《人工神经网络的发展及其应用》
人工神经网络及其应用领域
人工神经网络及其应用领域人工神经网络(Artificial Neural Network,简称ANN)是一种被广泛应用于机器学习、模式识别、数据挖掘等领域的技术。
它模仿自然神经元的结构和功能,通过多层、多节点的结构,从输入端读取数据,经过复杂计算后输出结果,实现了对一系列非线性问题的解决。
在本文中,我们将探讨人工神经网络的基本结构以及其应用领域。
一、人工神经网络的基本结构为了更好地理解人工神经网络,我们需要了解其基本结构。
人工神经网络由三层结构组成,分别是输入层、隐藏层和输出层。
输入层从外界获取数据输入,而输出层将输出反馈给用户,隐藏层则对输入层的信息进行处理。
输入层的每个节点均对应着一个输入特征,比如图像识别中的像素点。
隐藏层的节点数量在不同情况下各不相同,取决于网络的设计和任务要求。
对于拥有N个输入特征的神经网络,如采用一个由H个节点组成的隐藏层,那么H个节点将共同接收这N个输入特征。
隐藏层中节点的计算方式通常采用非线性函数,比如ReLU函数。
最后,输出层从隐藏层中接收数据并输出结果。
在实际应用中,不同类型的神经网络设计包括全连接、卷积、循环神经网络等。
二、人工神经网络的应用领域1. 图像识别和分类技术人工神经网络的最常见应用之一是图像识别和分类。
在图像识别任务中,神经网络通过输入图像像素特征,识别不同物体并给出正确的标签。
在图像分类任务中,神经网络可以自动对具有相似特征的图像进行分类。
2. 自动驾驶技术在自动驾驶技术中,人工神经网络可以实现对车辆周围环境的检测和分析。
通过连接车辆上的传感器和摄像头,神经网络能够对路况、车速和周围交通情况进行有效处理。
基于这些数据,自动驾驶车辆就能够合理地进行运行和规避违规操作。
3. 自然语言处理在自然语言处理中,人工神经网络主要应用于文本分类和情感分析。
神经网络通过学习文本中的数据特征和结构,实现对文本分类的准确性提升。
在情感分析方面,神经网络则能够自动分析文本的情感倾向并给出相关预测。
(完整版)人工智能的发展及应用
人工智能的发展及应用这是个信息爆炸自动控制飞速发展的时代,而在这样的时代中,人工智能也取得了飞速的发展。
成为了最前沿最热门的学科和研究方向之一。
人工智能的定义??“人工智能”(Artificial Intelligence)一词最初是在1956年Dartmouth学会上提出的。
人工智能是指研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器。
目前能够用来研究人工智能的主要物质手段以及能够实现人工智能技术的机器就是计算机,人工智能的发展历史是和计算机科学与技术的发展史联系在一起的。
?人工智能理论进入21世纪,正酝酿着新的突破,人工智能的研究成果将能够创造出更多更高级的智能“制品”,并使之在越来越多的领域超越人类智能,人工智能将为发展国民经济和改善人类生活做出更大贡献。
?人工智能的应用领域??1.在管理系统中的应用?(1)人工智能应用于企业管理的意义主要不在于提高效率,而是用计算机实现人们非常需要做,但工业工程信息技术是靠人工却做不了或是很难做到的事情。
在《谈谈人工智能在企业管理中的应用》一文中刘玉然指出把人工智能应用于企业管理中,以数据管理和处理为中心,围绕企业的核心业务和主导流程建立若干个主题数据库,而所有的应用系统应该围绕主题数据库来建立和运行。
换句话说,就是将企业各部门的数据进行统一集成管理,搭建人工智能的应用平台,使之成为企业管理与决策中的关键因子。
?2.在工程领域的应用?(1)医学专家系统是人工智能和专家系统理论和技术在医学领域的重要应用,具有极大的科研和应用价值,它可以帮助医生解决复杂的医学问题,作为医生诊断、治疗的辅助工具。
事实上,早在1982年,美国匹兹堡大学的Miller就发表了着名的作为内科医生咨询的Internist 2Ⅰ内科计算机辅助诊断系统的研究成果,由此,掀起了医学智能系统开发与应用的高潮。
人工神经网络基础与应用-幻灯片(1)
4.4.2 根据连接方式和信息流向分类
反馈网络
y1 y2 ... y n 特点
仅在输出层到输入层存在反 馈,即每一个输入节点都有 可能接受来自外部的输入和 来自输出神经元的反馈,故 可用来存储某种模式序列。
应用
x 1 x 2 .... xn
神经认知机,动态时间序列 过程的神经网络建模
25
4.4.2 根据连接方式和信息流向分类
w ij : 从ui到xj的连接权值(注意其下标与方向);
s i : 外部输入信号;
y i : 神经元的输出
18
4.3.2 人工神经元的激励函数
阈值型 f 1 0
分段线性型
f
f max k
f
Neit10
Nei t0 Nei t0
Net i
0
0NietNie0 t
fNiet kNietNie0tNie0tNietNi1 et
典型网络
回归神经网络(RNN)
x 1 x 2 .... xn
27
第4.5节 人工神经网络的学习
连接权的确定方法: (1)根据具体要求,直接计算出来,如Hopfield网络作 优化计算时就属于这种情况。 (2)通过学习得到的,大多数人工神经网络都用这种方 法。
