部分,它的功能用电压来控制电流的变化,由于系统对输出电流大小和精度的要求比较高,所以选好压控恒流源电路显得特别重要。 恒流源是采用了电流反馈的方式来稳定电流的,下图是个典型的正向电流源,利用运放虚短的概念,使R2上的电压保持与V一致,来获得一个I=V/R2的恒流源。该恒流源电路由运算放大器、大功率场效应管Q1、采样电阻R3、负载电阻R4 等组成。电路原理图如图所示: 恒流源电路图 调整管采用大功率场效应管IRF640N更易于实现电压线性控制电流, 满足最大电流和电压线性电流化。因为当场效应管工作于饱和区时,漏电流Id近似

数控恒压恒流电源设计

直流稳压电源是任何电子电路试验中不可缺少的基础仪器设备,基本在所有的跟电有关的实验室都可以见到。对于一个电子爱好者来说,直流稳压电源也是必不可少的。要得到一个电源,一般有两种方法:一是购买一台成品电源,这样最为省事:二是自己制作一台电源(因为你是电子爱好者),当然相比于第一种方法会麻烦很多。很显然这篇文章不是教你如何去选购一台直流稳压电源…… 基本的恒压恒流电源结构框图如图1所示。由电压基准源、调整管、误差放大、电压取样以及电流取样组成。电压基准源的作用是为误差放大器提供一个参考电压,要求电压准确且长时间稳定并且受温度影响要小。取样电路、误差放大和调整管三者组成了闭环回路以稳定输出电压。这样的结构中电压基准源是固定的,电压和电流的取样电路也是固定的,所以输出电压和最高的输出电流就是固定的。而一般的可变恒压恒流电源是采用改变取样电路的分压比例来实现输出电压以及最高限制电流的调节。 图1 基本恒压恒流电源框图 图2 基本稳压电源简图

图2中所示的是一个基本输出电压可变的稳压电源简图,可以很明显地看出这个电路就是一个由运算放大器构成的同相放大器,输出端加上了一个由三极管组成的射极跟随器以提高输出能力,因为射极跟随器的放大倍数趋近于1,所以计算放大倍数时不予考虑。输入电压V+通过R1和稳压二极管VD产生基准电压Vref,然后将Vref放大1+R3/R2倍,即在负载RL上的得到的电压为Vref(1+R3/R2),因为R3可调范围是0~R3max,所以输出电压范围为Vref~Vref(1+R3max/R2)。这不就和我们常用的LM317之类的可调稳压芯片一样了,只是像LM317之类的芯片内部还集成了过热保护等功能,功能更加完善,但是也有它的弊端,主要因为它是将电压基准、调整管、误差放大电路都集成在了一个芯片上,因此在负载变化较大时芯片的温度也会有很大的变化,而影响半导体特性的主要因素之一就是温度,所以使用这种集成的稳压芯片不太容易得到稳定的电压输出,这也正是高性能的电压基准都是采用恒温措施的原因,比如LM399、LTZ1000等。 图3 一只正在FLUKE 8808A 五位半数字万用表中“服役”的LM399H 图3是我从FLUKE 8808A五位半数字万用表中拍的恒温电压基准LM399H。扯远了,言归正传(欲了解更多关于电压基准源的知识,请参看以前《无线电》杂志2008年第7期中张利民老师有关电压基准的文章)。这种以改变取样电阻阻值来改变输出电压的稳压电源应用是比较普遍的,图4照片中是我们实验室中大量使用的稳压电源,就是使用调节取样电阻阻值来调节输出电压的,电压电流的显示是使用一片专用的电压测量芯片ICL7107实现的,这种电源价格低廉易于普及,但也有显而易见的缺点,因为进行电压调节的可变电阻经过长时间使用会出现接触不良的情况,这导致的后果是相当严重的,假设你正在将电压从5V慢慢地向6V调整,因为某个点电位器接触不良,相当于电位器开路,从图2可以看出,R3开路的话,输出电压就是能输出的最高电压,那么你心爱的电路板就可能会回到文明以前了。

