2015加拿大国际高中数学竞赛试题I

合集下载

高中数学奥林匹克竞赛试题及答案

高中数学奥林匹克竞赛试题及答案

高中数学奥林匹克竞赛试题及答案1 求一个四位数,它的前两位数字及后两位数字分别相同,而该数本身等于一个整数的平方.1956年波兰.x=1000a+100a+10b+b=11(100a+b)其中0<a?9,0?b?9.可见平方数x被11整除,从而x被112整除.因此,数100a+b=99a+(a+b)能被11整除,于是a+b能被11整除.但0<a+b?18,以a+b=11.于是x=112(9a+1),由此可知9a+1是某个自然数的平方.对a=1,2,…,9逐一检验,易知仅a=7时,9a+1为平方数,故所求的四位数是7744=882.2 假设n是自然数,d是2n2的正约数.证明:n2+d不是完全平方.1953年匈牙利.【证设2n2=kd,k是正整数,如果n2+d是整数x的平方,那么k2x2=k2(n2+d)=n2(k2+2k)但这是不可能的,因为k2x2与n2都是完全平方,而由k2<k2+2k<(k +1)2得出k2+2k不是平方数.3 试证四个连续自然数的乘积加上1的算术平方根仍为自然数.1962年上海高三决赛题.【证】四个连续自然数的乘积可以表示成n(n+1)(n+2)(n+3)=(n2+3n)(n2+8n+2)=(n2+3n+1)2-1因此,四个连续自然数乘积加上1,是一完全平方数,故知本题结论成立.4 已知各项均为正整数的算术级数,其中一项是完全平方数,证明:此级数一定含有无穷多个完全平方数.1963年俄【证】设此算术级数公差是d,且其中一项a=m2(m∈N).于是a+(2km +dk2)d=(m+kd)2对于任何k∈N,都是该算术级数中的项,且又是完全平方数.5 求一个最大的完全平方数,在划掉它的最后两位数后,仍得一个完全平方数(假定划掉的两个数字中的一个非零).1964年俄.【解】设n2满足条件,令n2=100a2+b,其中0<b<100.于是n>10a,即n?10a+1.因此b=n2100a2?20a+1由此得 20a+1<100,所以a?4.经验算,仅当a=4时,n=41满足条件.若n>41则n2-402?422-402>100.因此,满足本题条件的最大的完全平方数为412=1681.6 求所有的素数p,使4p2+1和6p2+1也是素数.1964年波兰【解】当p≡±1(mod 5)时,5|4p2+1.当p≡±2(mod 5)时,5|6p2+1.所以本题只有一个解p=5.7 证明存在无限多个自然数a有下列性质:对任何自然数n,z=n4+a 都不是素数.1969德国.【证】对任意整数m>1及自然数n,有n4+4m4=(n2+2m2)2-4m2n2=(n2+2mn+2m2)(n2-2mn+2m2)而 n2+2mn+2m2>n2-2mn+2m2=(n-m)2+m2?m2>1故n4+4m4不是素数.取a=4224,4234,…就得到无限多个符合要求的a.8 将某个17位数的数字的顺序颠倒,再将得到的数与原来的数相加.证明:得到的和中至少有一个数字是偶数.1970年苏【证】假设和的数字都是奇数.在加法算式中,末一列数字的和d+a 为奇数,从而第一列也是如此,因此第二列数字的和b+c?9.于是将已知数的前两位数字a、b与末两位数字c、d去掉,所得的13位数仍具有性质:将它的数字颠倒,得到的数与它相加,和的数字都是奇数.照此进行,每次去掉首末各两位数字.最后得到一位数,它与自身相加显然是偶数.矛盾!9 证明:如果p和p+2都是大于3的素数,那么6是p+1的因数.1973年加拿大【证】因p是奇数,2是p+1的因数.因为p、p+1、p+2除以3余数不同,p、p+2都不被3整除,所以p+1被3整除.10 证明:三个不同素数的立方根不可能是一个等差数列中的三项(不一定是连续的).美国1973年【证】设p、q、r是不同素数.假如有自然数l、m、n和实数a、d,消去a,d,得化简得(m-n)3p=(l-n)3q+(m-l)3r+3(l-n)(m11 设n为大于2的已知整数,并设V n为整数1+kn的集合,k=1,2,….数m∈V n称为在V n中不可分解,如果不存在数p,q∈V n使得pq=m.证明:存在一个数r∈V n可用多于一种方法表达成V n中不可分解的元素的乘积.1977年荷兰【证】设a=n-1,b=2n-1,则a2、b2、a2b2都属于V n.因为a2<(n+1)2,所以a2在V n中不可分解.式中不会出现a2.r=a2b2有两种不同的分解方式:r=a22b2=a2…(直至b2分成不可分解的元素之积)与r=ab2ab=…(直至ab分成不可分解的元素之积),前者有因数a2,后者没有.12 证明在无限整数序列10001,100010001,1000100010001,…中没有素数.注意第一数(一万零一)后每一整数是由前一整数的数字连接0001而成.1979年英国【证】序列1,10001,100010001,…,可写成1,1+104,1+104+108,…一个合数.即对n>2,a n均可分解为两个大于1的整数的乘积,而a2=10001=137273.故对一切n?2,a n均为合数.13 如果一个自然数是素数,并且任意地交换它的数字,所得的数仍然是素数,那么这样的数叫绝对素数.求证:绝对素数的不同数字不能多于3个.1984年苏【证】若不同数字多于3个,则这些数字只能是1、3、7、9.不难验证1379、3179、9137、7913、1397、3197、7139除以7,余数分别为0、1、2、3、4、5、6.因此对任意自然数M,1043M与上述7个四位数分别相加,所得的和中至少有一个被7整除,从而含数字1、3、7、9的数不是绝对素数.14正整数d不等于2、5、13.证在集合{2,5,13,d}中可找到两个不同元素a、b,使得ab-1不是完全平方数.1986年德【证】证明2d-1、5d-1、13d-1这三个数中至少有一个不是完全平方数即可.用反证法,设5d-1=x2 5d-1=y2 13d -1=z2 其中x、y、z是正整数.x是奇数,设x=2n-1.代入有2d-1=(2n-1)2即d=2n2-2n+1 说明d也是奇数.y、Z是偶数,设y=2p,z=2q,代入(2)、(3)相减后除以4有2d=q2-p2=(q+p)(q-p)因2d是偶数,即q2-p2是偶数,所以p、q同为偶数或同为奇数,从而q+p和q-p都是偶数,即2d是4的倍数,因此d是偶数.这与d是奇数相矛盾,故命题正确.15 .求出五个不同的正整数,使得它们两两互素,而任意n(n?5)个数的和为合数.1987年全苏【解】由n个数a i=i2n!+1,i=1,2,…,n组成的集合满足要求.因为其中任意k个数之和为m2n!+k(m∈N,2?k ?n)由于n!=1222…2n是k的倍数,所以m2n!+k是k的倍数,因而为合数.