第一部分 300MW汽轮发电机密封瓦结构及工作原理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一部分 300MW汽轮发电机密封瓦结构及工作原理
发电机密封油系统主要用于阻止氢气外泄和空气的漏入。其中,氢冷汽轮发电机的油密封装置按其核心部件——密封瓦的形式分为盘式油密封和环式油密封两类。前者大多用于
100MW及以下容量的中小机组,后者则多用于大容量机组。
双流环式氢油密封系统是目前国内较为普遍采用的设计形式,双流环式密封瓦,即在环行密封瓦的内径乌金面上有两道轴向排列环形油槽,分别为空侧和氢侧密封油槽(故称:“双流环式”密封瓦),槽内充满密封油,实行径向密封。密封瓦装在固定的瓦座内,环绕轴颈,相对静止,运行时轴与瓦面之间产生压力油膜,瓦可随轴浮动。瓦面上的空氢侧密封油槽分别与空氢侧密封油系统相联,瓦在运行中空氢侧密封油槽内充满自动调整好的压力油,对轴颈实行径向密封。其结构如图1所示[3]。密封瓦由瓦座、瓦环、进油口、空侧和氢侧的压力油腔组成。双流式密封环由两块半圆环扇形并成,通过螺栓压在一起形成一整圆。当油腔中通入压力油时,在密封环与轴颈之间形成油膜,其作用是防止氢气外漏,并避免动静摩擦,同时,在密封环左右端面与密封瓦座之间,另有少量的油流过形成油膜,以防止密封瓦卡涩。双流环式油密封系统在正常运行中同时通过两股油流,成为既相互关联又各自独立的油循环系统。靠密封瓦外侧流动的油循环系统,称为空侧密封油系统,它的油源取自汽轮机的主油箱,进入密封瓦后,由密封瓦的空气侧流出,与发电机的支撑轴承回油汇合后流回主油箱。沿密封瓦氢气侧流动的油循环系统,称为氢侧密封油系统,由密封瓦的氢气侧流出后,通过发电机内单独的回油管路流回密封油箱。
在国产300MW氢冷汽轮发电机密封油系统中,氢侧密封油的油压和油量调节是由平衡阀来完成的。平衡阀的控制信号为两个压力信号,分别取自空、氢侧的油压。平衡阀的作用是使氢侧油压始终跟踪空侧油压,使两者的压力差最大限度的趋于最小。
第二部分发电机密封油调节
1.基础知识
一个局部阻力可以改变的节流元件,对不可压缩流体,由流量方程式可得:
式中:Q--流经平衡阀的流量
ξ--平衡阀的阻力系数
P1--阀前压力P2--阀后压力
F--平衡阀接管截面积
ρ--流体的密度
由上式可以看出,当F一定(即对某一型号的平衡阀),阀门前后压降P1-P2不变时,流量Q仅受平衡阀阻力影响而变化。ξ增大(阀门关小时),Q减小;反之,ξ减小(阀门开大时),Q增大。
平衡阀就是以改变阀芯的开度来改变阻力系数,达到调节流量的目的。
Kv为平衡阀的阀门系数。
它的定义是:当平衡阀前后差压为1bar(约1kgf/cm2)时,流经平衡阀的流量值(m3/h)。
平衡阀全开时的阀门系数相当于普通阀门的流通能力。
如果平衡阀开度不变,则阀门系数Kv不变,也就是说阀门系数Kv由开度而定。
通过实测获得不同开度下的阀门系数,平衡阀就可做为定量调节流量的节流元件。在管网平衡调试时,用软管将被调试的平衡阀的测压小阀与专用智能仪表连接,仪表可显示出流经阀门的流量值(及压降值),经与仪表人机对话,向仪表输入该平衡阀处要求的流量值后,仪表通过计算、分析、得出管路系统达到水力平衡时该阀门的开度值。
2.差压阀:
作用:差压阀在密封油系统中用以调整空侧密封油压,使之与发电机内气体压力始终保持一定的压差。