恒流源总结

恒流源是电路中广泛使用的一个组件,这里我整理一下比较常见的恒流源的结构和特点。 恒流源分为流出(Current Source)和流入(Current Sink)两种形式。 最简单的恒流源,就是用一只恒流二极管。实际上,恒流二极管的应用是比较少的,除了因为恒流二极管的恒流特性并不是非常好之外,电流规格比较少,价格比较贵也是重要原因。 最常用的简易恒流源如图(1) 所示,用两只同型三极管,利用三极管相对稳定的be电压作为基准, 电流数值为:I = Vbe/R1。 这种恒流源优点是简单易行,而且电流的数值可以自由控制,也没有使用特殊的元件,有利于降低产品的成本。缺点是不同型号的管子,其be电压不是一个固定值,即使是相同型号,也有一定的个体差异。同时不同的工作电流下,这个电压也会有一定的波动。因此不适合精密的恒流需求。 为了能够精确输出电流,通常使用一个运放作为反馈,同时使用场效应管避免三极管的be电流导致的误差。典型的运放恒流源如图(2)所示,如果电流不需要特别精确,其中的场效应管也可以用三极管代替。 电流计算公式为: I = Vin/R1

这个电路可以认为是恒流源的标准电路,除了足够的精度和可调性之外,使用的元件也都是很普遍的,易于搭建和调试。只不过其中的Vin还需要用户额外提供。 从以上两个电路可以看出,恒流源有个定式(寒,“定式”好像是围棋术语XD),就是利用一个电压基准,在电阻上形成固定电流。有了这个定式,恒流源的搭建就可以扩展到所有可以提供这个“电压基准”的器件上。 最简单的电压基准,就是稳压二极管,利用稳压二极管和一只三极管,可以搭建一个更简易的恒流源。如图(3)所示: 电流计算公式为:I = (Vd-Vbe)/R1 TL431是另外一个常用的电压基准,利用TL431搭建的恒流源如图(4)所示,其中的三极管替换为场效应管可以得到更好的精度。TL431组成流出源的电路,暂时我还没想到:) TL431的其他信息请参考《TL431的内部结构图》和《TL431的几种基本用法》

关于可调恒压恒流电源的原理、特性及使用

关于可调恒压恒流电源的原理、特性及使用: 恒压恒流的原理: 根据U=IR,R=U/I: 如果R>(U/I),则电源正常工作。 如果R<(U/I),I是恒定不变的,则电源恒流部分保护,输出电压下降,直到满足条件R=(U/I)。 特性: 所谓的恒压,即电压可以恒定到一个值上,可调恒压,即这个恒定的电压值是可调的。 所谓的恒流,即电流可以恒定到一个值上,可调恒流,即这个恒定的电流值是可调的。 使用: 可调恒压恒流电源在使用前需要先设置恒流保护值,再设置输出电压,然后开始工作。 首先将电源输出电压调到5V左右,短路输出,调整电流输出旋钮设置保护电流到你需要的值,撤消短路,调整电压到需要值,接上实验设备开始工作。 例如:一个电路的工作电压是12V所需电流约0.3A,操作如下。

将电源输出电压调到5V左右,短路输出,调整电流输出旋钮设置保护电流0.5A(要比工作电流略大),撤消短路,调整电压到12V,接上电路开始实验。 如果试验过程中电路板放到金属上部分电路短路了,使电流剧增,当电流上升到0.5A时,电源恒流保护部分工作随即使输出电压下降以保护试验设备。 常识了解: 交流电压经过全波整流电容滤波后直流电压约是交流电压的1.414倍。 例如10V的交流电压经过全波整流电容滤波后直流电压约等于14V。 继电器切换点的选择: 交流输入电压减去5V等于切换电压。 例如变压器抽头0-15V-25V-35 那么第一级的切换电压是15V-5V=10V,即在10V 时切换到25V的抽头上。 第二级的切换电压是25V-5V=20V,即在20V时切换到35V的抽头上。 关于继电器切换与否可以测R17两端的电压来判断,R17电压(直流)除以1.414约等于当前的抽头电压(交流)。