对任意两个数a i与a j(i>j),如果它们有公共的质因数p,则p也是a i-a j=(i-j)n!的质因数,因为0<i-j<n,所以p也是n!的质因数.但a i与n!互质,所以a i与a j不可能有公共质因数p,即a i、a j(i≠j)互素.令n=5,便得满足条件的一组数:121,241,361,481,601.16 n?2,证:如果k2+k+n对于整数k素数.1987苏联(1)若m?p,则p|(m-p)2+(m-p)+n.又(m-p)2+(m-p)+n?n>P,这与m是使k2+k+n为合数的最小正整数矛盾.(2)若m?p-1,则(p-1-m)2+(p-1-m)+n=(p-1-m)(p-m)+n被p整除,且(p-1-m)2+(p-1-m)+n?n>p因为(p-1-m)2+(p-1-m)+n为合数,所以p-1-m?m,p?2m+1由得4m2+4m+1?m2+m+n即3m2+3m+1-n?0由此得17 正整数a与b使得ab+1整除a2+b2.求证:(a2+b2)/(ab+1)是某个正整数的平方.1988德国a2-kab+b2=k (1)显然(1)的解(a,b)满足ab?0(否则ab?-1,a2+b2=k(ab+1)?0).又由于k不是完全平方,故ab>0.设(a,b)是(1)的解中适合a>0(从而b>0)并且使a+b最小的那个解.不妨设a?b.固定k与b,把(1)看成a的二次方程,它有一根为a.设另一根为a′,则由韦达定理a′为整数,因而(a′,b)也是(1)的解.由于b>0,所以a′>0.但由(3)从而a′+b<a+b,这与a+b的最小性矛盾,所以k必为完全平方. 18 求证:对任何正整数n,存在n个相继的正整数,它们都不是素数的整数幂.1989年瑞典提供.【证】设a=(n+1)!,则a2+k(2?k?n+1),被k整除而不被k2整除(因为a2被k2整除而k不被k2整除).如果a2+k是质数的整数幂p l,则k=p j(l、j都是正整数),但a2被p2j整除因而被p j+1整除,所以a2+k被p j整除而不被p j+1整除,于是a2+k=p j=k,矛盾.因此a2+k(2?k?n+1)这n个连续正整数都不是素数的整数幂. 19 n为怎样的自然数时,数32n+1-22n+1-6n是合数?1990年全苏解32n+1-22n+1-6n=(3n-2n)(3n+1+2n+1)当n>l时,3n -2n>1,3n+1+2n+1>1,原数是合数.当n=1时,原数是13 20 设n是大于6的整数,且a1、a2、…、a k是所有小于n且与n互素的自然数,如果a2-a1=a3-a2=…=a k-a k-1>0求证:n或是素数或是2的某个正整数次方.1991年罗马尼亚.证由(n-1,n)=1,得a k=n-1.令d=a2-a1>0.当a2=2时,d=1,从而k=n-1,n与所有小于n的自然数互素.由此可知n是素数.当a2=3时,d=2,从而n与所有小于n的奇数互素.故n是2的某个正整数次方.设a2>3.a2是不能整除n的最小素数,所以2|n,3|n.由于n-1=a k=1+(k-1)d,所以3d.又1+d=a2,于是31+d.由此可知3|1+2d.若1+2d<n,则a3=1+2d,这时3|(a3,n).矛盾.若1+2d?n,则小于n且与n互素自然数的个数为2.设n=2m(>6).若m为偶数,则m+1与n互质,若m为奇数,则m+2与m互质.即除去n-1与1外、还有小于n且与n互质的数.矛盾.综上所述,可知n或是素数或是2的某个正整数次方.21 试确定具有下述性质的最大正整数A:把从1001至2000所有正整数任作一个排列,都可从其中找出连续的10项,使这10项之和大于或等于A.1992年台北数学奥林匹克【解】设任一排列,总和都是1001+1002+…+2000=1500500,将它分为100段,每段10项,至少有一段的和?15005,所以A?15005另一方面,将1001~2000排列如下:2000 1001 1900 1101 18001201 1700 1301 1600 14011999 1002 1899 1102 17991202 1699 1302 1599 1402 ………………1901 1100 1801 1200 17011300 1601 1400 1501 1300并记上述排列为a1,a2,…,a2000(表中第i行第j列的数是这个数列的第10(i-1)+j项,1?i?20,1?j?10)令S i=a i+a i+1+…+a i+9(i=1,2,…,1901)则S1=15005,S2=15004.易知若i为奇数,则S i=15005;若i为偶数,则S i=15004.综上所述A=15005.22 相继10个整数的平方和能否成为完全平方数?1992年友谊杯国际数学竞赛七年级【解】(n+1)2+(n+2)2+…+(n+10)2=10n2+110n+385=5(2n2+22n+77)不难验证n≡0,1,-1,2,-2(mod 5)时,均有2n2+22n+77≡2(n2+n+1)0(mod 5)所以(n+1)2+(n+2)2+…+(n+10)2不是平方数,23 是否存在完全平方数,其数字和为1993?1993年澳门数学奥林匹克第二轮【解】存在,取n=221即可.24 能表示成连续9个自然数之和,连续10个自然数之和,连续11个自然数之和的最小自然数是多少?1993年美国数学邀请赛【解】答495.连续9个整数的和是第5个数的9倍;连续10个整数的和是第5项与第6项之和的5倍;连续11个整数的和是第6项的11倍,所以满足题目要求的自然数必能被9、5、11整除,这数至少是495.又495=51+52+…+59=45+46+…+54=40+41+…+5025 如果自然数n使得2n+1和3n+1都恰好是平方数,试问5n+3能否是一个素数?1993年全俄数学奥林匹克【解】如果2n+1=k2,3n+1=m2,则5n+3=4(2n+1)-(3n+1)=4k2-m2=(2k+m)(2k-m).因为5n+3>(3n+1)+2=m2+2>2m+1,所以2k-m≠1(否则5n+3=2k+m=2m+1).从而5n+3=(2k +m)(2k-m)是合数.26 设n是正整数.证明:2n+1和3n+1都是平方数的充要条件是n+1为两个相邻的平方数之和,并且为一平方数与相邻平方数2倍之和.1994年澳大利亚数学奥林匹克【证】若2n+1及3n+1是平方数,因为2(2n+1),3(3n+1),可设2n+1=(2k+1)2,3n+1=(3t±1)2,由此可得n+1=k2+(k+1)2,n+1=(t±1)2+2t2反之,若n+1=k2+(k+1)2=(t±1)2+2t2,则2n+1=(2k+1)2,3n+1=(3t±1)2从而命题得证.27 设a、b、c、d为自然数,并且ab=cd.试问a+b+c+d能否为素数.1995年莫斯科数学奥林匹克九年级题【解】由题意知正整数,将它们分别记作k与l.由。