学习实质: 针对一组给定输入Xp (p=1,2,…, N ),通过学习使网络动态 改变权值,从而使其产生相应的期望输出Yd的过程。
树 突
细胞核 突
触
细胞膜 细胞体
轴 突
来自其 它细胞 轴突的 神经末 稍
神经末稍
11
4.2.1 生物神经元的结构
突触:是神经元之间的连接 接口。一个神经元,通过其 轴突的神经末梢,经突触与 另一个神经元的树突连接, 以实现信息的传递。
人工神经网络原理、分类及应用
3 B P 神经 网络
目前 应 用 最 为 广泛 的 网络 , 具 有 多 层 网络 结 构 , 口 _ J ‘ 以由 一 个 或 者 多个 隐 含 层 。 B P 网 络采 用W i d r o w- - Ho f f 学 习算法 和 非线 性 传递 函数 , 典 型 的BP 网 络 采 用 的是 梯 度 下降 算 法 , 也 就 是 wi d T o w— Ho f f 算 法所 规 定的 。 B P, i f  ̄ B a c k P r o p a g a t i o n , 就 是指 为 非线性 多 层 网络 训 练 中梯 度 计 算 是 采 用 信 号 正 向传 播 、 误 差 反 向传 播 的 方 式。 通过 采 用非 线 性 传递 函数 , B P 网 络能 够 以 义 的 精度 逼 近 仟何 非 线性 函数 , 由于 采 用 隐 含 中 间 层 的 结 构 , BP网 络 能 够 提 取 出更 高 阶 的 统 计性 质 , 尤 其是 当输 入 规 模庞 大 时 , 网络 能 够 提 取 高 阶统 计性 质 的能 力就 显 得 非 常 重 要 了, 结合本文的课题 , 将 采 用 BP神 经 网络 及其 改进 算 法 进行 组 合 集成 实验 , 用 以 解决 财 务 颅 警 的 实
1 神经 网络简介
人 工神 经 网络( Ar t i f i c i a l Ne u r a l Ne t wo r k, ANN) , 亦称 神经 网络 ( Ne u r a l Ne t wo r k , NN) , 是 一种应 用 类 似 于大 脑神 经 突触 连 接结构进行信息处理的数学模型 , 它 是 在 人 类 对 自身大 脑组 织 结 合 和 思 维 机 制 的 认 识理 解 基 础 之 上模 拟 出来 的 , 它 是 根 植 于 神 经 科学 、 数 学、 统计学 、 物理 学、 计 算 机 科 学 以 及 工 程 科 学 的一 『 J 技 术。 心理 学 家Mc c u l l o c h , 数学 家P i t t s 在2 0 世 纪4 0 年 代第 次 提 出 了 神 经 网 络模 型 , 从 此开 创 了神 经 科 学理 论 的 研 究 时 代 , 此 后 半 个世 纪 神 经 网 络技 术 蓬 勃 发 展 。 神 经 网络 是 一种 计 算 模 型 , 由大 量 的 神 经 无 个体 节 点 和 其 间相 瓦 连 接 的加 权 值共 同组 成 , 每 个 节 点 都 代 表 ・ 种运算, 称 为激 励 函数 ( a c t i v a t i o n f u n c t i o n ) 。 每 两 个相 互连 接 的 节 点 问 鄙 代 表 个 通 过 该 连 接 信 号 加 权 值 , 称 值 为 权 重 ( we i g h t ) , 神 经 网络 就 是通 过 这 种 方 式 来模 拟 人 类 的 记忆 , 网络 的 输 出 则取 决于 网络 的结 构 、 网络 的连 接 方 式 、 权 重和 激 励 函数 。 而 网络 本 身 通 常 是 对 自然 界 或 者 人 类 社 会 某 种 算 法 或 函数 的 逼 近 , 也 呵能 是 ・ 种 逻辑 策 略 的 表 达 。 神 经 网 络 的 构 筑 理 念 是 受 到 生 物 的神经网络运作启发而产生的。 人工 神 经 网络 则 是 把 对 生 物 神 经 网络 的认 识 与数 学统 计 模 型 向 结 合 , 借 助 数 学统 计 工具 来 实现 。 另
人工神经网络技术及其应用
人工神经网络技术及其应用从识别文字、图像、语音到推荐系统,人工神经网络技术已经深刻影响我们的日常生活,未来更是会在人类的发展进程中扮演重要的角色。
在本文中,我们将解释人工神经网络技术的工作原理,并介绍它在各种领域的应用。
一、神经元的工作原理及网络架构人工神经网络(Artificial Neural Network, ANN)是一种模仿生物神经系统的计算模型。
不同于传统的计算模型在完成任务时需要事先编写代码,ANN可以通过学习数据中的模式和关系来自适应的调整,从而实现解决一些问题的目的。
ANN中的神经元是模拟人类神经元的基本工作单元——接受一系列输入信号,进行处理后产生输出信号。
在神经网络中,神经元通过层次结构进行组织,由输入层、隐藏层和输出层组成。
输入层接受来自外部的信号,隐藏层负责中间处理,输出层则输出最终结果。
每个神经元之间都有连接权重,代表着神经元之间的影响大小。
二、人工神经网络的应用2.1 文字识别通过深度学习算法,人工神经网络可以识别文字,从而为OCR 技术提供了相对稳定的理论支持,也应用于语音语义分析。
在图像双向编码(Bi-directional Encoding)和CNN的基础上,神经网络实现了将文字与其上下文联系起来的功能。
