轮式移动机器人单目视觉系统的设计

轮式移动机器人单目视觉系统的设计
轮式移动机器人单目视觉系统的设计

第!!卷"##$年第"期

!!

矿山机械

作者简介:贺学剑,678$年生,河南科技大学林业职业学院,助理讲师,工程学士,研究方向:计算机应用。

论文编号:!""!#$%&’()""&*")#""++#")

图6机器人视觉定位与跟踪系统工作原理

轮式移动机器人单目视觉系统的设计

贺学剑6

董冠强"

6

河南科技大学林业职业学院

河南洛阳

986###

"

河南科技大学机电工程学院

图"轮式移动机器人视频

处理流程图

器视觉主要研究用计算机模拟人的视觉功能,从客观事物的图像或图像序列中提取信息,进

行处理并加以理解,最终对客观世界的三维景物和物体进行形态和运动识别。视觉信息的获取主要有单视觉方式和多视觉方式两种。单视觉方式结构简单,避免

了视觉数据融合,易于实现实时监测等优点:!;

。本文介绍了轮式移动机器人单目视觉系统构成以及运动目标识别与跟踪方法。

6视觉系统的构成与硬件组成

6<6视觉系统构成

对于基于视觉进行运动的轮式移动机器人来说,视觉定位子系统是决策系统的信息来源,相当于移动机器人的眼睛。一方面,视觉定位子系统实现摄像头前的场景图像在中心计算机显示器的实时显示;同时,将图像数据传送至中心计算机内存并自动根据采集的视频图像信息完成对目标的检测、识别与定位跟踪的功能。

6<"视觉系统的硬件组成

视觉轮式移动机器人系统硬件部分由轮式移动机器人上方的单目彩色==>摄像机、内部微机主板上基于*=?总线的图像采集卡>@AB C D AE 6##F 和一台主频为$##%的中心计算机。==>摄像头和视频采集卡之间要兼容,移动机器人前的场景图像输入、数字化工作由==>摄像头和图像采集卡完成。

"视觉定位与跟踪系统工作原理

轮式移动机器人视觉定位与跟踪系统工作原理如图6所示。

目标在空间中的定位过程具体如下:9、$;

G 6H 由==>摄像机和视频采集卡得到场景视频图

像;

G "H

由视频图像处理部分进行一系列图像处理,得到目标质心的位置和圆度等特征信息:!由质心的位置,利用预测器计算特征点的下一个位置;"在动态窗口内搜索确定目标区域并计算质心;#比较质心的位置与视场中央位置的误差;

G !H

利用序列图像和非线性扩展卡尔曼滤波对目标质心下一时刻的位置和运动信息进行估计;

G 9H

将获得的目标质心与视场中央的角度偏差及目标的位置及运动信息的估计结果通过通讯模块传递给决策控制模块,由之减小移动机器人与目标角度、位置的误差;

G $H

重复这一过程直至图像中的角度偏差为#,这时移动机器人运动到目标位置。下面重点介绍运动目标识别与跟踪和目标运动估计模块的实现方法。

!基于彩色图像的运动目标识别与跟踪

为实现目标在二维图像中的识别与跟踪,首先利用中值滤波进行图像去噪处理;根据@I 颜色特征并对像素点进行空间J 邻域聚类进行目标像素识别,结合动态窗口、移动网格技术,采用中心连接区域增长的思想进行区域增长并辅以形状判别来确定目标区域;双线性插值计算出目标区域的质心;利用帧间的强相关性特点,针对视频图像提出了一种新的特征跟踪算法,从最小二平方预测原理预测到的预测特征点开始,采用环形搜索路径和基于子块的模式匹配方法寻找种子点,之后在6##K

6##G 3&L .M /K 3

&L .M /H 的动态窗口内,根据匹配点的@特征值是否在

轮式移动机器人单目视觉系统的设计

第!!卷"##$年第"期

!"

矿山机械

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

6上接第7"页8

为了能评价这些机构方案的优劣,我们给出设计

期望指标!,设!9:";<""<…<"#

=为对应各指标的理想值序列,其中"$是根据%&’6"$8指标不同属性来确定的(’为方案编号,’

9;<"<…<%;$为指标序列号,$9;<"<…<#)。(;)对于指标"$越大越好,则"$94>?@%&’6"$8A B (")对于指标"$越小越好,则"$94&’@%&’6"$8A B (!)对于指标"$适中值,则"$9%。对于表"的指标,制造成本、传动性能、制造难易程度越小越好,而结构合理性、传动效率、安装维护方便性、可靠性指标则越大越好。于是设计期望值(最优参考数据)!为

!9#C "D ";E ;D ""E #C ;D "!E #C F G D "H E #C ;D "$

E ;D "I E #C

F F D "7

设(9:";<""<"!<"H <"$<"I <"7

=,(上H 个初始机构方案由以下模糊集表示

&;9#C I $D ";E #C ;D ""E ;D "!E #C F H D "H E #C ;D "$E ;D "I E #C 7D "7

&"9#C I 7D ";E#C I H D ""E #C H D "!E #C F $D "H E #C I D "$E #C 7$D "I E #C G D "7

&!9#C "D ";E ;D ""E #C ;D "!E #C F G D "H E #C G D "$E #C H $D "I E #C F F D "7&H 9;D ";E ;D ""E#C I "D "!E#C G D "H E;D "$E #C ""D "I E #C F D "7用公式(;

)计算模糊集之间的相似度量值为);6&;

方案)的度量,相似度量值越大,设计方案就越接近期

望方案,因此,机构方案评判优劣次序为:!方案!;"

方案;;#方案";$方案H

。如果决策者比较侧重于机构的制造成本、制造难易程度、安装维护方便性,而其它指标比较次要时,则可取权重集*为

*96#C "<#C #$<#C #$<#C #$<#C $<#C ;<#C #$8由式("

)得评判结果为*;6&;

;#方案";$方案H

。!结束语

本文描述了模糊集之间的相似度量、加权相似度

量方法以及在机械设计方案决策中的应用新方法,借助模糊集之间的相似度量来评价机械设计方案的优劣是可行的。这种决策方法比传统模糊决策与神经网络

的机械设计方案决策@"A

更加合理、实用,且满意成度可由期望水平排出满意解方案的优劣次序,它为方案决策提供了更趋于实际的方法和依据。该方法在机械工程中的应用是一个很有发展潜力的领域,有待于广大机电技术人员、专家们在各自的研究和应用领域不断开拓与发展。

;闫德勤C 新的模糊度量与模糊似然函数C 模式识别与人工智能,"##;(;

)"叶军C J K L 网络的机械设计分类决策及表达的研究C 机械设计,"###(G )"