AMC Intermediate 2015AMC-D:9-10年级中文历年真题

AMC Intermediate 2015AMC-D:9-10年级中文历年真题

2015INTERMEDIATE DIVISIONAUSTRALIAN S CHOOL YEARS 9 and 10TIME ALLOWED: 75 MINUTESINSTRUCTIONS AND INFORMATIONGENERAL1. Do not open the booklet until told to do so by your teacher.2. NO calculators, maths stencils, mobile phones or other calculating aids are permitted. Scribbling paper, graphpaper, ruler and compasses are permitted, but are not essential. 3. Diagrams are NOT drawn to scale. They are intended only as aids.4. There are 25 multiple-choice questions, each with 5 possible answers given and 5 questions that require awhole number answer between 0 and 999. The questions generally get harder as you work through the paper. There is no penalty for an incorrect response.5. This is a competition not a test; do not expect to answer all questions. You are only competing against yourown year in your own country/Australian state so different years doing the same paper are not compared. 6. Read the instructions on the answer sheet carefully. Ensure your name, school name and school year areentered. It is your responsibility to correctly code your answer sheet. 7. When your teacher gives the signal, begin working on the problems.THE ANSWER SHEET 1. Use only lead pencil.2. Record your answers on the reverse of the answer sheet (not on the question paper) by FULLY colouring thecircle matching your answer.3. Your answer sheet will be scanned. The optical scanner will attempt to read all markings even if they are inthe wrong places, so please be careful not to doodle or write anything extra on the answer sheet. If you want to change an answer or remove any marks, use a plastic eraser and be sure to remove all marks and smudges.INTEGRITY OF THE COMPETITIONThe AMT reserves the right to re-examine students before deciding whether to grant official status to their score.©AMT P ublishing 2015 AMTT liMiTed Acn 083 950 341A ustrAliAn M AtheMAtics c oMpetitionsponsored by the c oMMonweAlth b AnkAn AcTiviTy of The AusTrAliAn MATheMATics TrusTNAMEYEA TEACHE RA u s T r A l i A n M A T h e M A T i c s T r u s TIntermediate Division Questions1to10,3marks each1.What is the area of this triangle in squarecentimetres?(A)10(B)12(C)14(D)7(E)62cm2.A movie lasts for213hours.The movie is shown in two equal sessions.For how many minutes does each session last?(A)85(B)70(C)80(D)65(E)753.If p=11and q=−4,then p2−q2equals(A)105(B)137(C)117(D)115(E)944.2015−20.15equals(A)1984.85(B)1995.15(C)1994.85(D)1995.85(E)2035.155.What is the value of2015twenty-cent coins?(A)$2015(B)$107.50(C)$17.50(D)$403(E)$436.Ana,Ben,Con,Dan and Eve are sitting around a ta-ble in that order.Ana calls out the number1,thenBen calls out the number2,then Con calls out thenumber3,and so on.After a person calls out a num-ber,the next person around the table calls out thenext number.Anyone who calls out a multiple of7must immediatelyleave the table.Who is the last person remaining at the table?(A)Ana(B)Ben(C)Con(D)Dan(E)Eve7.On a farm the ratio of horses to cows is3:2and ratio of cows to goats is4:3.The ratio of goats to horses is(A)5:7(B)3:8(C)3:5(D)5:18(E)1:28.Warren the window washer starts on the38thfloor of a building that has12windowsperfloor.He washes all of the windows on eachfloor before moving down to thefloor below.Whichfloor is Warren on after he has washed141windows?(A)25th(B)24th(C)28th(D)27th(E)26th9.A packet of lollies contains5blue lollies,15yellow lollies and some red lollies.One-third of the lollies are red.What fraction of the lollies are yellow?(A)13(B)56(C)12(D)16(E)2310.The diagram shows two small squares in opposite corners ofa large square.The squares have sides of length1cm,2cmand7cm.What is the area of the shaded pentagon?(A)18cm2(B)16cm2(C)22cm2(D)24cm2(E)20cm2Questions 11to 20,4marks each11.Jenna measures three sides of a rectangle and gets a total of 80cm.Dylan measuresthree sides of the same rectangle and gets a total of 88cm.What is the perimeter of the rectangle?(A)112cm(B)132cm(C)96cm(D)168cm(E)156cm12.A bar-tailed godwit was recorded by satellite tag in 2007tohave flown 11500km in eight days.On average,approximately how many kilometres per hour is that?(A)120(B)6(C)1(D)24(E)6013.A cube has the letters A,C,M,T,H and S on its six faces.Here are two views ofthis cube.CMAA MTWhich one of the following could be a third view of the same cube?(A)MHT(B)ATC(C)T SC(D)HTA (E)SCM 14.Two ordinary dice are rolled.The two resulting numbers are multiplied together tocreate a score.The probability of rolling a score that is a multiple of six is(A)16(B)512(C)14(D)13(E)1218.A strip of paper1cm wide is folded4times to make a regular octagon as shown.If the ends of the strip meet exactly when folded,how many centimetres long is the strip?√2(B)8(C)4+4√2(D)16(E)16−4√2(A)819.The country of Numismatica has six coins of thefollowing denominations:1cent,2cents,4cents, 10cents,20cents and40cents.Using the coins in my pocket,I can pay exactly for any amount up to and including200cents.What is the smallest number of coins I could have?(A)12(B)10(C)11(D)9(E)820.What fraction of the large triangle is shaded?(A)16(B)13(C)49(D)12(E)25Questions21to25,5marks each21.A student noticed that in a list offive integers,the mean,median and mode wereconsecutive integers in ascending order.What is the largest range possible for these five integers?(A)5(B)9(C)8(D)7(E)622.The square P QRS has sides of length2units andJ is the midpoint of P S.The line QJ intersectsthe diagonal P R at L.The length of LP is(A)√23(B)√33(C)√22(D)2√33(E)2√23SQ211PRJ23.For each integer from0to999,Andr´e wrote down the sum of its digits.What is theaverage of the numbers that Andr´e wrote down?(A)13.5(B)15(C)12(D)12.5(E)10.524.Max’s journey around this grid starts on a grid pointon side AB.He visits a grid point on each of sides BC,CD and DA in order before returning to his starting point, forming a quadrilateral.Max does not visit corner points A,B,C or D.How many journeys are possible which are not rect-angles?(Note that a square is a rectangle.)(A)256(B)252(C)64(D)248(E)76C B25.It takes Nicolai one and a half hours to paint the walls of a room and two hours topaint the ceiling.Elena needs exactly one hour to paint the walls of the same room and one hour to paint the ceiling.If Nicolai and Elena work together,what is the shortest possible time in minutes in which they can paint the walls and the ceiling of the room?(A)72(B)60(C)83(D)75(E)76For questions26to30,shade the answer as an integer from0to999in the space provided on the answer sheet.Question26is6marks,question27is7marks,question28is8marks, question29is9marks and question30is10marks.26.Mike has2015matches and uses them to builda triangular pattern like the one shown,but asbig as possible.How many matches does he haveleft over?27.How many positive integers n less than 2015have the property that 13+1ncan besimplified to a fraction with denominator less than n ?28.A rectangle has all sides of integer length.When 3units are added to the heightand 2units to the width,the area of the rectangle is tripled.What is the sum of the original areas of all such rectangles?29.At Berracan station,northbound trains arrive every three minutes starting at noonand finishing at midnight,while southbound trains arrive every five minutes starting at noon and finishing at midnight.Each day,I walk to Berracan station at a random time in the afternoon and wait for the first train in either direction.On average,how many seconds should I expect to wait?30.In a 14×18rectangle ABCD ,points P,Q,R and Sare chosen,one on each side of ABCD as pictured.The lengths AP ,P B ,BQ ,QC ,CR ,RD ,DS and SA are all positive integers and P QRS is a rectangle.What is the largest possible area that P QRS could have?DCB AQSIntermediate 2015 Answers Question Answer 1B2B3A4C5D6D7E8D9C10C11A12E13A14B15E16C17E18C19B20B21D22E23A24D25A2637272242844297430150。