2.2 图像识别通过卷积神经网络(CNN),人工神经网络可以识别形状、轮廓和特定物体。
如人脸识别技术,通过抽取人面部的高维特征,可以简单而准确的识别人脸。
2.3 语音识别通过循环神经网络和CNN,人工神经网络可以实现语音信号的识别。
人工神经网络的语音识别应用最早出现在Apple的语音助理Siri,通过神经网络分析用户的语音并发布响应结果。
2.4 推荐系统通过人工神经网络学习推荐系统中的用户和产品之间的交互关系,可以预测给出的产品可能具有的习惯用户行为,进而为用户提供更加符合兴趣和需求的产品推荐结果。
三、未来展望未来,随着数据量的增加和计算能力的提高,人工神经网络技术在应用中的市场和科技应用广度都将得到进一步的扩展与发展。
人工神经网络的发展综述
人工神经网络的发展综述作者:夏瑜潞来源:《电脑知识与技术》2019年第20期摘要:人工神经网络(ANN)是人工智能领域中十分重要的运算模型,ANN通过模拟人类大脑的结构和逻辑,来处理复杂的问题。
本文首先介绍了ANN的起源和发展,其次描述了全连接神经网络和深度神经网络的结构,其中具体介绍了卷积神经网络及其应用,最后探讨了ANN的未来发展目标,并提出了对未来工作的期望。
关键词:人工智能;神经网络;卷积神经网络;图像识别中图分类号:TP391; ; ; 文献标识码:A文章编号:1009-3044(2019)20-0227-03开放科学(资源服务)标识码(OSID):Abstract: Artificial neural networks (ANNs) are important computational models in the field of artificial intelligence. ANNs deal with complex problems by simulating the structure and logic of the human brain. This paper first introduces the origin and development of ANN, and secondly describes the structure of fully connected neural network and deep neural network. The convolutional neural network and its application are introduced in detail. Finally, it discusses the future development goals of ANN and puts forward expectations for future work.Key words: Artificial Intelligence; Neural Network; Convolutional Neural Networks; Image Recognition1引言实现人工智能(Artificial Intelligence,AI)是人类长期以来共同追求的目标。
人工神经网络概述及在分类中的应用举例
人工神经网络概述及其在分类中的应用举例人工神经网络(ARTIFICIAL NEURAL NETWORK,简称ANN)是目前国际上一门发展迅速的前沿交叉学科。
为了模拟大脑的基本特性,在现代神经科学研究的基础上,人们提出来人工神经网络的模型。
人工神经网络是在对人脑组织结构和运行机智的认识理解基础之上模拟其结构和智能行为的一种工程系统。
神经网络在2个方面与人脑相似:(1) 人工神经网络获取的知识是从外界环境中学习得来的。
(2) 互连神经元的连接强度,即突触权值,用于存储获取的信息。
他既是高度非线性动力学系统,又是自适应组织系统,可用来描述认知、决策及控制的智能行为。
神经网络理论是巨量信息并行处理和大规模并行计算的基础。
一人工神经网络的基本特征1、并行分布处理:人工神经网络具有高度的并行结构和并行处理能力。
这特别适于实时控制和动态控制。
各组成部分同时参与运算,单个神经元的运算速度不高,但总体的处理速度极快。
2、非线性映射:人工神经网络具有固有的非线性特性,这源于其近似任意非线性映射(变换)能力。
只有当神经元对所有输入信号的综合处理结果超过某一门限值后才输出一个信号。
因此人工神经网络是一种具有高度非线性的超大规模连续时间动力学系统。
3、信息处理和信息存储合的集成:在神经网络中,知识与信息都等势分布贮存于网络内的各神经元,他分散地表示和存储于整个网络内的各神经元及其连线上,表现为神经元之间分布式的物理联系。
作为神经元间连接键的突触,既是信号转换站,又是信息存储器。
每个神经元及其连线只表示一部分信息,而不是一个完整具体概念。
信息处理的结果反映在突触连接强度的变化上,神经网络只要求部分条件,甚至有节点断裂也不影响信息的完整性,具有鲁棒性和容错性。
4、具有联想存储功能:人的大脑是具有联想功能的。
比如有人和你提起内蒙古,你就会联想起蓝天、白云和大草原。
用人工神经网络的反馈网络就可以实现这种联想。
神经网络能接受和处理模拟的、混沌的、模糊的和随机的信息。
人工神经网络及其应用
8.1.4 神经网络的发展概况