最新压控恒流源电路设计资料

3、电流源模块的选择方案 方案一:由晶体管构成镜像恒流源 一缺点在于,集电极最大输出电流约为几百毫安,而题目要求输出电流为200~2000mA,因此由晶体管构成的恒流源不适合采用。 方案二:由运算放大器构成恒流电路 运算放大器构成的恒流电路摆脱了晶体管恒流电路受限于工艺参数的缺点。但是只由运放构成的恒流电路,输出电流同样只能达到几十毫安,远远不能满足设计要求,因此必须加上扩流电路。采用运算放大器加上扩流管构成恒流电路,既能利用运算放大器准确的特性,输出又能达到要求。该电路的缺点之一在于电流的测量精度受到两个晶体管的匹配程度影响,其中涉及到比较复杂的工艺参数。 方案三:由运算放大器加上扩流管构成恒流电路 采用高精度运算放大器OP07,更能增加其准确的性能;采用达林顿管TP127 进行扩流,具有很大的扩流能力,两者结合,可以实现比较精确的恒流电路。 鉴于上面分析,本设计采用方案三。 (3)恒流源电路的设计 恒流源电路如图8.15 所示。其中,运算放大器U3 是一个反相加法器,一路输入为控制信号V1,另一路输入为运放U1 的输出反馈,R8 是U3 的反馈电阻。用达林顿管TIP122 和TIP127 组成推挽式电路,两管轮流导通。U2 是电压跟随器,输入阻抗高,基本没有分流,因此流经R2 的电流全部流入负载RL。U1 是反相放大器,取R14=R11 时,放大 倍数为-1,即构成反相器。 针对运算放大器输出电流小的不足,该电路加了扩流电路。采 图8.15 恒流源部分电路 若U3 的输入电压为Vin,根据叠加原理,有

由U2 的电压跟随特性和U1 的反相特性,有 代入得到 即流经R7 的电流完全由输入控制电压Vin 决定 由于U2 的输入端不取电流,流经负载RL 的电流完全由输入控制电压Vin 决定,实现了压控直流电流源的功能。由于R7 中流过的电流就是恒流源的输出电流,按照题目要求,输出的直流电流需要达到2A,这里采用康锰铜电阻丝作为电阻R7。 2压控恒流源电路设计 压控恒流源是系统的重要组成部分,它的功能是用电压来控制电流的变化,由于系统对输出电流大小和精度的要求比较高,所以选好压控恒流源电路显得特别重要。采用如下电路:电路原理图如图8.5 所示。该恒流源电路由运算放大器、大功率场效应管Q1、采样电阻R2、负载电阻RL 等组成。

压控恒流源电路设计

压控恒流源电路设计 Last updated on the afternoon of January 3, 2021

3、电流源模块的选择方案 方案一:由晶体管构成镜像恒流源 一缺点在于,集电极最大输出电流约为几百毫安,而题目要求输出电流为200~2000mA,因此由晶体管构成的恒流源不适合采用。 方案二:由运算放大器构成恒流电路 运算放大器构成的恒流电路摆脱了晶体管恒流电路受限于工艺参数的缺点。但是只由运放构成的恒流电路,输出电流同样只能达到几十毫安,远远不能满足设计要求,因此必须加上扩流电路。采用运算放大器加上扩流管构成恒流电路,既能利用运算放大器准确的特性,输出又能达到要求。该电路的缺点之一在于电流的测量精度受到两个晶体管的匹配程度影响,其中涉及到比较复杂的工艺参数。 方案三:由运算放大器加上扩流管构成恒流电路 采用高精度运算放大器OP07,更能增加其准确的性能;采用达林顿管TP127进行扩流,具有很大的扩流能力,两者结合,可以实现比较精确的恒流电路。 鉴于上面分析,本设计采用方案三。 (3)恒流源电路的设计 恒流源电路如图所示。其中,运算放大器U3是一个反相加法器,一路输入为控制信号 V1,另一路输入为运放U1的输出反馈,R8是U3的反馈电阻。用达林顿管TIP122和TIP127组成推挽式电路,两管轮流导通。U2是电压跟随器,输入阻抗高,基本没有分流,因此流经R2的电流全部流入负载RL。U1是反相放大器,取R14=R11时,放大 倍数为-1,即构成反相器。 针对运算放大器输出电流小的不足,该电路加了扩流电路。采 图恒流源部分电路 若U3的输入电压为Vin,根据叠加原理,有