欧几里得数学竞赛_

欧几里得数学竞赛_

欧几里得数学竞赛_摘要:I.欧几里得数学竞赛概述- 竞赛起源与发展- 竞赛难度与影响力II.欧几里得数学竞赛适合人群- 参赛对象与报名方式- 竞赛对申请大学的帮助III.欧几里得数学竞赛考试内容与形式- 竞赛知识点覆盖范围- 考试时间与题型- 评分标准与奖项设置IV.欧几里得数学竞赛备考策略- 备考时间安排- 推荐教材与学习资源- 真题练习与模拟考试V.欧几里得数学竞赛在中国的发展- 我国学生参赛情况- 相关培训机构与课程- 对我国数学教育的启示与影响正文:欧几里得数学竞赛(Euclid Mathematics Contest)是由加拿大滑铁卢大学(University of Waterloo)数学与计算机学院主办的面向全球高中生的数学竞赛,被誉为数学界的托福。

竞赛始于1963年,每年有来自10多个国家和地区、1850多所学校的2万多名学生参加。

该竞赛在数学界中已经得到广泛认可,对学生的申请大学具有很大的帮助。

欧几里得数学竞赛适合人群广泛,参赛对象为全球各地的高中生,报名方式一般由学校统一组织。

竞赛难度较高,知识点覆盖范围广泛,对学生的逻辑思维能力和数学素养有很高的要求。

在我国,许多学生通过参加欧几里得数学竞赛,提高了自身的数学能力,为申请国内外知名大学提供了有力的砝码。

欧几里得数学竞赛的考试内容主要包括代数、几何、组合、数论等多个方面,考试形式为笔试,分为简答题和解答题。

评分标准根据解题过程的准确性、完整性和创新性来评判,奖项分为金、银、铜三个等级。

对于如何备考欧几里得数学竞赛,建议学生合理安排时间,提前准备。

推荐使用一些经典的数学竞赛教材和在线学习资源,如《数学竞赛题型解析》、《欧几里得数学竞赛真题详解》等。

在备考过程中,要注重真题练习和模拟考试,以检验自己的学习效果,逐步提高自己的解题能力。

近年来,随着我国学生对国际数学竞赛的热情逐渐高涨,欧几里得数学竞赛在我国也得到了广泛关注。

越来越多的学生通过参加欧几里得数学竞赛,提升了自己的数学素养,为我国数学教育的发展带来了新的启示和影响。

caribou数学竞赛介绍

caribou数学竞赛介绍

caribou数学竞赛介绍
Caribou数学竞赛是一项面向学生的国际性数学竞赛,旨在激发学生对数学的兴趣,并提高他们的数学技能和解决问题的能力。

该竞赛由加拿大Caribou Mathematics Competition组织,每年举办一次。

Caribou数学竞赛分为多个级别,适合不同年级的学生参与,从幼儿园到高中都有相应的竞赛级别。

竞赛题目设计丰富多样,包括选择题、填空题、解答题等形式,涵盖了各个数学领域的知识和技能。

参加Caribou数学竞赛有许多好处。

首先,它可以培养学生的数学思维和解决问题的能力。

通过面对不同类型的数学问题,学生需要思考和分析,找到解题的方法和策略。

其次,竞赛可以激发学生对数学的兴趣和热爱,让他们深入了解数学的魅力和应用。

此外,竞赛还提供了一个与全球各地学生交流和比较的平台,激发学生的竞争意识和合作精神。

参加Caribou数学竞赛需要学校或个人报名,并按照竞赛规定的时间和方式进行答题。

竞赛结果将根据学生的得分和排名进行评定,并颁发相应的证书和奖励。

总而言之,Caribou数学竞赛是一项激发学生数学兴趣和提高数学能力的国际性竞赛,为学生提供了锻炼和展示自己数学才能的机会。

通过参与竞赛,学生可以发展数学思维,提高解决问题的能力,并与来自世界各地的学生交流和比较。

2015加拿大国际高中数学竞赛试题I

2015加拿大国际高中数学竞赛试题I

Canadian Intermediate Mathematics Contest NOTE:1.Please read the instructions on the front cover of this booklet.2.Write solutions in the answer booklet provided.3.Express calculations and answers as exact numbers such as π+1and √2,etc.,rather than as4.14...or 1.41...,except where otherwise indicated.4.While calculators may be used for numerical calculations,other mathematical steps must be shown and justified in your written solutions and specific marks may be allocated for these steps.For example,while your calculator might be able to find the x -intercepts of the graph of an equation like y =x 3−x ,you should show the algebraic steps that you used to find these numbers,rather than simply writing these numbers down.5.Diagrams are not drawn to scale.They are intended as aids only.6.No studentmay write both the Canadian Senior Mathematics Contest and the Canadian Intermediate Mathematics Contest in the same year.PART AFor each question in Part A,full marks will be given for a correct answer which is placed in the box.Part marks will be awarded only if relevant work is shown in the space provided in the answer booklet.1.Stephanie has 1000eggs to pack into cartons of 12eggs.While packingthe eggs,she breaks n eggs.The unbroken eggs completely fill a collection of cartons with no eggs left over.If n <12,what is the value of n ?2.In the diagram,ABCD is a square with side length 4.Points P ,Q ,R ,and S are the midpoints of the sides ofthe square,as shown.What is the area of the shadedregion?3.In the diagram,line segments AB ,CD and EF parallel,and points A and E lie on CG and respectively.If ∠GAB =100◦,∠CEF =30◦,∠ACE =x ◦,what is the value of x ?H4.If 12x =4y +2,determine the value of the expression 6y −18x +7.5.Determine the largest positive integer n with n <500for which 6048(28n )is a perfect cube (that is,it is equal to m 3for some positive integer m ).6.A total of2015tickets,numbered1,2,3,4,...,2014,2015,are placed in an emptybag.Alfie removes ticket a from the bag.Bernice then removes ticket b from the bag.Finally,Charlie removes ticket c from the bag.They notice that a<b<c and a+b+c=2018.In how many ways could this happen?PART BFor each question in Part B,your solution must be well organized and contain words of explanation or justification.Marks are awarded for completeness,clarity,and style of presentation.A correct solution,poorly presented,will not earn full marks.1.At Cornthwaite H.S.,many students enroll in an after-school arts program.Theprogram offers a drama class and a music class.Each student enrolled in the program is in one class or both classes.(a)This year,41students are in the drama class and28students are in the musicclass.If15students are in both classes,how many students are enrolled in theprogram?(b)In2014,a total of80students enrolled in the program.If3x−5students werein the drama class,6x+13students were in the music class,and x studentswere in both classes,determine the value of x.(c)In2013,half of the students in the drama class were in both classes and one-quarter of the students in the music class were in both classes.A total ofN students enrolled in the program in2013.If N is between91and99,inclusive,determine the value of N.2.Alistair,Conrad,Emma,and Salma compete in a three-sport race.They each swim2km,then bike40km,andfinally run10km.Also,they each switch instantly from swimming to biking and from biking to running.(a)Emma has completed113of the total distance of the race.How many kilometershas she travelled?(b)Conrad began the race at8:00a.m.and completed the swimming portion in30minutes.Conrad biked12times as fast as he swam,and ran3times as fast as he swam.At what time did hefinish the race?(c)Alistair and Salma also began the race at8:00a.m.Alistairfinished theswimming portion in36minutes,and then biked at28km/h.Salmafinished the swimming portion in30minutes,and then biked at24km/h.Alistair passed Salma during the bike portion.At what time did Alistair pass Salma?2015Canadian Intermediate Mathematics Contest (English)3.Heron’s Formula says that if a triangle has side lengths a ,b and c ,then its area equals s (s −a )(s −b )(s −c ),where s =12(a +b +c )is called the semi-perimeter ofthe triangle.A B Ca b c(a)In the diagram, ABC has side lengthsAB =20,BC =99,and AC =101.If his the perpendicular distance from A toBC ,determine the value of h .A BC 9910120h (b)In the diagram,trapezoid P QRS hasP S parallel to QR .Also,P Q =7,QR =40,RS =15,and P S =20.Ifx is the distance between parallel sidesP S and QR ,determine the value of x .(c)The triangle with side lengths 3,4and 5has the following five properties:•its side lengths are integers,•the lengths of its two shortest sides differ by one,•the length of its longest side and the semi-perimeter differ by one,•its area is an integer,and •its perimeter is less than 200.Determine all triangles that have thesefive properties.。