6收稿日期:"##H M #F M ;H 8

由色块的平均N 特征值确定的某个范围内来聚类色块

区域,则该区域的质心点即为下一帧中跟踪到的特征点@I A 。轮式移动机器人视频处理的流程如图"所示。

H 目标运动估计模块

由于测量信息是目标质心点在图像中的位置,它是目标点坐标的非线性函数,由于视觉系统的测量方程为非线性,采用了非线性推广卡尔曼滤波,对于非线性卡尔曼滤波,如果滤波初始条件完全未知,选取的初始条件与实际的值差别较大,可能引起滤波发散,因此必须考虑滤波发散问题。

在O O P 摄像机随移动机器人车体运动的情况下,首先简单分析了二次成像法获取目标深度信息的缺陷;然后根据目标特征点的透视投影成像模型,给出了目标运动的条件下,由单目序列图像获取目标的运动参数和三维空间位置的条件及推导,消除了通常估计结果中出现的不定因子,从而为设计成像系统合适的

运动轨迹提供了可能@7,G A

。以此为基础,提出了一种基于单目运动视觉来获取运动目标空间位置和运动信息的新方法。该方法利用单目序列图像和非线性推广卡尔曼滤波,在移动机器人满足一定机动的条件下,较精确地得到了目标的空间位置和运动信息。同时采取了变系数衰减记忆滤波和协方差平方根滤波两个有效的抑制滤波发散措施。为了验证本文提出的获取目标绝对运动参数和空间位置的条件的正确性及其对目标运动估计算法的有效性。对多组目标运动状态进行了实

验仿真。

该算法能够有效的抑制测量误差对估计结果的影响,大大的提高了估计精度。由于该算法是递推的。因此在估计过程中也节省了大量的存储空间和运算时间,为目标运动估计的实时性提供了可能。

$结束语

本文介绍了轮式移动机器人单目视觉系统的工作原理与设计方案,重点阐述了运动目标识别与跟踪方法以及运动估计模块的实现。

;J C 0C Q .&//’T .+/,’’C P V ’>4&-/.’/,+M W >/.T -,’5+,X ,Y +,W ,5/Z &5[\&/2>X Y ..T W >-]C ^000_,W ,5R 25,4>5&,’C ;F G 76$8

"*C ‘C R X X .’’C R 25,4>5.T 5+>-]&’(>’T (+>M /3&’(,Y >4,\&’(,W d .-5Z &5[>+,W ,5&-[>’T M .V ./V /5.4C ^000a +>’/C e ’_,W ,5&-/>’T R 25,4>5&,’C ;F F !6"8

!f C O [>24.55.C *,5.’5&>X 3+,W X .4/,Y /5>W &X &5V >’T -,’\.+(.’-.&’&4>(.M W >/.T >’T 3,/&5&,’M W >/.T \&/2>X /.+\,&’(C a [.-,’Y X 2.’-.,Y \&/&,’>’T -,’5+,X

.+K .+X >(C ;F F G (H )C H a C P +244,’T <_C O &3,X X >C K &/2>X 5+>-]&’(>’T -,’5+,X 2/&’(J &.>X (.W +>/C ^000^’5C O ,’Y C ,’O ,4325.+K &/&,’>’T *>55.+’_.-,(

’&5&,’C ;F F F <\,X 24."C $%>+-,O >’52C P .X 3[&I 从入门到精通C 北京g 电子工业出版I 张仁宙C

基于模糊逻辑控制的视觉轮式机器人系统的研究C 南京g 南京航空航天大学硕士论文<"##;C 7宋博<黄强<郝群等C 机器人头部的视觉跟踪系统研究C 光学技

术,"##!6"F 8G 李奇<冯华君<徐之海等C 计算机立体视觉技术综述C 光学技术,;F F F

6$8"

6收稿日期:"##H M #F M ";8

轮式移动机器人单目视觉系统的设计

通用

移动机器人导航技术总结

移动机器人的关键技术分为以下三种: (1)导航技术 导航技术是移动机器人的一项核心技术之一[3,4]"它是指移动机器人通过传感器感知环境信息和自身状态,实现在有障碍的环境中面向目标的自主运动"目前,移动机器人主要的导航方式包括:磁导航,惯性导航,视觉导航等"其中,视觉导航15一7]通过摄像头对障碍物和路标信息拍摄,获取图像信息,然后对图像信息进行探测和识别实现导航"它具有信号探测范围广,获取信息完整等优点,是移动机器人导航的一个主要发展方向,而基于非结构化环境视觉导航是移动机器人导航的研究重点。 (2)多传感器信息融合技术多传感器信息融合技术是移动机器人的关键技术之一,其研究始于20世纪80年代18,9]"信息融合是指将多个传感器所提供的环境信息进行集成处理,形成对外部环境的统一表示"它融合了信息的互补性,信息的冗余性,信息的实时性和信息的低成本性"因而能比较完整地,精确地反映环境特征,从而做出正确的判断和决策,保证了机器人系统快速性,准确性和稳定性"目前移动机器人的多传感器融合技术的研究方法主要有:加权平均法,卡尔曼滤波,贝叶斯估计,D-S证据理论推理,产生规则,模糊逻辑,人工神经网络等"例如文献[10]介绍了名为Xavier的机器人,在机器人上装有多种传感器,如激光探测器!声纳、车轮编码器和彩色摄像机等,该机器人具有很高的自主导航能力。 (3)机器人控制器作为机器人的核心部分,机器人控制器是影响机器人性能的关键部分之一"目前,国内外机器人小车的控制系统的核心处理器,己经由MCS-51、80C196等8位、16位微控制器为主,逐渐演变为DSP、高性能32位微控制器为核心构成"由于模块化系统具有良好的前景,开发具有开放式结构的模块化、标准化机器人控制器也成为当前机器人控制器的一个研究热点"近几年,日本!美国和欧洲一些国家都在开发具有开放式结构的机器人控制器,如日本安川公司基于PC开发的具有开放式结构!网络功能的机器人控制器"我国863计划智能机器人主题也已对这方面的研究立项 视觉导航技术分类 机器人视觉被认为是机器人重要的感觉能力,机器人视觉系统正如人的眼睛一样,是机器人感知局部环境的重要“器官”,同时依此感知的环境信息实现对机器人的导航。机器人视觉信息主要指二维彩色CCD摄像机信息,在有些系统中还包括三维激光雷达采集的信息。视觉信息能否正确、实时地处理直接关系到机器人行驶速度、路径跟踪以及对障碍物的避碰,对系统的实时性和鲁棒性具有决定性的作用。视觉信息处理技术是移动机器人研究中最为关键的技术之一。