神经网络控制的研究领域 ▪ 基于神经网络的系统辨识 ▪ 神经网络控制器 ▪ 神经网络与其他算法(模糊逻辑、专家系统、遗传算 法等)相结合 ▪ 优化计算
28
第8章 人工神经网络及其应用
8.1 神经元与神经网络
✓ 8.2 BP神经网络及其学习算法
8.3 BP神经网络的应用 8.4 Hopfield神经网络及其改进 8.5 Hopfield神经网络的应用
814神经网络的发展概况28神经网络控制的研究领域神经网络与其他算法模糊逻辑专家系统遗传算法等相结合优化计算814神经网络的发展概况29人工神经网络及其应用81神经元与神经网络82bp神经网络及其学习算法83bp神经网络的应用84hopfield神经网络及其改进85hopfield神经网络的应用86hopfield神经网络优化方法求解jsp3082bp神经网络及其学习算法821bp神经网络backpropagationneuralnetwork的结构822bp学习算法823bp算法的实现3182bp神经网络及其学习算法821bp神经网络backpropagationneuralnetwork的结构822bp学习算法823bp算法的实现32821bp神经网络的结构bp网络结构33821bp神经网络的结构输入输出变换关系34821bp神经网络的结构对网络的连接权进行学习和调整以使该网络实现给定样本的输入输出映射关系
工作过程:
从各输入端接收输入信号 uj ( j = 1, 2, …, n )
根据连接权值求出所有输入的加权和
n
n
n
xi wijuj i wijuj bi wijuj
j1
j1
j0
(w i0
1,u0i或wi0
人工神经网络的发展及应用_毛健
人工神经网络的发展及应用毛健,赵红东,姚婧婧(河北工学大学信息工程学院,天津300401)摘要:人工神经网络是人工智能的重要分支,具有自适应、自组织和自学习的特点。
回顾了人工神经网络理论的发展历史,并介绍了其在信息、医学、经济、控制等领域的应用及研究现状。
随着人们对人工神经网络不断地探索和研究,并将其与一些传统方法相结合,将推动人工智能的发展,在以后的生产生活中发挥更大的作用。
关键词:人工神经网络;应用;现状;发展中图分类号:TP183文献标识码:A文章编号:1674-6236(2011)24-0062-04Application and prospect of Artificial Neural NetworkMAO Jian ,ZHAO Hong -dong ,YAO Jing -jing(School of Information Engineering ,Hebei University of Technology ,Tianjin 300401,China )Abstract:As an important branch of artificial intelligence ,artificial neural network own the characteristics of self -adaption ,self -organization and self -learning.Review the development history of artificial neural network theory and its application and research status in the field of information ,medicine ,economic ,control and others are introduced.As continuous exploring and researching the combination of artificial neural network and some traditional methods will promote the development of artificial intelligence and play a bigger role in the production and living later.Key words:Artificial Neural Network ;application ;current situation ;prospect收稿日期:2011-10-20稿件编号:201110091作者简介:毛健(1987—),女,吉林公主岭人,硕士研究生。
人工神经网络的应用领域介绍
人工神经网络的应用领域介绍人工神经网络(Artificial Neural Network,ANN)是一种模板化的计算模型,通过模拟神经元之间的讯息传递来完成信息处理任务,模型类似于人类神经系统。
自从ANN的提出以来,已经发展出了多种神经网络模型,被广泛应用于各种领域。
本文将介绍人工神经网络的应用,以及其在不同领域的效果。
1. 计算机视觉计算机视觉领域可以使用人工神经网络来进行图像分类、识别以及目标检测等任务。
现在的神经网络可以完成人脸识别、图像分割以及文本识别等高级任务,通过深层次的学习,达到人类相似的表现。
在此领域中,最流行的是卷积神经网络(Convolutional Neural Network,CNN)模型,它可以有效地识别图像中的特征,例如边缘、形状、颜色等,使得神经网络可以快速地准确地识别图片中的物体。