2015年AMC12B竞赛真题及答案

2015年AMC12B竞赛真题及答案

2015 AMC 12B竞赛真题Problem 1What is the value of ?Problem 2Marie does three equally time-consuming tasks in a row without taking breaks. She begins the first task at 1:00 PM and finishes the second task at 2:40 PM. When does she finish the third task?Problem 3Isaac has written down one integer two times and another integer three times. The sum of the five numbers is 100, and one of the numbers is 28. What is the other number?Problem 4David, Hikmet, Jack, Marta, Rand, and Todd were in a 12-person race with 6 other people. Rand finished 6 places ahead of Hikmet. Marta finished 1 place behind Jack. David finished 2 places behind Hikmet. Jack finished 2 places behind Todd. Todd finished 1 place behind Rand. Marta finished in 6th place. Who finished in 8th place?Problem 5The Tigers beat the Sharks 2 out of the 3 times they played. They then played more times, and the Sharks ended up winning at least 95% of all the games played. What is the minimum possible value for ?Problem 6Back in 1930, Tillie had to memorize her multiplication facts from to . The multiplication table she was given had rows and columns labeled with the factors, and the products formed the body of the table. To the nearest hundredth, what fraction of the numbers in the body of the table are odd?Problem 7A regular 15-gon has lines of symmetry, and the smallest positive angle for which it has rotational symmetry is degrees. What is ?Problem 8What is the value of ?Problem 9Larry and Julius are playing a game, taking turns throwing a ball at a bottle sitting on a ledge. Larry throws first. The winner is the first person to knock the bottle off the ledge. At each turn the probability that a player knocks the bottle off the ledgeis , independently of what has happened before. What is the probability that Larry wins the game?Problem 10How many noncongruent integer-sided triangles with positive area and perimeter less than 15 are neither equilateral, isosceles, nor right triangles?Problem 11The line forms a triangle with the coordinate axes. What is the sum of the lengths of the altitudes of this triangle?Problem 12Let , , and be three distinct one-digit numbers. What is the maximum value of the sum of the roots of the equation ?Problem 13Quadrilateral is inscribed in a circle withand . What is ?Problem 14A circle of radius 2 is centered at . An equilateral triangle with side 4 has a vertex at . What is the difference between the area of the region that lies inside the circle but outside the triangle and the area of the region that lies inside the triangle but outside the circle?Problem 15At Rachelle's school an A counts 4 points, a B 3 points, a C 2 points, and a D 1 point. Her GPA on the four classes she is taking is computed as the total sum of points divided by 4. She is certain that she will get As in both Mathematics andScience, and at least a C in each of English and History. She thinks she has a chance of getting an A in English, and a chance of getting a B. In History, shehas a chance of getting an A, and a chance of getting a B, independently ofwhat she gets in English. What is the probability that Rachelle will get a GPA of at least 3.5?Problem 16A regular hexagon with sides of length 6 has an isosceles triangle attached to each side. Each of these triangles has two sides of length 8. The isosceles triangles are folded to make a pyramid with the hexagon as the base of the pyramid. What is the volume of the pyramid?Problem 17An unfair coin lands on heads with a probability of . When tossed times, theprobability of exactly two heads is the same as the probability of exactly three heads. What is the value of ?Problem 18For every composite positive integer , define to be the sum of the factors in the prime factorization of . For example, because the prime factorization of is , and . What is the range of the function , ?Problem 19In , and . Squares and are constructed outside of the triangle. The points , , , and lie on a circle. What is the perimeter of the triangle?Problem 20For every positive integer , let be the remainder obtained when is divided by 5. Define a functionrecursively as follows:What is ?Problem 21Cozy the Cat and Dash the Dog are going up a staircase with a certain number of steps. However, instead of walking up the steps one at a time, both Cozy and Dash jump. Cozy goes two steps up with each jump (though if necessary, he will just jump the last step). Dash goes five steps up with each jump (though if necessary, he will just jump the last steps if there are fewer than 5 steps left). Suppose that Dash takes 19 fewer jumps than Cozy to reach the top of the staircase. Let denote the sum of all possible numbers of steps this staircase can have. What is the sum of the digits of ?Problem 22Six chairs are evenly spaced around a circular table. One person is seated in each chair. Each person gets up and sits down in a chair that is not the same chair and is not adjacent to the chair he or she originally occupied, so that again one person is seated in each chair. In how many ways can this be done?Problem 23A rectangular box measures , where , , and are integers and. The volume and the surface area of the box are numerically equal. How many ordered triples are possible?Problem 24Four circles, no two of which are congruent, have centers at , , , and , and points and lie on all four circles. The radius of circle is times the radius of circle , and the radius of circle is times the radius of circle .Furthermore, and . Let be the midpoint of . What is ?Problem 25A bee starts flying from point . She flies inch due east to point . For, once the bee reaches point , she turns counterclockwise and then flies inches straight to point . When the bee reaches she isexactly inches away from , where , , and are positiveintegers and and are not divisible by the square of any prime. What is?2015 AMC 12B竞赛真题答案1.C2.b3.a4.b5.b6.a7.d8.d9.c 10.c 11.e 12.d 13.b 14.d 15.d 16.c 17.d 18.d 19.c 20.b 21.d 22.d 23.b 24.d 25.b。

2015全国高中数学联赛加试试题及答案(A卷)

2015全国高中数学联赛加试试题及答案(A卷)
1≤i ≤ n
n
i =1
n 个集 k
合(这里 X 表示有限集合 X 的元素个数) . 证明:不妨设 | A1 |= k .设在 A1 , A2 , , An 中与 A1 不相交的集合有 s 个,重新 记为 B1 , B2 , , Bs ,设包含 A1 的集合有 t 个,重新记为 C1 , C2 , , Ct .由已知条件,
A
三、 (本题满分 50 分) 如图,ABC 内接于圆 O ,P 为 上一点,点 K 在线段 AP 上,使得 BK 平分 ∠ABC .过 BC
K、P、C 三点的圆 Ω 与边 AC 交于点 D ,连接 BD 交圆 Ω
F K B E P
奥 林
设 A1 = {a1 , a2 , , ak } .在 A1 , A2 , , An 中除去 B1 , B2 , , Bs , C1 , C2 , , Ct 后,在剩
这里 S (m) 表示正整数 m 在二进制表示下的数码之和. 由 于 2 ( k −1) n +1 不 整 除