恒流恒压充电器的原理与设计

恒流恒压充电器的原理与设计

本电路实际上是一个恒流源。核器件是集成三端可调稳压器LM317T。 LM317T在电源电压足够的情况下可以保持其+Vout端比其ADJ端电压高 1。25V。请看图中的接法,ADJ端直接与待充电池相连。但ADJ端的内阻很 大(正常情况下ADJ端的电流不会超过50μA),可近似看作开路,但它可以对电 压进行取样。LM317T将+Vout端的电压提高到比ADJ端高1.25V,那么跨 接在+Vout端与ADJ端的电阻上将有1.25V/25.5Ω=0。05A=50mA 的电流流过(25.5Ω为开关打开时,R1与R2并联后的总阻值)。这个电流便流 过电池,对电池进行了恒流充电。 公式与计算、 普通充电电池充电时间计算 一、充电常识 在这里,首先要说明的是,充电是使用充电电池的重要步骤。适当合理的充电对延长电池寿命很有好处,而野蛮胡乱充电将会对电池寿命有很大影响。上一篇曾说过,目前的锂电池基本都是根据各个产品单独封装,互不通用的,因此各个产品也提供各自的充电设备,互不通用,在使用时只要遵循各自的说明书使用即可。所以本篇对电池充电的介绍主要是指镍镉电池和镍氢电池。 对镍隔电池和镍氢电池充电有两种方式,就是我们大家所熟知的“快充”和“慢充”。快充和慢充是充电的一个重要概念,只有了解了快充和慢充才能正确掌握充电。 首先,快充和慢充是个相对的概念。有人曾问,我的充电器充电电流有200mA,是不是快充?这个答案并不绝对,应该回答对于某些电池来说,它是快充,而对于某些电池来说,它只是慢充。那我们究竟怎样来判别快充还是慢充呢? 例如一节5号镍氢电池的电容量为1200mAH,而另一节则为1600mAH。我们把一节电池的电容量称为1C,可见1C只是一个逻辑概念,同样的1C,并不相等。 在充电时,充电电流小于0.1C时,我们称为涓流充电。顾名思义,是指电流很小。一般而言,涓流充电能够把电池充的很足,而不伤害电池寿命,但用涓流充电所花的时间实在太长,因此很少单独使用,而是和其它充电方式结合使用。 充电电流在0.1C-0.2C之间时,我们称为慢速充电。充电电流大于0.2C,小于0.8C则是快速充电。而当充电电流大于0.8C时,我们称之为超高速充电。 正因为1C是个逻辑概念而非绝对值,因此根据1C折算的快充慢充也是一个相对值。前面例子中提到的200mA充电电流对于1200mAH的电池来说是慢充,而对于700mAH的电池来说就是快充。