移动机器人视觉导航

移动机器人视觉导航。 0504311 19 刘天庆一、引言 智能自主移动机器人系统能够通过传感器感知外界环境和自身状态,实现在有障碍物环境中面向目标的自主运动,从而完成一定作业功能。其本身能够认识工作环境和工作对象,能够根据人给予的指令和“自身”认识外界来独立地工作,能够利用操作机构和移动机构完成复杂的操作任务。因此,要使智能移动机器人具有特定智能,其首先就须具有多种感知功能,进而进行复杂的逻辑推理、规划和决策,在作业环境中自主行动。机器人在行走过程中通常会碰到并且要解决如下三个问题:(1)我(机器人)现在何处?(2)我要往何处走?(3)我要如何到达该处?其中第一个问题是其导航系统中的定位及其跟踪问题,第二、三个是导航系统的路径规划问题。移动机器人导航与定位技术的任务就是解决上面的三个问题。移动机器人通过传感器感知环境和自身状态,进而实现在有障碍物的环境中面向目标自主运动,这就是通常所说的智能自主移动机器人的导航技术。而定位则是确定移动机器人在工作环境中相对于全局坐标的位置及其本身的姿态,是移动机器人导航的基本环节。 目前,应用于自主移动机器人的导航定位技术有很多,归纳起来主要有:安装CCD 摄像头的视觉导航定位、光反射导航定位、全球定位系统GPS(Global Positioning System)、声音导航定位以及电磁导航定位等。下面分别对这几种方法进行简单介绍和分析。 1、视觉导航定位 在视觉导航定位系统中,目前国内外应用较多的是基于局部视觉的在机器人中安装车载摄像机的导航方式。在这种导航方式中,控制设备和传感装置装载在机器人车体上,图像识别、路径规划等高层决策都由车载控制计算机完成。视觉导航定位系统主要包括:摄像机(或CCD 图像传感器)、视频信号数字化设备、基于DSP 的快速信号处理器、计算机及其外设等。现在有很多机器人系统采用CCD 图像传感器,其基本元件是一行硅成像元素,在一个衬底上配置光敏元件和电荷转移器件,通过电荷的依次转移,将多个象素的视频信号分时、顺序地取出来,如面阵CCD传感器采集的图像的分辨率可以从32×32 到1024×1024 像素等。视觉导航定位系统的工作原理简单说来就是对机器人周边的环境进行光学处理,先用摄像头进行图像信息采集,将采集的信息进行压缩,然后将它反馈到一个由神经网络和统计学方法构成的学习子系统,再由学习子系统将采集到的图像信息和机器人的实际位置联系起来,完成机器人的自主导航定位功能。 视觉导航定位中,图像处理计算量大,计算机实时处理的速度要达到576MOPS~5.76BOPS,这样的运算速度在一般计算机上难以实现,因此实时性差这一瓶颈问题有待解决; 另外,对于要求在黑暗环境中作业的机器人来说,这种导航定位方式因为受光线条件限制也不太适应。 当今国内外广泛研制的竞赛足球机器人通常都采用上面所说的视觉导航定位方式,在机器人小车子系统中安装摄像头,配置图像采集板等硬件设备和图像处理软件等组成机器人视觉系统。通过这个视觉系统,足球机器人就可以实现对球的监测,机器人自身的定位,作出相应动作和预测球的走向等功能

轮式移动机器人结构设计论文

轮式移动机器人的结构设计 摘要:随着机器人技术在外星探索、野外考察、军事、安全等全新的领域得到日益广泛的采用,机器人技术由室内走向室外,由固定、人工的环境走向移动、非人工的环境。本课题是机器人设计的基本环节,能够为后续关于机器人的研究提供有价值的平台参考和有用的思路。 本文介绍了已有的机器人移动平台的发展现状和趋势,分析操作手臂常用 的结构和工作原理,根据选定的方案对带有机械臂的全方位移动机器人进行本 体设计,包括全方位车轮旋转机构的设计、车轮转向机构的设计和机器人操作 臂的设计。要求全方位移动机构转向、移动灵活,可以快速、有效的到达指定 地点;机械臂操作范围广、运动灵活、结构简单紧凑且尺寸小,可以快速、准 确的完成指定工作。设计完成后要分析全方位移动机构的性能,为后续的研究 提供可靠的参考和依据。 关键字:机器人移动平台操作臂简单快速准确

Structure design of wheeled mobile robots Abstract:with the robot technology in an alien exploration, field survey, military and security new areas to be increasingly widely adopted, robot technology by indoor, outdoor by fixed, to move towards artificial environment, the artificial environment. This topic is the basic link, robot design for the follow-up about robots can provide valuable reference and useful ideas platform. This article summarizes the existing robot mobile platform development status and trends of operating the arm structure and principle of common, According to the selected scheme of mechanical arm with ontology omni-directional mobile robots designed, including the design of all-round wheel rotating mechanism, wheel steering mechanism of design and the design of robot manipulator. Request to change direction, move the omni-directional mobile institution, can quickly and effectively flexible the reaches the specified location; Mechanical arm operation scope, sports flexible, simple and compact structure and size is small, can quickly and accurately completed tasks. The design is completed to analyze the performance of the omni-directional mobile institutions for subsequent research, provide reliable reference and basis. Keywords: Robot mobile platform manipulator simple accurate and quick

基于视觉导航的轮式移动机器人设计方案

基于视觉导航的轮式移动机器人设计方案第一章移动机器人 §1.1移动机器人的研究历史 机器人是一种自动化的机器,所不同的是这种机器具备一些与人或生物相似的智能,如感知能力、规划能力、动作能力和协同能力,是一种具有高度灵活性的自动化机器)。1962年,美国Unimation公司的第一台机器人Unimate。在美国通用汽车公司(GM)投入使用,标志着第一代机器人的诞生。 智能移动机器人更加强调了机器人具有的移动能力,从而面临比固定式机器人更为复杂的不确定性环境,也增加了智能系统的设计复杂度。1968年到1972年间,美国斯坦福国际研究所(Stanford Research Institute, SRI)研制了移动式机器人Shaky,这是首台采用了人工智能学的移动机器人。Shaky具备一定人工智能,能够自主进行感知、环境建模、行为规划并执行任务(如寻找木箱并将其推到指定目的位置)。它装备了电视摄像机、三角法测距仪、碰撞传感器、驱动电机以及编码器,并通过无线通讯系统由二台计算机控制。当时计算机的体积庞大,但运算速度缓慢,导致Shaky往往需要数小时的时间来分析环境并规划行动路径。 1970年前联月球17号探测器把世界第一个无人驾驶的月球车送七月球,月球车行驶0.5公里,考察了8万平方米的月面。后来的月球车行驶37公里,向地球发回88幅月面全景图。在同一时代,美国喷气推进实验室也研制了月球车(Lunar rover),应用于行星探测的研究。采用了摄像机,激光测距仪以及触觉传感器。机器人能够把环境区分为可通行、不可通行以及未知等类型区域。 1973年到1979年,斯坦福大学人工智能实验室研制了CART移动机器人,CART可以自主地在办公室环境运行。CART每移动1米,就停下来通过摄像机的图片对环境进行分析,规划下一步的运行路径。由于当时计算机性能的限制,CART每一次规划都需要耗时约15分钟。CMU Rover由卡耐基梅隆大学机