(kn)! (kn)! 等 价 于 ν2 ≤ (k − 1)n , 即 n! n!
kn −ν 2 ((kn)!) ≥ n −ν 2 (n !) , 进而由①知,本题等价于求所有正整数 k ,使得 S (kn) ≥ S (n) 对任意正整数 n 成立. 我们证明,所有符合条件的 k 为 2a (a = 0, 1, 2,) . 一方面,由于 S (2a n) = S (n) 对任意正整数 n 成立,故 k = 2a 符合条件.
2015 年全国高中数学联合竞赛加试(A 卷) 参考答案及评分标准
说明: 1. 评阅试卷时,请严格按照本评分标准的评分档次给分. 2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可 参考本评分标准适当划分档次评分, 10 分为一个档次,不要增加其他中间档次. 一、 ( 本 题 满 分 40 分 ) 设 a1 , a2 , , an (n ≥ 2) 是 实 数 , 证 明 : 可 以 选 取

cmo数学竞赛

cmo数学竞赛

cmo数学竞赛作为全球最具有影响力的数学竞赛之一,CMO(Canadian Mathematical Olympiad)也就是加拿大数学奥林匹克竞赛,一直以来都备受备受广大数学爱好者的热爱和追捧。

CMO数学竞赛自1980年开始举办,是加拿大最优秀的年度学科竞赛之一。

而作为具有世界影响力的竞赛,CMO每年都吸引着来自全球各地的顶尖数学选手参加。

一、竞赛概况竞赛背景CMO数学竞赛是由加拿大教育局主办并负责管理的,这项竞赛是有关方面为了鼓励学生热爱数学、提高学生的数学能力而举办的。

CMO竞赛难度极大,不仅需要参赛者具有超强的计算、分析和推理能力,更要求其具备优秀的解决问题的能力和出色的数学才能。

竞赛组织每年一次的CMO竞赛都会在加拿大各个省级地区进行,在每个地区中的具体机构组织相应的比赛活动,官方网站www.cms.math.ca 会发布该年度竞赛活动的时间、赛制和场地信息。

而整个竞赛过程,由加拿大数学协会负责组织和管理,同时全球各地的加拿大驻外使领馆也会在本地为参赛选手提供相应的帮助和协助。

竞赛难度在CMO数学竞赛中,因为竞赛的内容极为复杂,加上竞赛设置了多个级别,所以它的难度从高到低分别为:A级、B级、C级、D级。

而且不同等级的题目会出现不同的难度程度。

其中A级竞赛是难度最大的,除了试题难度更高之外,时间限制也更严格,竞赛难度被认为是全世界竞赛中最高的之一。

竞赛奖项在CMO数学竞赛中,除了最终的成绩排名之外,还设置了一些重要的荣誉奖项。

比如金、银、铜奖、优异奖、最佳小学奖和五获大赛奖等。

而且一些得奖的选手还可以被选拔参加国际数学奥林匹克竞赛。

二、竞赛流程参赛条件CMO竞赛面向各个年龄段的选手,可以是在校中小学生、初中生或者高中生,但是要求其具备较为扎实的数学基础和优秀的数学综合能力,一般来说,前三年的参赛者可以由学校老师推荐参加,而在高中阶段之后,他们可以直接通过自报名来参加竞赛。