恒流恒压充电器的原理与设计

恒流恒压充电器的原理与设计 2009-09-22 09:26 随着高新电子技术的发展各类充电电子产品不断上升,为此云峰电子为朋友们提供些相关恒流充电器的制作与原理分析,请仔细阅读!详情咨询https://www.360docs.net/doc/b23786357.html, 第一类、lm317恒流源电路图 图1、图2分别是用78××和LM317构成的恒流充电电路,两种电路构成形式一致。对于图1的电路,输出电流Io=Vxx/R+IQ,式中Vxx是标称输出电压,IQ是从GND端流出的电流,通常IQ≤5mA。当VI、Vxx及环境温度变化时,IQ的变化较大,被充电电池电压变化也会引起IQ的变化。IQ是Io的一部分,要流过电池,IQ的值与Io相比不可忽略,因而这种电路的恒流效果比较差。对于图2的电路,输出电流Io=VREF/R+IADJ,式中VREF是基准电压,为1.25V,IADJ是从调整端ADJ流出的电流,通常IADJ≤50μA。虽然IADJ也随VI及环境条件的变化而变化,且也是Io的一部分,但由于IADJ仅为78××的IQ的1%,与Io相比,IQ可以忽略。可见LM317的恒流效果较好。 对可充电电池进行恒流充电,用三端稳压集成电路构成恒流充电电路具有元件易购、电路简单的特点。有些读者在设计电路时采用78××稳压块,如《电子报》2001年第2期第十一版刊登的《简单可靠的恒流充电器》及今年第6期第十版的《恒流充电器的改进》一文,均采用7805。78××虽然可接成恒流电路,但恒流效果不如LM317,前者是固定输出稳压IC,后者是可调输出稳压IC,两种芯片的售价又相近,采用LM317才是更为合理的改进。 LM317采用T0-3金属气密封装的耗散功率为20W,采用TO-220塑封结构的耗散功率为15W,负载电流均可达1.5A,使用时需配适当面积的散热器。由于LM317的VREF=1.25V,其最小压差为3V,因此输入电压VI达4.25V就能正常工作。但应注意输出电流Io调得较大时,输入电压VI的范围将减小,超出范围会进入安全保护区工作状态,使用时可从图3的安全工作区保护曲线上查明输入—输出压差(VI-Vo)的范围。 78××与LM317内部均有限流、过热保护功能,后者还有安全工作区保护功能。78××不允许GND端悬空,否则器件极易损坏。LM317即使ADJ端悬空,各种保护功能仍然

三极管恒流源电路

三极管恒流源电路 恒流源的输出电流为恒定。在一些输入方面如果应用该电路则能够有效保护输入器件。比如RS422通讯中采用该电路将有效保护该通讯。在一定电压方位内可以起到过压保护作用。以下引用一段恒流源分析。 恒流源是输出电流保持不变的电流源,而理想的恒流源为: a)不因负载(输出电压)变化而改变。 b)不因环境温度变化而改变。 c)内阻为无限大。 恒流源之电路符号: 理想的恒流源实际的流源 理想的恒流源,其内阻为无限大,使其电流可以全部流出外面。实际的恒流源皆有内阻R。 三极管的恒流特性:

从三极管特性曲线可见,工作区内的IC受IB影响,而VCE对IC的影响很微。因此,只要IB值固定,IC亦都可以固定。 输出电流IO即是流经负载的IC。 电流镜电路Current Mirror: 电流镜是一个输入电流IS与输出电流IO相等的电路: Q1和Q2的特性相同,即VBE1 = VBE2,β1 = β2。 优点: 三极管之β受温度的影响,但利用电流镜像恒流源,不受β影响,主要依靠外接电阻R经 Q2去决定输出电流IO(IC2 = IO)。 例: 三极管射极偏压设计 范例1:

从左边看起:基极偏压 所以 VE=VB - 0.6=1.0V 又因为射极电阻是1K,流经射极电阻的电流是 所以流经负载的电流就就是稳定的1mA 范例2.

这是个利用稳压二极管提供基极偏压5.6V VE=VB - 0.6=0.5V 流经负载的电流 范例3. 这个例子有一点不同:利用PNP三极管供应电流给负载电路.首先,利用二极管0.6 V的压降,提供8.2 V基极偏压(10 – 3 x 0.6 = 8.2). 4.7 K电阻只是用来形成通路,而且不希望(也不会)有很多电流流经这个电阻。 VE=VB + 0.6=8.8V PNP晶体的560欧姆电阻两端电位差是1.2V, 所以电流是2mA 晶体恒流源应用注意事项 如果只用一个三极管不能满足需求,可以用两个三极管架成:

恒流恒压电路方案(参考模板)