视觉设计服务合同

视觉设计服务合同 甲方: 联系人电话: 地址: 乙方: 联系人: 电话: 地址: 总则: 有限公司(以下简称乙方)接受XXXX有限公司(以下简称甲方)委托,为项目(以下简称项目)提供VIS品牌升级服务。甲乙双方根据《中华人民共和国合同法》及其他相关法律法规的规 定,本着诚实守信、互惠互利的原则,经平等协商签订本合同: 一、服务内容及报价: 1、项目品牌升级服务费用合计元(大写:元整),该价格已含税。以下是服务内容: A.品牌基础设计 B. C. D. E. F. 具体设计分类内容见附件 1.VIS品牌升级服务内容,合作期间若甲方提出上述服务以外的事项要求,乙方根据甲方要求另行报价。 二、付款方式及时间 1、付款方式分二期付款,分别是首期款元,占合同总金额70% ;尾款元,占合同总金额30%。

2、甲方需按时付款给乙方,首期款未支付,乙方不启动项目工作;尾款未支付,乙方有权不交付项目设计源 文件及其他相关资料给甲方。 3、乙方收款账户信息: 户名: 开户银行: 账号: 三、项目启动及合作流程 1、甲方应于合同签订后5个工作日之内,向乙方提供品牌升级所需的基础内容资料(文字、图片、音频、视 频等)及品牌升级视觉服务的明细要求,上述内容资料均须以电子版的形式提 供。甲方提交完本项目所需资料给乙方并支付首期款项后,乙方按照附件 2.VIS项目时间表启动项目工作。 2、合作流程: A.项目启动后,乙方需按照双方确认过的项目时间表进度提交设计方案给甲方审核。 B.如方案符合甲方提出的设计升级需求,甲方应签署设计方案风格确认单。如需修改甲方需 在3个工作日内给予书面修改意见。甲方签署设计方案风格确认单后,乙方将不再做涉及创意风 格、等大的改动(局部的细节调整除外)。 C.乙方收到甲方反馈意见,根据甲方要求修改完善方案。甲方收到乙方修改完善后的方案 (或新方案),需在3个工作日内反馈意见给乙方。 D.乙方根据甲方已签署设计方案风格确认单的设计方案进行本项目的设计工作,乙方完成设 计稿源文件后,甲方每提出一次修改意见,乙方加收本项目总费用15%(x元)。 四、甲方权利及义务 1、甲方有义务配合乙方开展本项目相关工作,提供合作过程中乙方所需的相关资料。 2、甲方有义务按照合同约定支付款项。 3、甲方需确保提供给乙方的图片、页面呈现文案、数据分析等项目所需资料符合相关法律法规且无侵权行 为。如甲方提供的资料不符合相关法律法规或有侵权行为,由此引发的法律责任及一切损失,均由甲方承担。 4、甲方有权对乙方的工作提出建议及修改意见,以使作品更符合甲方企业文化内涵。 5、甲方依照合同约定付清所有款项给乙方后,本项目所有设计版权归甲方所有,甲方就委托项目的最终作品 享有全部着作权和申请商标的权利,包括:发行权、出租权、展览权、表演权、信息网络传播权、改编权。 6、甲方未付清所有款项给乙方或合同提前终止,该项目设计版权归乙方,乙方有权不交付任何设计源文件及 相关资料给甲方。

轮式移动机器人课程设计

江苏师范大学连云港校区海洋港口学院 课程设计说明书 课程名称 专业班级 学号姓名 指导教师

年月日

摘要 轮式移动机器人是机器人家族中的一个重要的分支,也是进一步扩展机器人应用领域的重要研究发展方向。自上世纪九十年代以来,人们广泛开展了对机器人移动功能的研制和开发,为适应各种工作环境的不同要求而开发出各种移动机构。其中全方位轮可以实现高精确定位、原地调整姿态和二维平面上任意连续轨迹的运动,具有一般的轮式移动机构无法取代的独特特性,对于研究移动机器人的自由行走具有重要愈义。 本文主要是介绍了技术较为成熟的麦克纳姆全方位轮的运动原理结构,分析了由四个麦克纳姆轮全方位轮组成的全向移动机构的运动协调原理。并将其运用到轮腿复合式的机器人身上,使机器人移动能力更强。设计的主要方面包括(1)移动方式的选择;(2)机器人结构的设计;(3)机器人移动原理的分析;(4)对移动机器人控制系统的简单设计。 关键词: 轮式移动机器人,轮腿复合式,四足

目录 摘要 (1) 1 移动机器人技术发展概况 (1) 1.1 机器人研究意义及应用领域 (1) 1.1.1 机器人的研究意义 (1) 1.1.2 机器人的应用领域 (2) 1.2 移动机器人的发展概况 (2) 1.2.1 移动机器人的国内发展概况 (3) 1.2.2 移动机器人的国外发展概况 (4) 2 轮式移动机器人的结构设计 (7) 2.1轮式移动机器人系统结构 (7) 2.1.1移动方式的选择 (7) 2.1.2机器人移动原理构想 (8) 2.1.3机器人轮子的选择 (9) 2.1.4机器人腿部结构的设计 (10) 2.2轮式移动机器人主要结构 (11) 3 轮式移动机器人的控制系统 (12) 3.1 控制系统硬件选型与配置 (12) 3.1.1 驱动电机的选型 (12)