初赛CMO数学竞赛的初赛主要是一个笔试环节,每组的试卷难度、长度、时间(参赛者有120分钟来完成试题)、总分和比例都不完全相同。

2015年AMC12B竞赛真题及问题详解

2015年AMC12B竞赛真题及问题详解

2015 AMC 12B竞赛真题Problem 1What is the value of ?Problem 2Marie does three equally time-consuming tasks in a row without taking breaks. She begins the first task at 1:00 PM and finishes the second task at 2:40 PM. When does she finish the third task?Problem 3Isaac has written down one integer two times and another integer three times. The sum of the five numbers is 100, and one of the numbers is 28. What is the other number?Problem 4David, Hikmet, Jack, Marta, Rand, and Todd were in a 12-person race with 6 other people. Rand finished 6 places ahead of Hikmet. Marta finished 1 place behind Jack. David finished 2 places behind Hikmet. Jack finished 2 places behind Todd. Todd finished 1 place behind Rand. Marta finished in 6th place. Who finished in 8th place?Problem 5The Tigers beat the Sharks 2 out of the 3 times they played. They then played more times, and the Sharks ended up winning at least 95% of all the games played. What is the minimum possible value for ?Problem 6Back in 1930, Tillie had to memorize her multiplication facts fromto . The multiplication table she was given had rows and columns labeled with the factors, and the products formed the body of the table. To the nearest hundredth, what fraction of the numbers in the body of the table are odd?Problem 7A regular 15-gon has lines of symmetry, and the smallest positive angle for which it has rotational symmetry is degrees. What is ?Problem 8What is the value of ?Problem 9Larry and Julius are playing a game, taking turns throwing a ball at a bottle sitting on a ledge. Larry throws first. The winner is the first person to knock the bottle off the ledge. At each turn the probability that a playerknocks the bottle off the ledge is , independently of what has happened before. What is the probability that Larry wins the game?Problem 10How many noncongruent integer-sided triangles with positive area and perimeter less than 15 are neither equilateral, isosceles, nor right triangles?Problem 11The line forms a triangle with the coordinate axes. What is the sum of the lengths of the altitudes of this triangle?Problem 12Let , , and be three distinct one-digit numbers. What is the maximum value of the sum of the roots of the equation?Problem 13Quadrilateral is inscribed in a circle withand . What is ?Problem 14A circle of radius 2 is centered at . An equilateral triangle with side4 has a vertex at . What is the difference between the area of the regionthat lies inside the circle but outside the triangle and the area of the region that lies inside the triangle but outside the circle?Problem 15At Rachelle's school an A counts 4 points, a B 3 points, a C 2 points, and a D 1 point. Her GPA on the four classes she is taking is computed as the total sum of points divided by 4. She is certain that she will get As in both Mathematics and Science, and at least a C in each of English and History.She thinks she has a chance of getting an A in English, and a chance of getting a B. In History, she has a chance of getting an A, and a chanceof getting a B, independently of what she gets in English. What is the probability that Rachelle will get a GPA of at least 3.5?Problem 16A regular hexagon with sides of length 6 has an isosceles triangle attached to each side. Each of these triangles has two sides of length 8. The isosceles triangles are folded to make a pyramid with the hexagon as the base of the pyramid. What is the volume of the pyramid?Problem 17An unfair coin lands on heads with a probability of . When tossed times,the probability of exactly two heads is the same as the probability of exactly three heads. What is the value of ?Problem 18For