LED路灯是低电压、大电流的驱动器件,其发光的强度由流过LED的电流决定,电流过强会引起LED的衰减,电流过弱会影响LED的发光强度,因此LED的驱动需要提供恒流电源,以保证大功率LED使用的安全性,同时达到理想的发光强度。用市电驱动大功率LED 需要解决降压、隔离、PFC(功率因素校正)和恒流问题,还需有比较高的转换效率,有较小的体积,能长时间工作,易散热,低成本,抗电磁干扰,和过温、过流、短路、开路保护等。本文设计的PFC开关电源性能良好、可靠、经济实惠且效率高,在LED路灯使用过程中取得满意的效果。 1 基本工作原理 采用隔离变压器、PFC控制实现的开关电源,输出恒压恒流的电压,驱动LED路灯。电路的总体框图如图1所示。 LED抗浪涌的能力是比较差的,特别是抗反向电压能力。加强这方面的保护也很重要。LED路灯装在户外更要加强浪涌防护。由于电网负载的启甩和雷击的感应,从电网系统会侵入各种浪涌,有些浪涌会导致LED的损坏。因此LED驱动电源应具有抑制浪涌侵入,保护LED不被损坏的能力。EMI滤波电路主要防止电网上的谐波干扰串入模块,影响控制电路的正常工作。 三相交流电经过全桥整流后变成脉动的直流在滤波电容和电感的作用下,输出直流电压。主开关DC/AC电路将直流电转换为高频脉冲电压在变压器的次级输出。变压器输出的高频脉冲经过高频整流、LC滤波和EMI滤波,输出LED路灯需要的直流电源。 PWM控制电路采用电压电流双环控制,以实现对输出电压的调整和输出电流的限制。反馈网络采用恒流恒压器件TSM101和比较器,反馈信号通过光耦送给PFC器L6561。

由于使用了PFC器件使模块的功率因数达到0.95。

交流恒流源的原理和用途

交流恒流源原理与用途 一:原理 恒流亦可叫稳流,意思相近,一般可以不加区别。与恒压的概念相比,恒流的概念就难于理解一些了,因为日常生活中恒压源是多见的,蓄电池、干电池是直流恒压电源,而 220V 交流电,则可认为是一种交流恒压电源,因为它们的输出电压是基本不变的,是不随输出电流的大小而大幅变化的。 首先举例说明:一个恒定电流值调至 1A 的,最高输出电压可达 100V 的一个恒流电源,当你打开这个恒流源的电源开关时,你会看到电源的电压表和电流表显示什么数值呢?可以肯定的说:输出电压为 100V ,输出电流为 0A 。有人曾经这样问,你不是100V 1A 的恒流源吗?怎么输出不是 100V 1A 呢?这里仍然要用 欧姆定律来解释,理论上可以这样来计算,电源的输出电压 U=IR ,式中 U 为输出电压, I 为输出电流, R 为负载电阻。 交流恒流源原理与用途 以下分 5 种情况来说明: 如果电源为空载, R 可以用无穷大来表示, U=I* ∞,由于电源能输 1A 的电流,如果电源电流为 1A ,那么 U=1A* ∞ = ∞,而电源电压最多只能输出 100V ,无疑电源只能输出其最大电压 100V ,由于电源不能输出无穷大的电压,因而电流只能是很小很小的值,即电流输出为 0A ,即 I=U/R=100V/ ∞ =0A 。