基于路径识别的移动机器人视觉导航

第9卷 第7期2004年7月 中国图象图形学报Journal of Image and G raphics V ol.9,N o.7July 2004 基金项目:国家“863”计划资助项目(编号:2001AA422200)收稿日期:2004201213;改回日期:2004204206 基于路径识别的移动机器人视觉导航 张海波 原 魁 周庆瑞 (中国科学院自动化研究所高技术创新中心,北京 100080) 摘 要 跟随路径导引是自主式移动机器人广泛采用的一种导航方式,其中视觉导航具有其他传感器导航方式所无法比拟的优点,是移动机器人智能导航的主要发展方向。为了提高移动机器人视觉导航的实时性和准确性,提出了一个基于路径识别的视觉导航系统,其基本思想是首先用基于变分辨率的采样二值化和形态学去噪方法从原始场景图像中提取出目标支持点集,然后用一种改进的哈夫变化检测出场景中的路径,最后由路径跟踪模块分直行和转弯两种情况进行导航计算。实验结果表明,该视觉导航系统具有较好的实时性和准确性。关键词 自主式移动机器人 视觉导航 路径识别 中图法分类号:TP242.62 文献标识码:A 文章编号:100628961(2004)0720853205 Visual N avigation of a Mobile R obot B ased on P ath R ecognition ZH ANG Hai 2bo ,Y UAN K ui ,ZH OU Qing 2rui (Hi 2tech Innovation Centre ,Institute o f Automation ,Chinese Academy o f Sciences ,Beijing 100080) Abctract G uidance using path following is widely applied in the field of autonom ous m obile robots.C om pared with the navigation system without vision ,visual navigation has obvious advantages as rich in formation ,low cost ,quietness ,innocuity ,etc.This pa 2per describes a navigation system which uses the visual in formation provided by guide lines and color signs.In our approach ,the visual navigation is com posed of three main m odules :image 2preprocessing ,path 2recognition and path 2tracking.First ,image 2pre 2processing m odule formulates color m odels of all kinds of objects ,and establishes each object ’s support through adaptive subsam 2pling 2based binarization and mathematical m orphology.Second ,path 2recognition m odule detects the guide lines through an im 2proved H ough trans form alg orithm ,and the detected results including guide lines and color signs integrate the path in formation.Fi 2nally ,calling different functions according to the m ovement of straight 2g oing or turning ,path 2tracking m odule provides required in 2put parameters to m otor controller and steering controller.The experimental results dem onstrate the effectiveness and the robustness of our approach. K eyw ords com puter perception ,autonom ous m obile robot ,visual navigation ,path recognition 1 引 言 导航技术是移动机器人的一项核心技术,其难 度远远超出人们最初的设想,其主要原因有:一是环境的动态变化和不可预测;二是机器人感知手段的不完备,即很多情况下传感器给出的数据是不完全、不连续、不可靠的[1]。这些原因使得机器人系统在复杂度、成本和可靠性方面很难满足要求。 目前广泛应用的一种导航方式是“跟随路径导 引”,即机器人通过对能敏感到的某些外部的连续路 径参照线作出相应反应来进行导航[2]。这种方法和传统的“硬”自动化相比大大增加了系统的灵活性,其具有代表性的系统有:C ontrol Engineering 公司安装的导线引导系统,它是通过检测埋在地下的引导导线来控制行进方向,其线路分岔则通过在导线上加载不同频率的电流来实现[3];Egemin Automation 公司生产的Mailm obile 机器人则安装有主动式紫外光源,并通过3个光电探头来跟随由受激化学物质构成的发光引导路径[4];Macome 公司为自动驾驶车

移动机器人视觉定位方法的研究

移动机器人视觉定位方法的研究 针对移动机器人的局部视觉定位问题进行了研究。首先通过移动机器人视觉定位与目标跟踪系统求出目标质心特征点的位置时间序列,然后在分析二次成像法获取目标深度信息的缺陷的基础上,提出了一种获取目标的空间位置和运动信息的方法。该方法利用序列图像和推广卡尔曼滤波,目标获取采用了HIS模型。在移动机器人满足一定机动的条件下,较精确地得到了目标的空间位置和运动信息。仿真结果验证了该方法的有效性和可行性。 运动视觉研究的是如何从变化场景的一系列不同时刻的图像中提取出有关场景中的目标的形状、位置和运动信息,将之应用于移动机器人的导航与定位。首先要估计出目标的空间位置和运动信息,从而为移动机器人车体的导航与定位提供关键前提。 视觉信息的获取主要是通过单视觉方式和多视觉方式。单视觉方式结构简单,避免了视觉数据融合,易于实现实时监测。如果利用目标物体的几何形状模型,在目标上取3个以上的特征点也能够获取目标的位置等信息。此方法须保证该组特征点在不同坐标系下的位置关系一致,而对于一般的双目视觉系统,坐标的计算误差往往会破坏这种关系。 采用在机器人上安装车载摄像机这种局部视觉定位方式,本文对移动机器人的运动视觉定位方法进行了研究。该方法的实现分为两部分:首先采用移动机器人视觉系统求出目标质心特征点的位置时间序列,从而将对被跟踪目标的跟踪转化为对其质心的跟踪;然后通过推广卡尔曼滤波方法估计目标的空间位置和运动参数。 1.目标成像的几何模型 移动机器人视觉系统的坐标关系如图1所示。 其中O-XYZ为世界坐标系;Oc-XcYcZc为摄像机坐标系。其中Oc为摄像机的光心,X 轴、Y轴分别与Xc轴、Yc轴和图像的x,y轴平行,Zc为摄像机的光轴,它与图像平面垂直。光轴与图像平面的交点O1为图像坐标系的原点。OcO1为摄像机的焦距f. 图1 移动机器人视觉系统的坐标关系

视觉传达设计人才培养方案汇报

视觉传达设计人才培养方案汇报 一、专业建设思路 视觉传达专业对接的是湖南省广告、创意文化产业。随着中央对“长株潭”地区赋予“两型实验区”发展的重视,新能源的出现和产品材料的开发应用而不断扩大,并与其他领域相互交叉,逐渐形成一个与其他视觉媒介关联并相互协作的设计新领域。其内容包括:印刷设计、书籍设计、展示设计、影像设计、视觉环境设计、(即公共生活空间的标志及公共环境的色彩设计)等。视觉传达设计多是以印刷物为媒介的平面设计,从信息发展的角度来,传统的平面媒体正朝向网络为代表的动态媒体转化,视觉传达设计是的商业服务的艺术内涵正悄悄的朝网络方向变化,视觉传达起着沟通企业——商品——消费者桥梁的作用。设计主要以文字、图形、色彩为基本要素的艺术创作,在精神文化领域以其独特的艺术魅力影响着人们的感情和观念,在人们的曰常生活中起着十分重要的作用。针对视觉传达专业现状、特征、所在地域,专业概括有以下几点: 1、专业紧跟国内、省内的广告产业的市场需要,认真分析岗位、岗位的要求就是专业课程体系设置的依据。岗位中的任务就是课程设置的依据,为国内、省内培养高素质的技能型、设计、制作视觉传达专业人才。 2、坚持“工学结合”的教学模式,完善“顶岗实习”的人才培养模式,探索“校企合作”的办学模式。 3、坚持循序渐进的教学模式,即:专业认识→专业素养→专业核心能力→专业实践能力。 4、结合课程教学和专业教育活动互补,通过参观专业展览、艺术考察等专业教育活动强化学生的专业素养和专业实践能力。 5、鉴于本专业招收的学生多半无美术造型基础,在新的人才培养方案中着重强调美术基本训练。 二、调整的内容 在2012年人才培养方案中主要是把课程的设置进行了调整,此外、按照学