2. 语音处理人工神经网络在语音处理领域也有广泛的应用,例如语音识别、语音合成、语音信号分析等。
在这个领域中,反向传播神经网络(Backpropagation Neural Network,BNN)和长短时记忆网络(Long-short term memory,LSTM)等模型都被广泛应用。
这些模型可以学习语音信号的不同特征,并将语音信号转化为文本,以帮助人们快速地理解口语交流。
3. 金融领域人工神经网络在金融领域中也有广泛的应用,例如预测股票价格、信用评级以及风险控制等。
神经网络可以通过学习大量的历史数据,并根据这些数据来预测未来的趋势。
往往人工神经网络到所产生的预测结果会比传统的统计预测准确度更高。
4. 工业控制工业控制是人工神经网络的另一种应用领域。
神经网络可以帮助系统自动控制,例如自动化生产线上的物品分类、质量检测等任务。
神经网络能够通过学习各种现有系统的运作方式,并从海量数据中提取规律和关系,进而优化生产流程和控制系统。
5. 医疗行业在医疗行业中,人工神经网络可以用于病理判断、癌症筛查以及模拟手术等领域,从而实现更准确的诊断、治疗以及手术操作。
人工神经网络原理及其应用-人工智能导论
人工神经网络原理及其应用1.人工神经网络的概念:人工神经网络是对人脑或生物神经网络若干基本特性的抽象和模拟。
2.生物神经网络:由中枢神经系统(脑和脊髓)及周围神经系统(感觉神经、运动神经等)所构成的错综复杂的神经网络,其中最主要的是脑神经系统。
3.人工神经网络原理:因为人工神经网络是模拟人和动物的神经网络的某种结构和功能的模拟,所以要了解神经网络的工作原理,所以我们首先要了解生物神经元。
生物神经元它包括,细胞体:由细胞核、细胞质与细胞膜组成,轴突是从细胞体向外伸出的细长部分,也就是神经纤维。
轴突是神经细胞的输出端,通过它向外传出神经冲动;树突是细胞体向外伸出的许多较短的树枝状分支。
它们是细胞的输入端,接受来自其它神经元的冲动。
突触是神经元之间相互连接的地方,既是神经末梢与树突相接触的交界面。
对于从同一树突先后传入的神经冲动,以及同一时间从不同树突输入的神经冲动,神经细胞均可加以综合处理,处理的结果可使细胞膜电位升高,对于从同一树突先后传入的神经冲动,以及同一时间从不同树突输入的神经冲动,神经细胞均可加以综合处理,处理的结果可使细胞膜电位升高。
当输入的冲动减小,综合处理的结果使膜电位下降,当下降到阀值时。
细胞进入抑制状态,此时无神经冲动输出。
“兴奋”和“抑制”,神经细胞必呈其一。
人工神经网络的工作原理与生物神经网络原理类似,但却又不相同,其主要是通过建立一些数学模型,去模拟生物神经网络。
4.神经网络的结构:(1)前馈型:本层每个神经元只作用于下一层神经元的输入,不能直接作用于下下一层的神经元,且本层神经元之前不能互相租用。
(2)反馈型:即在前馈型的基础上,输出信号直接或间接地作用于输入信号。
5.神经网络的工作方式:(1)同步(并行)方式:任一时刻神经网络中所有神经元同时调整状态。
(2)异步(串行)方式:任一时刻只有一个神经元调整状态,而其它神经元的状态保持不变。
6.人工神经网络的应用:经过几十年的发展,神经网络理论在模式识别、自动控制、信号处理、辅助决策、人工智能等众多研究领域取得了广泛的成功。
人工神经网络在材料科学中的应用及其展望
人工神经网络在材料科学中的应用及其展望人工神经网络是一种模仿生物神经网络结构和功能的计算模型,能够模拟人脑的信息处理、学习和适应能力。
人工神经网络在许多领域都展现了优异的表现,其中材料科学是一个重要的应用领域。
在材料科学中,人工神经网络被广泛应用于研究材料的结构、性质和性能等方面。
利用人工神经网络的非线性模型和自适应学习能力,可以高效地处理大量的数据,并进行有效的预测。
例如,人工神经网络在合金设计中的应用已经取得了很好的效果。
合金在工业生产中广泛应用,但是其复杂的结构和组分使得其性能预测非常困难。
通过应用人工神经网络,能够对合金的成分和热处理条件对其性能的影响进行模拟和预测,并有效地优化合金的组分和工艺,提高其性能。
人工神经网络还可以应用于材料输出多种功能,例如催化剂、吸附材料、光电材料等的开发。
在这些应用中,人工神经网络可以帮助研究人员准确预测材料的结构、活性位点的位置以及其他相关的性能参数,从而为材料设计和优化提供可靠的指导。
另外,人工神经网络还可以应用于高通量计算材料库。
通过将大量材料的数据输入到神经网络模型中进行分析,研究人员可以预测材料的性能和特性,同时其计算速度比传统的计算方法更快。
虽然人工神经网络在材料科学领域已经取得了一些非常出色的成果,但是其发展依然面临着一些挑战和限制。
首先,数据质量和数据量限制了神经网络的性能。
如果数据量不能满足神经网络的要求,那么其预测准确度也会受到影响。
其次,神经网络的设计和调整可能会受到特定领域的限制或需求,这一信任被认为是一个难点,需要进一步的探索和发展。
在未来,人工神经网络在材料科学中的应用和发展仍然有很大潜力。
随着更多的数据被收集和整理,以及模型的不断优化和发展,可以预料人工神经网络在材料领域的应用将更加广泛和深入。