如果负载电阻 R=200 欧,那么又因电源只能输出 100V ,因此电流只能为 0.5A ,即 I=U/R=100V/200R=0.5A 如果负载电阻 R=100 欧,由于电源能输出 100V ,就使得电流能达到 1A ,即 I=U/R=100V/100R=1A 此时输出电流正好达到电源的恒流值。 如果负载电阻继续减小,改为 50 欧,如果根据公式 I=U/R=100V/50R=2A. 但这里的关键是我们的电源是个恒流值为1A 的电源,因此此时的输出电流只能被强迫限制在 1A 而不能为 2A 因而输出电压只能被迫降到 50V 而不能为 100V 。这里仍然要符合欧姆定律,即 U=IR=1A*50R=50V 如果负载电阻变为 0 欧(即短路),那么由于输出电流只能为 1A ,输出电压就只能为 0V ,即 U=I*R=1A*0R=0V 从以上 5 个例子可以看出,如果负载电阻太大,使电源输出电流不能达到恒流值,那么恒流源的输出电压就会自动升到电源的最大输出电压,只有当负载电阻小到一定的程度,使电源输出电流达到恒流值,电源才真正处于恒流工作状态,随着负载电阻值的逐步减小,输出电压也按规律下降,以保持输出电流的恒定不变。这就是恒流的概念。 交流恒流源原理与用途 总之,实际上无论是恒压电源,还是恒流电源,它们本质上都是一致的,它们的输出都是电压和电流,两个量中,电源只能控制其中的一个量,要么稳住电压,要么稳住电流,另一个量

制作一台数控恒压恒流电源

制作一台数控恒压恒流电源(上)(一) 2010-11-12 16:03:17 来源:《无线电》杂志魏坤【作者:肖庆高大中小】浏览:2874次评论:0条 直流稳压电源是任何电子电路试验中不可缺少的基础仪器设备,基本在所有的跟电有关的实验室都可以见到。对于一个电子爱好者来说,直流稳压电源也是必不可少的。要得到一个电源,一般有两种方法:一是购买一台成品电源,这样最为省事:二是自己制作一台电源(因为你是电子爱好者),当然相比于第一种方法会麻烦很多。很显然这篇文章不是教你如何去选购一台直流稳压电源…… 基本的恒压恒流电源结构框图如图1所示。由电压基准源、调整管、误差放大、电压取样以及电流取样组成。电压基准源的作用是为误差放大器提供一个参考电压,要求电压准确且长时间稳定并且受温度影响要小。取样电路、误差放大和调整管三者组成了闭环回路以稳定输出电压。这样的结构中电压基准源是固定的,电压和电流的取样电路也是固定的,所以输出电压和最高的输出电流就是固定的。而一般的可变恒压恒流电源是采用改变取样电路的分压比例来实现输出电压以及最高限制电流的调节。

基本恒压恒流电源框图图 2图1 基本稳压电源简图 图2中所示的是一个基本输出电压可变的稳压电源简图,可以很明显地看出这个电路就是一个由运算放大器构成的同相放大器,输出端加上了一个由三极管组成的射极跟随器以提高输出能力,因为射极跟随器的放大倍数趋近于1,所以计算放大倍数时不予考虑。输入电压V+通过R1和稳压二极管VD产生基准电压Vref,然后将Vref放大1+R3/R2倍,即在负载RL上的得到的电压为Vref(1+R3/R2),因为R3可调范围是0~R3max,所以输出电压范围为Vref~Vref (1+R3max/R2)。这不就和我们常用的LM317之类的可调稳压芯片一样了,只是像LM317之类的芯片内部还集成了过热保护等功能,功能更加完善,但是也有它的弊端,主要因为它是将电压基准、调整管、误差放大电路都集成在了一个芯片上,因此在负载变化较大时芯片的温度也会有很大的变化,而影响半导体特性的主要因素之一就是温度,所以使用这种集成的稳压芯片不太容易得到稳定的电压输出,这也正是高性能的电压基准都是采用恒温措施的原因,比如LM399、LTZ1000等。 一只正在FLUKE 8808A图3 五位半数字万用表中“服役”的LM399H 图3是我从FLUKE 8808A五位半数字万用表中拍的恒温电压基准LM399H。扯远了,言归正传(欲了解更多关于电压基准源的知识,请参看以前《无线电》杂志2008年第7期中张利民老师有关电压基准的文章)。这种以改变取样电阻阻值来改变输出电压的稳压电源应用是比较普遍的,图4照片中是我们实验室中大量使用的稳压电源,就是使用调节取样电阻阻值来调节输出电压的,电压电流的显示是使用一片专用的电压测量芯片ICL7107实现的,这种电源价格低廉

相关文档
最新文档