轮式移动机器人结构设计开题报告

毕业设计(论文)开题报告 题目轮式移动机器人的结构设计 专业名称机械设计制造及其自动化 班级学号 学生姓名 指导教师 填表日期2011 年 3 月 1 日

一、毕业设计(论文)依据及研究意义: 随着机器人技术在外星探索、野外考察、军事、安全等全新的领域得到日益广泛的采用,机器人技术由室内走向室外,由固定、人工的环境走向移动、非人工的环境。移动机器人已经成为机器人研究领域的一个重要分支。在军事、危险操作和服务业等许多场合得到应用,需要机器人以无线方式实时接受控制命令,以期望的速度、方向和轨迹灵活自如地移动。其中轮式机器人由于具有机构简单、活动灵活等特点尤为受到青睐。按照移动特性又可将移动机器人分为非全方位和全方位两种。而轮式移动机构的类型也很多,对于一般的轮式移动机构,都不能进行任意的定位和定向,而全方位移动机构则可以利用车轮所具有的定位和定向功能,实现可在二维平面上从当前位置向任意方向运动而不需要车体改变姿态,在某些场合有明显的优越性;如在较狭窄或拥挤的场所工作时,全方位移动机构因其回转半径为零而可以灵活自由地穿行。另外,在许多需要精确定位和高精度轨迹跟踪的时候,全方位移动机构可以对自己的位置进行细微的调整。由于全方位轮移动机构具有一般轮式移动机构无法取代的独特特性,对于研究移动机器人的自由行走具有重要意义,成为机器人移动机构的发展趋势。基于以上所述,本文从普遍应用出发,设计一种带有机械手臂的全方位运动机器人平台,该平台能够沿任何方向运动,运动灵活,机械手臂使之能够执行预定的操作。本文是机器人设计的基本环节,能够为后续关于机器人的研究提供有价值的平台参考和有用的思路。 二、国内外研究概况及发展趋势 2.1 国外全方位移动机器人的研究现状 国外很多研究机构开展了全方位移动机器人的研制工作,在车轮设计制造,机器人上轮子的配置方案,以及机器人的运动学分析等方面,进行了广泛的研究,形成了许多具有不同特色的移动机器人产品。这方面日本、美国和德国处于领先地位。八十年代初期,美国在DARPA的支持下,卡内基·梅隆大学(Carnegie Mellon university,CUM)、斯坦福(Stanford)和麻省理工(Massachusetts Institute of Technology,MIT)等院校开展了自主移动车辆的研究,NASA下属的Jet Propulsion Laboratery(JPL)也开展了这方面的研究。CMU机器人研究所研制的Navlab-1和Navlab-5系列机器人代表了室外移动机器人的发展方向。德国联邦国防大学和奔驰公司于二十世纪九十年代研制成VaMoRs-P移动机器人。其车体采用奔驰500轿车。传感器系统包括:4个小型彩色CCD摄像机,构成两 组主动式双目视觉系统;3个惯性线性加速度计和角度变化传感器。SONY公司1999年推

轮式移动机器人结构设计开题报告

一、毕业设计(论文)依据及研究意义: 随着机器人技术在外星探索、野外考察、军事、安全等全新的领域得到日益广泛的采用,机器人技术由室内走向室外,由固定、人工的环境走向移动、非人工的环境。移动机器人已经成为机器人研究领域的一个重要分支。在军事、危险操作和服务业等许多场合得到应用,需要机器人以无线方式实时接受控制命令,以期望的速度、方向和轨迹灵活自如地移动。其中轮式机器人由于具有机构简单、活动灵活等特点尤为受到青睐。按照移动特性又可将移动机器人分为非全方位和全方位两种。而轮式移动机构的类型也很多,对于一般的轮式移动机构,都不能进行任意的定位和定向,而全方位移动机构则可以利用车轮所具有的定位和定向功能,实现可在二维平面上从当前位置向任意方向运动而不需要车体改变姿态,在某些场合有明显的优越性;如在较狭窄或拥挤的场所工作时,全方位移动机构因其回转半径为零而可以灵活自由地穿行。另外,在许多需要精确定位和高精度轨迹跟踪的时候,全方位移动机构可以对自己的位置进行细微的调整。由于全方位轮移动机构具有一般轮式移动机构无法取代的独特特性,对于研究移动机器人的自由行走具有重要意义,成为机器人移动机构的发展趋势。基于以上所述,本文从普遍应用出发,设计一种带有机械手臂的全方位运动机器人平台,该平台能够沿任何方向运动,运动灵活,机械手臂使之能够执行预定的操作。本文是机器人设计的基本环节,能够为后续关于机器人的研究提供有价值的平台参考和有用的思路。 二、国内外研究概况及发展趋势 2.1 国外全方位移动机器人的研究现状 国外很多研究机构开展了全方位移动机器人的研制工作,在车轮设计制造,机器人上轮子的配置方案,以及机器人的运动学分析等方面,进行了广泛的研究,形成了许多具有不同特色的移动机器人产品。这方面日本、美国和德国处于领先地位。八十年代初期,美国在DARPA的支持下,卡内基·梅隆大学(Carnegie Mellon university,CUM)、斯坦福(Stanford)和麻省理工(Massachusetts Institute of Technology,MIT)等院校开展了自主移动车辆的研究,NASA下属的Jet Propulsion Laboratery(JPL)也开展了这方面的研究。CMU机器人研究所研制的Navlab-1和Navlab-5系列机器人代表了室外移动机器人的发展方向。德国联邦国防大学和奔驰公司于二十世纪九十年代研制成VaMoRs-P移动机器人。其车体采用奔驰500轿车。传感器系统包括:4个小型彩色CCD摄像机,构成两 组主动式双目视觉系统;3个惯性线性加速度计和角度变化传感器。SONY公司1999年推

轮式移动机器人课程设计 (2)

目录 目录 (1) 摘要 (2) 1.移动机器人技术发展概况 (3) 1.1机器人研究意义及应用领域 (3) 1.1.1机器人的研究意义 (3) 1.1.2 机器人的应用领域 (3) 1.2移动机器人的发展概况 (4) 1.2.1移动机器人的国内发展概况 (4) 1.2.2移动机器人的国外发展概况 (4) 2.轮式移动机器人的结构设计 (7) 2.1移动机器人的系统结构 (7) 2.2轮式移动机器人主要结构 (7) 3.轮式移动机器人的控制系统 (11) 3.1控制系统硬件选型与配置 (11) 3.1.1驱动电机的选型 (11) 3.1.2伺服电机的选型 (12) 3.1.3轮毂电机的选型 (13) 3.2轮式移动机器人控制系统框架 (15) 4.结论和总结 (17) 致谢 (18) 参考文献 (19) 附录 (21)