人工神经网络在结构工程中的应用和发展
数也可以是非 线性 函数。神 经网络具有 白组织 、 习 、 自学 非线性 、
非局域性 、 非定 常性 和非 凸性 动态 处理 等特性 , 有联 想推 理和 具 白适应识 别能力及模拟人类 思维的能力 。
3 1 2 求解 方法 .,
对 于无约束问题 , 可依据 已构造 的能量 函数来构造合适 的人
中图分 类号 : U32 3 T 1 . 文 献标识码 : A 以下几个 问题 l : 2 j
1 问题 的提 出
在结构工程 中, 大多 数实 际 问题 具有 复杂性 、 态性 和不 可 动
1局部最优解 问题 , ) 复杂的优 化问题可 能存 在多个解 , 中, 其
一 传统 的解析 寻优法 只能 重复的高度非线性 特点 , 变量 很多 而且关 系 十分复杂 , 难用 确 有若干个局部最优解 , 个全 局最优 解 , 很 寻找局部极值 而非全局 的极值 。 切的数学 、 力学模型 来描 述 , 结构选 型 、 结构分 析和设计 的重复性 2维数灾难 问题 , ) 由于系统的复杂性 , 的维数 高 , 模型 会导致 工作 , 增加了分 析的计算 量 , 由于 自然 条件或 环境 及人为 因索 的 优化计算的工作量急剧上升, 出现所谓的“ 组合爆炸” 维数灾 和“ 影响 , 所采集 的数据 常也具有一定 的随机性 、 模糊 性和不确定性 , 难”造成最优解的 困难 。 , 这就使传统分 析方 法常常面临着困难 , 尤其对于具有 高度非线性 3 不 确定性 问题和人 为问题 , ) 结构工程 的设计 中存 在大量的 和严重不确定性系统 , 而人工神经 网络 ( 下文 简称“ 神经 网络 ”在 ) 不确定因素 , 而且研 究和 处理 的问题 必须有 人 的参 与 , 统 的数 传 处理这些问题 方面有着传统 方法无法 比拟 的优越性 , 神经 网络对 学优化模 型只能考虑确定性 因素 , 而且不能考虑人这个 因素 。 输入节点没有限制 , 它适 合于结 构工程问题许多影 响因素的多样 神经 网络 的稳 定性 、 有效性和全局收敛性等 可以解 决传统优 性, 神经元 中的激活函数本身可以选用非线性 函数 , 它能处理 非常 化方法 的问题 。在 18 9 2年 H p e o fl i d首先引入 L au o 能量 函数 ypn v 复杂的非线性 问题 , 因此神经网络在结构工程 中的应用是可行 的。 用于判断 网络 的稳定 性 , 出 了 H p e 提 ofl id单层 离散模 型 , 随后 这 近几年来 , 神经 网络 应用 在结构 工程 的领域 越来 越广 泛 , 相 个领域有很多 的研究 , 进了神经优化研 究 的蓬勃发展 。近几年 促 应的文献 也逐 渐增 多 , 但大多 只是简单地 套用某个 网络模型来 解 国内关于 神经 网络应用 在结构优化 的文献 也逐渐增多 。 决某一个问题 , 对神经网络的原理及 理论基础研 究很少 。文 中将
人工神经网络的基本原理及其应用
人工神经网络的基本原理及其应用人工神经网络(Artificial Neural Network,ANN),是一种模仿生物神经网络的人工智能技术。
它由大量的节点(也被称为神经元)和连接线组成,能够模拟人脑的信息处理方式,具有学习、记忆、推理等功能,已广泛应用于图像识别、语音识别、自然语言处理、自动化控制等领域。
1. 基本原理人工神经网络的基本结构由输入层、隐藏层和输出层组成。
其中,输入层接收外部输入,隐藏层进行信息处理,输出层输出结果。
每个节点接受来自其他节点的输入,并对总输入进行加权处理,然后运用激活函数进行非线性变换,最终输出给后继节点。
加权系数和阈值是神经网络中的重要参数,它们的调整会影响神经元的输出。
神经网络的学习过程主要包括前向传播和反向传播。
前向传播是指输入数据从输入层传递到输出层的过程;反向传播是指根据输出误差对参数进行调整的过程。
通过不断迭代,神经网络的性能可以不断提高,实现更加准确的任务。
2. 应用领域2.1 图像识别图像识别是人工神经网络的常见应用之一。
通常,将图像中的每个像素作为输入,神经网络通过卷积层和池化层从原始图像中提取特征,然后通过全连接层进行分类。
例如,Google 在 2015 年发布的 ImageNet 大规模视觉识别竞赛(ImageNet Large Scale Visual Recognition Challenge,ILSVRC)中,使用了多层卷积神经网络(Convolutional Neural Network,CNN)架构,成功识别出一张图像中的物体,使得图像识别的准确率得到了显著提高。
2.2 语音识别自然语言处理业界对神经网络的应用也不断增多。
语音识别是其中的一个热点方向。
利用神经网络,可以将人类语言转化为计算机理解的信息。
语音识别的模型一般采用长短时记忆网络(Long Short-Term Memory,LSTM)结构。
LSTM 可以有效解决序列数据中存在的长距离依赖问题,提高语音的识别率。
人工神经网络理论及其应用