工作原理:压差阀的活塞上面引入机内氢气压力(压力为p1),活塞下面引入被调节并输出的空侧密封油(压力为p),活塞自重及其配重片重量(或调节弹簧)之和为p2(可调节),则使p=p1+p2(上下力平衡)。当机内氢气压力p1上升时,作用于活塞上面的总压力(p1+p2)增大,使活塞向下移动,加大三角形工作油孔的开度,使空侧油量增加,则进入空侧密封瓦的油压随之增加,直到达到新的平衡;当机内氢气压力p1下降时,动作相反。
3.平衡阀:
平衡阀的工作原理:平衡阀属于调节阀范畴,它的工作原理是通过改变阀芯与阀座的间隙,改变流体流经阀门的流通阻力,达到调节流量的目的。平衡阀相当于
工作原理:
平衡阀的控制器上面是空侧油压力,下面是氢侧压力,当空侧压力较高时,阀芯向下移动,阀门开大,流道面积变大,氢侧油压上升;压差低时,动作相反.始终保证空侧密封油压和氢侧密封油压差压在正负490Pa范围内。
四、密封油箱结构:
氢侧密封油箱结构说明:位置比较低的那个大浮球是补油阀,位置比较高的大浮球是排油阀。正常运行的情况下,氢侧密封油箱油位应该保持在油箱中间位。此时补油阀、排油阀都应该是关闭的。油位上涨中心线以上的时候,排油阀浮球向上浮动,打开排油阀,向空侧密封油泵进口管排油。油位下降到中心线以下的时候,补油阀浮球向下浮动,打开补油阀,由空侧密封油进油管向氢侧密封油箱补油。小浮球是浮球液位报警,当油位继续下降,直到低于中心线约110mm的时候,提供油位低报警。磁翻板液位指示只是平常就地检查的。
第三部分发电机氢气纯度下降原因分析及处理
一、发电机氢纯度下降的原因分析
影响氢气纯度的因素主要有:1、密封瓦处空氢侧密封油交换;2、氢侧回油箱补、排油浮球阀状态;3、纯度表;4、空氢侧密封油油温;5、补氢纯度;7、氢气湿度;8、油中含水量;
9、氢油压差等。用“鱼刺图”的形式列出,见图2:
图2 氢气纯度下降原因鱼刺图
空氢侧密封油交换使混入氢气中空气量可用下式计算:A=0.054×K×Qin 其中A-机内混入空气量(m3/d);Qin-密封油混入量(l/min);K-系数(1.0-3.0)。
而空气混入量与维持氢纯度所需的补氢量之间有下面关系:q=A×Z/(S-Z)其中q-补氢量(m3/d);S-补氢纯度(%);Z-机内氢纯度(%)。
二、处理要点
3.1校正纯度表。为确保取样的准确性,取样人员加强操作的规范化并重新校核奥氏分析仪后,人工化验值与提纯量基本对应,提纯用氢量明显减少。
3.2密封瓦处空氢侧油量的交换。空侧油压与氢侧油压的平衡,是双流密封环油系统赖以生存的基础。如空、氢侧压力平衡,氢侧回油箱的进、出油量相等,油位应无变化,否则,油箱油位将发生或高或低的变化,如两端空侧油压高于氢侧油压将使空侧油串入氢侧油中,引起油箱油位升高,而氢侧油压高于空侧油压将使氢侧油串入空侧油而引起油箱油位下降,这两种情况都会造成空氢侧油相串而将空侧油中空气带入氢侧油中,从而引起氢气纯度下降。(有关资料显示,设计工况下的空侧密封瓦的油体积流量为99X2L/min,氢侧封瓦的油体积流量为57X2L/min,50℃的回油约吸收8%容积氢气和10%容积空气),根据密封油箱的补排油情况,判断空氢侧油量的交换方向,进一步检查平衡阀及差压阀的工作情况是否正常。
3.3氢温和密封油温的影响:氢温越高,氢纯度下降越大。如负荷在250MW以上,氢纯会下降较快,一般达0.24%/d。密封油温的高低决定了油中携带气体的多少,一般情况下油温越高携带的气体体积越多。所以,适当调低氢温及油温可能有效控制纯度的下降。