摘要 移动机器人是机器人家族中的一个重要的分支,也是进一步扩展机器人应用领域的重要研究发展方向。自上世纪九十年代以来,人们广泛开展了对机器人移动功能的研制和开发,为适应各种工作环境的不同要求而开发出各种移动机构。 论文内容包括四个部分:简要介绍了移动机器人研究现状、对所设计移动机器人系统进行了描述、视觉导航轮式移动机器人底层硬件设计和视觉轮式移动移动机器人的底层控制。 论文详细地介绍了移动机器人底层硬件系统元件的选型和原理电路图的设计。我们选用PIC16F877单片机作为下位机接收上位机传来的命令和产生驱动信号。步进电机的驱动电路采用两个步进电机驱动器-L298,驱动程序写入PIC16F877单片机,通过程序控制步进电机的转速和转向。采用Propel 设计了底层控制系统的原理图和PCB版图,采用Proteus进行程序和硬件系统的仿真。仿真结果表明:步进电机运行稳定、可靠性高,实现了对步进电机的预期控制。 关键词:移动机器人;运动控制;PIC16F877;步进电机

AGV视觉导航设计方案经典

AGV视觉导航设计方案经典

AGV搬运机器人视觉导航方案 AGV(Automated Guided Vehicle,AGV)作为现代制造系统中的物料传送设备已经得到了广泛应用。从理论上看,视觉导引AGV具有较好的技术应用前景,然而其却没能像电磁导引和激光导引 AGV 那样广泛使用,主要问题在于视觉导引技术在实时性、鲁棒性和测量精度方面还有待进一步突破。 由多个 AGV 单元组成的 AGV 系统( Automated Guided Vehicle System,AGVS)配有系统集成控制平台,对 AGV 的作业过程进行监管和优化,例如,创立任务、地图生成、发出搬运指令、控制AGV 的运行路线、跟踪传送中的零件以及多 AGV 的任务规划和调度。将 AGV 与外部自动化物流系统、生产管理系统有机结合,对系统内每台 AGV 合理地分配当前任务、选择最佳路径、实时图形监控、管理运行安全,实现信息化的管理和生产,方便地构成由调配中心计算机控制的自动化生产线、自动仓库和全自动物流系统。 当前视觉导引方式主要方法有基于局部视觉和全局视觉两种方法。基于视觉导引的 AGV 还没有大规模产业化,但其潜在的市场前景使其成为近几年来国内外 AGV 研究的热点。 全局视觉导引方法是将摄像机安装在天花板或者墙上,以整个工作环境为目标,对包括 AGV、导引路径、障碍物等进行对象识别,对各个摄像机获取的图像进行基于特征的图像融合,得到全局地图。在生成的全局地图中,每个 AGV 单元,导引线,障碍

物的绝对坐标都能够实时获取。全局视觉方法相对于将摄像机安装在车体上的局部视觉方法,在多 AGV 调度、障碍物检测(固定和移动)、避障、全局监测方面更具优势。特别是能够对AGV 和障碍物的特征进行分类,经过增强型的卡尔曼滤波方法进行运动估计,动态跟踪每一个目标的位置、速度。可是这种方法要根据不同的现场环境,按照视野不被遮挡并覆盖整个工作空间的原则,根据摄像机放置算法决定摄像机的数目、安装位姿。因此这张全局视觉方法仅仅适用于室内且空间较大的场合,而且导引精度较低。 相对而言,当前国内外研究较多的是局部视觉导引方式。局部视觉导引方式是将单车看作一个智能体,在车上安装摄像机和图像采集系统实时地处理环境信息,其主要有基于自然场景和结构化场景两种导航方式。基于自然场景的导航方式经过运行路径周围环境的图像信息与环境图像数据库中的信息进行比较,从而确定当前位置并对运行路线做出决策。这种方法不要求设置任何物理路径,在理论上具有最佳的柔性;但三维图像处理的实时性差和环境图像数据库的难以建立,限制了它的实际应用。 基于结构化场景的导引方式一般是在地面粘贴或铺设一些特殊形状或颜色的线路和符号,由视觉系统识别预定义的路经,包括导引路径相对 AGV 的位置偏差和角度偏差、路径节点、工位、转弯、停车、加减速等标识。这种视觉导航方式的优点是视觉系统只需提取预设的特定目标,并根据目标特征的先验知识做进一

移动机器人视觉定位设计方案

移动机器人视觉定位设计方案 运动视觉研究的是如何从变化场景的一系列不同时刻的图像中提取出有关场景中的目标的形状、位置和运动信息,将之应用于移动机器人的导航与定位。首先要估计出目标的空间位置和运动信息,从而为移动机器人车体的导航与定位提供关键前提。 视觉信息的获取主要是通过单视觉方式和多视觉方式。单视觉方式结构简单,避免了视觉数据融合,易于实现实时监测。如果利用目标物体的几何形状模型,在目标上取3 个以上的特征点也能够获取目标的位置等信息。此方法须保证该组特征点在不同坐标系下的位置关系一致,而对于一般的双目视觉系统,坐标的计算误差往往会破坏这种关系。 采用在机器人上安装车载摄像机这种局部视觉定位方式,本文对移动机器人的运动视觉定位方法进行了研究。该方法的实现分为两部分:首先采用移动机器人视觉系统求出目标质心特征点的位置时间序列,从而将对被跟踪目标的跟踪转化为对其质心的跟踪;然后通过推广卡尔曼滤波方法估计目标的空间位置和运动参数。 1 目标成像的几何模型 移动机器人视觉系统的坐标关系如图1 所示。 其中O-X Y Z 为世界坐标系;O c - X cY cZ c 为摄像机坐标系。其中O c 为摄像机的光心,X 轴、Y 轴分别与X c 轴、Y c 轴和图像的x ,y 轴平行,Z c 为摄像机的光轴,它与图像平面垂直。光轴与图像平面的交点O 1 为图像坐标系的原点。O cO 1 为摄像机的焦距f 。 图1 移动机器人视觉系统的坐标关系 不考虑透镜畸变,则由透视投影成像模型为:

式中,Z′= [u,v ]T 为目标特征点P 在图像坐标系的二维坐标值;(X ,Y ,Z )为P 点在世界坐标系的坐标;(X c0,Y c0,Z c0)为摄像机的光心在世界坐标系的坐标;dx ,dy 为摄像机的每一个像素分别在x 轴与y 轴方向采样的量化因子;u0,v 0 分别为摄像机的图像中心O 1 在x 轴与y 轴方向采样时的位置偏移量。通过式(1)即可实现点P 位置在图像坐标系和世界坐标系的变换。 2 图像目标识别与定位跟踪 2.1 目标获取 目标的获取即在摄像机采集的图像中搜索是否有特定目标,并提取目标区域,给出目标在图像中的位置特征点。 由于机器人控制实时性的需要,过于耗时的复杂算法是不适用的,因此以颜色信息为目标特征实现目标的获取。本文采用了HS I 模型, 3 个分量中,I 是受光照影响较大的分量。所以,在用颜色特征识别目标时,减少亮度特征I 的权值,主要以H 和S 作为判定的主要特征,从而可以提高颜色特征识别的鲁棒性。 考虑到连通性,本文利用捕获图像的像素及其八连通区域的平均HS 特征向量与目标像素的HS特征向量差的模是否满足一定的阈值条件来判别像素的相似性;同时采用中心连接区域增长法进行区域增长从而确定目标区域。图2 给出了目标区域分割的算法流程。

轮式移动机器人结构设计

大学 毕业设计说明书题目:轮式移动机器人结构设计 专业:机械设计制造及其自动化学号: 姓名: 指导教师: 完成日期: 2012年5月30日

大学 毕业论文(设计)任务书论文(设计)题目:轮式移动机器人结构设计 学号:姓名:专业:机械设计制造及其自动化指导教师:系主任: 一、主要内容及基本要求 1:了解轮式移动机器人的原理及其设计: 2:CAD绘图设计,要求A0图纸一张,总共达到两张A0。 3:说明书,要求6000字以上,要求内容完整,计算准确: 4:外文翻译3000字以上,要求语句通顺。 二、重点研究的问题 1:轮式移动机器人转向机构的设计: 2:轮式移动机器人电机的选型

三、进度安排 四、应收集的资料及主要参考文献 [1] 吕伟文.全方位轮移动机构的原理和应用[A].无锡职业技术学院学报,2005,615-17. [2] 赵东斌,易建强等.全方位移动机器人结构和运动分析[B].机器人,2003,9. [3] 李瑞峰,孙笛生,闫国荣等.移动式作业型智能服务机器人的研制[J].机器人技术与应 用,2003,1:27-29. [4] 杨树风.带有机械臂的全方位移动机器人的研制. 哈尔滨工业大学硕士毕业论文,2006. [5] 田宇,吴镇炜,柳长春.开放式三自由度全方位移动机器人实验平台[J].机器人,2002,24 (2):102-106. [6] 闫国荣,张海兵.一种新型轮式全方位移动机构[J].哈尔滨工业大学学报,2001,33(6):854-857. [7] 吕伟文.全方位移动机构的机构设计[A].无锡职业技术学院学报,2006.12:03-12. [8] 高光敏,张广新,王宇等.一种新型全方位轮式移动机器人的模型研究[A].长春工程学院学 报,2006,12. [9] 吴玉香,胡跃明.轮式移动机械臂的建模与仿真研究[B].计算机仿真,2006,1(05). [10] 付宜利,徐贺,王树国.具有新型轮式走行部的移动机器人及其特性研究.高技术通信,2004,12. [11] 付宜利,李寒,徐贺等.轮式全方位移动机器人几种转向方式的研究.制造业自动化,2005,10:5-33. [12] 滕鹏,马履中,董学哲.具有冗余自由度的新型护理机械臂研究.机械设计与研究,2004,1:3-32. [13] 孔繁群,朱方国,周骥平.一种机械手关节联接结构的改进设计[B].机械制造与研究,2005,5:2-16. [14] 蔡自兴编著.机器人原理及其应用. 中南工业大学出版社,1988. [15] 吴广玉,姜复兴编.机器人工程导论.哈尔滨:哈尔滨工业大学出版社,1988. 大学

移动机器人视觉导航系统研究

北京交通大学 硕士学位论文 移动机器人视觉导航系统研究姓名:王红波 申请学位级别:硕士专业:信号与信息处理指导教师:阮秋琦 20080601 中文摘要 中文摘要 摘要:基于视觉的移动机器人导航是近年发展起来的一种先进导航技术。与其它的非视觉传感器导航相比,它具有信息丰富、探测范围宽、目标信息完整等优点。本文结合实际应用,提出了一个完整的移动机器人视觉导航系统解决方案。研究内容主要包括四个部分:摄像机标定、目标识别、单目测距和运动控制。分别阐述如下: 第一,摄像机标定,基于张正友的平面标定算法对摄像头进行精确标定,针对摄像头的自动变焦特性,提出了一个新的离线离散标定策略,并获得多个状态下的摄像头内外参数。 第二,目标识别,传统分割方法存在多分割问题,影响到目标物提取的精度, 这罩提出一个改进了的基于HSI模型的彩色图像分割算法,在多通道阈值分割的基础上,融入了连通区域标记和形念学开闭运算。 第三,单目测距,基于摄影测量学和立体几何理论,建立了单目视觉测距模型,并推导了基于地平面约束的单目测距算法。针对多种误差因素,在测距算法中加入了误差校币,使移动机器人能够更加准确地定位目标物体。 第四,运动控制,控制摄像机云台实现日标物搜索,调整移动机器人位姿和对夹持器的动作控制。

实验结果表明:即使在恶劣光照条件下,提出的Hs工分割算法能够对向光、背光、近处、远处物体实现快速有效提取;提出的单目测距模型和算法能够对目标物体进行精确的测距;当把这些算法集成到实验平台上时,能够快速实现移动机器人的导航控制,并成功完成物体抓取操作。 关键词:摄像机标定、彩色目标识别、单目视觉测距、移动机器人 分类号:TP 391.41 ABSTRACI' ABSTRACT ABS。I’RAC’1.. In recent years,vision attracts a lot of attention for navigating a mobile robot in dynamic https://www.360docs.net/doc/b24543774.html,pared with other sensing systems,visual navigation is excellent and effective.With a visual sensing system,wider view of field,rich and intensive data Can be obtained for a mobile robot moving in a changing environment.In this study,a visual navigation scheme is proposed for a mobile robot to realize object collection,and it comprises of camera calibration,object recognition,monocular measurement and motion control,as stated in the following. Firstly,the technique of camera calibration is presented on the basis of Zhang’S algorithm.Since a PTZ calTlera is used here,it is controlled to move up and down,from left to right,to extend the view of field.Therefore,calibration in different positions is needed,and a new discrete method is proposed here. Secondly,a