3 具有高速寻找优化解的能力。建筑一个复杂问题的 ) 优化解 , 往往需要很大 的计算 量 , 利用一 个针 对某 问题 而设 计 的反馈型人工神 经 网络 , 发挥 计算 机 的高 速运 算 能力 , 可 能很快 找到优化解 。 人工神经网络是未来微电子技术应用的新领域。智能 计算机 的构成可 能就 是作为 主机的冯 ・ 诺依 曼计算机 与作为 智 能外 围机 的人工 神经网络的结合 。
1 具 有 自学习功 能。例 如实 现 图像 识 别时 , ) 只在 先把 许多不同的图像样板和对应的识别结果输入人工神经网络, 网络就会通 过 自 习功能 , 学 的意义。预期未来的人工神经
网络计 算机将为人类 提供经济预测 、 市场预测 、 益预测 , 效 其 前途是很远 大的。 2 具有联想存储功 能。人的 大脑是有联 想功能 的。如 )
果有人和你提起你幼年的同学张某某, 你就会联想起张某某
的许多事情 。用人工 神经 网络的反 馈 网络就 可 以实现 这种 联 想。
或者说, 人工神经网络技术是根据所掌握的生物神经网络机 理的基本知识, 按照控制工程的思路和数学描述方法, 建立 相应的数学模型, 并采用适当算法, 有针对性地确定数学模 型的参数( 如连接权值, 阈值等)以便获得某个特定问题的 ,
面:
处于低潮阶段。18 年,. ofl提出了H N模型, 92 JH pe id N 且易
用集成电路实现。8 O年代后 , 工神经 网络及其 应用 , 人 又得 到发展。 人工神经网络也简称为神经网络或称作连接模型 , 对 是 人脑或 自然神经网络若 干基本特 性 的抽 象和模 拟。人 工神 经网络以对大脑的生理研究成果为基础 , 目的在于模 拟大 其 脑的某些机理与机制 , 现某个 方面的功能。国际著名的神 实 经网络研究专家 , 第一家神经计算机公司 的创 立者 与领导人 Heh— e e c t l n给人工神经 网络下的定义就是 “ Nis 人工 神经网络 是 由人工建立的有以有向图为拓扑结构的动态系统 , 它通过 对连续或继续的输入作状态相应而进行信息处理” 。通 俗地 说, 人工神经 网络是对 生物 神经 网络进 行仿 真研究 的结果 。
人工神经网络的发展及其应用
人工神经网络的发展及其应用随着科技的不断发展,人工神经网络成为一种越来越被广泛应用于各个领域的技术。
人工神经网络是一种基于生物神经网络原理的计算模型,其应用领域如机器学习、计算机视觉、自然语言处理、语音识别、控制系统等方面均有广泛应用。
一、人工神经网络的发展历史人工神经网络最早来源于1940年代末期的哈佛大学神经学家Warren McCulloch与Walter Pitts提出的“神经元模型”,其设计初衷是为了实现人类神经元结构与信息处理的模拟。
随后的几十年里,人工神经网络模型得到了不断改进和发展。
例如,1950年Rossenblatt博士提出了“感知器模型”,1980年代Hopfield等学者提出了“反馈神经网络模型”等。
20世纪80年代到90年代,人工神经网络进入了快速发展阶段。
1992年,Yann LeCun等人提出了用于图像识别的反向传播神经网络,实现了在MNIST数据集上的手写数字识别,开始了卷积神经网络(CNN)的时代。
20世纪90年代后期,支持向量机和其他新兴技术使得“智能”系统的应用迅猛发展。
二、人工神经网络的工作原理人工神经网络的工作原理仿照人类大脑神经元的工作原理,由神经元、突触和神经网络三个组成部分组成。
神经元是神经网络的基本单位,每个神经元接收到其他神经元传来的信息,并通过一个激活函数处理这些信息,以确定继续向下传递的信息是否被激活。
突触是连接不同神经元之间的通道。
人工神经网络的目的是通过训练模型对输入数据进行分类、预测、识别等操作。
训练模型的过程一般可分为前馈和反向传播两个过程。
前馈指将输入信号在神经网络中传递至输出端的过程,反向传播则是通过误差反向传递回神经网络中的每个神经元,并根据误差进行权重调整的过程。
三、人工神经网络在各领域中的应用1.机器学习人工神经网络是最为常见的机器学习算法之一。
在机器学习中,人工神经网络常被用于进行物体识别、分类和预测,这些任务包括模式识别、语音识别、手写文字识别等。
人工神经网络在机器学习中的应用
人工神经网络在机器学习中的应用随着科学技术的不断进步,计算机视觉、语音识别等人工智能领域的技术被广泛应用。
在这些领域中,人工神经网络是一种非常重要的计算工具。
人工神经网络简单理解就是一个由多个神经元组成的网络。
它可以用来训练机器学习分类器,大大提高分类的准确性。
本文将从神经网络的基本原理、训练方法及其在机器学习中的应用方面进行探讨。
一、人工神经网络的基本原理神经网络的模型模拟的是人脑神经元之间的联系。
神经元的输出是由多个输入信号的加权和再加上一个偏置项的和经过一个非线性激励函数产生的。
因此,神经网络可以将多个输入的信号通过计算后输出一个预测结果。
神经网络一般由多个层次组成,包括输入层、隐含层和输出层。
输入层负责接受数值型的输入数据,隐含层负责将输入层的数据进行处理后通过激励函数生成新的特征,输出层负责产生最终的输出结果。
在神经网络中,两个不同的神经元之间的连接可以有不同的权重,所有神经元的权重都可以用来表示不同的类别之间的不同特征。
在网络训练时,神经元的权重会不断更新,以得到更加准确的分类结果。
二、人工神经网络的训练方法神经网络的训练是通过不停地试错来进行的,可以用监督学习或者无监督学习的方式进行。
监督学习的方法需要一组已知的训练数据集,包括输入数据和标签数据。
同时,无监督学习只需输入数据集的特征值,不需要设置标签数据集。
在训练的过程中,模型通过反向传播算法来逐渐优化权重,以达到使误差减小的最终目标。
具体步骤如下:1. 前向传播:将输入信号沿着神经网络的连接传递,直到输出层;2. 损失函数计算:计算当前预测结果和实际结果之间的误差;3. 反向传播:将误差分发到前一层,并得出每层的误差量;4. 更新权重:根据误差量和梯度下降法,更新神经元之间的权重和偏置项;5. 重复执行前两步操作,直到误差最小。
三、人工神经网络的机器学习应用神经网络的优势在于它可以建立高效的多元分类器,并具有计算效率高、适用性广、容易调整参数等优点。
人工智能发展及应用论文
人工智能发展及应用论文随着科技的迅猛发展,人工智能(Artificial Intelligence, AI)已成为当今世界最为活跃的科技领域之一。
人工智能的发展不仅推动了经济的增长,也深刻地影响着人类社会的各个方面。
本文旨在探讨人工智能的发展历程、当前应用以及未来的发展趋势。
引言人工智能,作为一门新兴的交叉学科,其核心在于模拟、延伸和扩展人的智能。
自20世纪50年代人工智能概念的提出,到21世纪初的深度学习革命,人工智能已经经历了多次重要的发展阶段。
本文将首先回顾人工智能的发展历程,然后分析其在不同领域的应用现状,最后探讨人工智能的未来趋势及其可能带来的影响。
人工智能的发展历程人工智能的发展可以大致分为几个阶段。
首先是1956年的达特茅斯会议,这标志着人工智能学科的正式诞生。
随后是20世纪70年代和80年代的专家系统阶段,专家系统能够模拟专家的决策过程,解决特定领域的复杂问题。
然而,由于知识获取的瓶颈,专家系统的发展受到了限制。
进入90年代,随着计算能力的增强和算法的改进,人工智能开始进入机器学习阶段。
机器学习通过数据驱动的方式,使得计算机能够从大量数据中学习并做出预测或决策。
21世纪初,深度学习的出现,特别是卷积神经网络(CNN)在图像识别领域的成功应用,标志着人工智能进入了一个新的发展阶段。
人工智能的应用现状人工智能的应用领域非常广泛,包括但不限于以下几个方面:1. 医疗健康:AI在医疗领域的应用包括辅助诊断、疾病预测、药物研发等。
通过深度学习算法,AI能够分析医学影像,辅助医生进行更准确的诊断。
2. 自动驾驶:自动驾驶技术是人工智能领域的热点之一。
通过感知环境、决策规划和控制执行,自动驾驶汽车能够在复杂的交通环境中安全行驶。
3. 智能制造:在制造业中,AI技术被用于优化生产流程、提高生产效率和产品质量。
智能机器人能够执行重复性高、危险或精度要求高的任务。
4. 金融服务:AI在金融服务领域的应用包括风险管理、信贷审批、量化交易等。
人工神经网络的发展及应用
生理 学 上 的 神 经 元 就 是 指 神 经 细 牖 。 经 网 络 中 的 表述 , 此 开 创 了 对 神 经 网 络 从
它 由细 胞 体 、 突 、 突 和 突 触 四 部 分 组 的 理 论 研 究 。他 们 首 先 提 了神 经 元 的 数 学 揭开神经 网络计算机研 制序 幕的是 美国加 树 轴 成 。树 突 负 责 信 息 箱 人 . 突 用 来 输 出 。 模 型 . 称 为 MP模 型 。1 4 轴 简 9 9年 , 心理 学 家 州 理 工 学 院 生 物 物 理 学 家 J 。 H pid 。J o fl e
果 是 学 习 向 量 量 化 L R( e r ig Vetr V L ann co
1 4 年 美 国 心 理 学 家 Warn Quni t n 网 络 。 两 种 模 型 都 发 展 出 了 93 re S a tai ) z o
应 非 线性 动 态 系统 。神 经 元 之 间 的连 接 方 Moul h与数学家 Wae is  ̄l c o l r Pt 台作 , t H t 用 各 自的 人 工 神经 元 系 统 AN 。 S 式 不 同 , 经 网络 的结 构 形 态 也 就 不 同 。 神 逻 辑 的 数 学 工 具 , 究 客 观 事 件 在 形 式 神 研 ( )8 3 0年 代 的 新 高 潮 AN N研 究 第 二 次 高 潮 到 来 的 标 志 和
人 工神 经 网络 的研 究 有 半 个 世 纪 的 历 出 了各 自的联 想 技 术 。A dr n的 模 型 后 n eo s
能 , 及若 干 基 本 特 性 的 某 种 理 论 抽 象 、 以 简 史 , 中间 有 过 很 长 时 期 的 低 潮 期 大 体 上 来 经 过 发 展 . 为 盘 中 脑 状 态 B [( ri— 称 S3B a n 化 和 模拟 而构 成 的 一 种 信 息 处 理 系 统 。 从 分 为 四个 阶段 ” 系统 观点 看 , 工 神 经 网 络 是 由 大 量 神经 人 元 通 过极 其 丰 富 和 完善 的 联 接 而 成 的 自适 ( )早 期 阶 段 1 sa —i t e n—a o ) t —B x 。Koo e h nn最 著 名 的 成
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。