every composite positive integer , define to be the sum of the factors in the prime factorization of . For example, because the prime factorization of is , and . What is the range of the function , ?Problem 19In , and . Squares and are constructed outside of the triangle. The points , , , and lie on a circle. What is the perimeter of the triangle?Problem 20For every positive integer , let be the remainder obtained when is divided by 5. Define a functionrecursively as follows:What is ?Problem 21Cozy the Cat and Dash the Dog are going up a staircase with a certain number of steps. However, instead of walking up the steps one at a time, both Cozy and Dash jump. Cozy goes two steps up with each jump (though if necessary, he will just jump the last step). Dash goes five steps up with each jump (though if necessary, he will just jump the last steps if there are fewer than 5 steps left). Suppose that Dash takes 19 fewer jumps than Cozy to reach the top of the staircase. Let denote the sum of all possible numbers of steps this staircase can have. What is the sum of the digits of ?Problem 22Six chairs are evenly spaced around a circular table. One person is seated in each chair. Each person gets up and sits down in a chair that is not the same chair and is not adjacent to the chair he or she originally occupied, so that again one person is seated in each chair. In how many ways can this be done?Problem 23A rectangular box measures , where , , and are integers and. The volume and the surface area of the box are numerically equal. How many ordered triples are possible?Problem 24Four circles, no two of which are congruent, have centers at , , , and , and points and lie on all four circles. The radius of circleis times the radius of circle , and the radius of circle is timesthe radius of circle . Furthermore, and . Let be the midpoint of . What is ?Problem 25A bee starts flying from point . She flies inch due east to point . For , once the bee reaches point , she turns counterclockwise and then flies inches straight to point . When the bee reaches she is exactly inches away from , where , , andare positive integers and and are not divisible by the square of any prime. What is ?2015 AMC 12B竞赛真题答案1.C2.b3.a4.b5.b6.a7.d8.d9.c 10.c 11.e 12.d 13.b 14.d 15.d 16.c 17.d 18.d 19.c 20.b 21.d 22.d 23.b 24.d 25.b。

国际数学奥林匹克试题分类解析数论

国际数学奥林匹克试题分类解析数论

国际数学奥林匹克试题分类解析数论A2 整数的求解A2-001 哪些连续正整数之和为1000?试求出所有的解.【题说】 1963年成都市赛高二二试题 3.【解】设这些连续正整数共n个(n>1),最小的一个数为a,则有a+(a+1)+…+(a+n-1)=1000即n(2a+n-1)=2000若n为偶数,则2a+n-1为奇数;若n为奇数,则2a+n-1为偶数.因a≥1,故2a+n-1>n.同,故只有n=5,16,25,因此可能的取法只有下列三种:若n=5,则 a=198;若n=16,则 a=55;若n=25,则 a=28.故解有三种:198+199+200+201+20255+56+…+7028+29+…+52A2-002 N是整数,它的b进制表示是777,求最小的正整数b,使得N是整数的四次方.【题说】第九届(1977年)加拿大数学奥林匹克题3.【解】设b为所求最小正整数,则7b2+7b+7=x4素数7应整除x,故可设x=7k,k为正整数.于是有b2+b+1=73k4当k=1时,(b-18)(b+19)=0.因此b=18是满足条件的最小正整数.A2-003 如果比n个连续整数的和大100的数等于其次n个连续数的和,求n.【题说】 1976年纽约数学竞赛题 7.s2-s1=n2=100从而求得n=10.A2-004 设a和b为正整数,当a2+b2被a+b除时,商是q而余数是r,试求出所有数对(a,b),使得q2+r=1977.【题说】第十九届(1977年)国际数学奥林匹克题 5.本题由原联邦德国提供.【解】由题设a2+b2=q(a+b)+r(0≤r<a+b),q2+r=1977,所以q2≤1977,从而q≤44.若q≤43,则r=1977-q2≥1977-432=128.即(a+b)≤88,与(a+b)>r≥128,矛盾.因此,只能有q=44,r=41,从而得a2+b2=44(a+b)+41(a-22)2+(b-22)2=1009不妨设|a-22|≥|b-22|,则1009≥(a-22)2≥504,从而45≤a≤53.经验算得两组解:a=50,b=37及a=50,b=7.由对称性,还有两组解a=37,b=50;a=7,b=50.A2-005 数1978n与1978m的最后三位数相等,试求出正整数n和m,使得m+n 取最小值,这里n>m≥1.【题说】第二十届(1978年)国际数学奥林匹克题 1.本题由古巴提供.【解】由题设1978n-1978m=1978m(1978n-m-1)≡0(mod 1000)因而1978m≡2m×989m≡0(mod 8),m≥3又1978n-m≡1(mod 125)而 1978n-m=(1975+3)n-m≡3n-m+(n-m)3n-m-1·1975(mod 125)(1)从而3n-m≡1(mod 5),于是n-m是4的倍数.设n-m=4k,则代入(1)得从而k(20k+3)≡0(mod 25)因此k必须是25的倍数,n-m至少等于4×25=100,于是m+n的最小值为n-m+2m=106,m=3,n=103A2-006 求方程x3+x2y+xy2+y3=8(x2+xy+y2+1)的全部整数解x、y.【题说】 1980年卢森堡等五国国际数学竞赛题 6.本题由荷兰提供.于是 x3+x2y+xy2+y3=(x+y)3-2xy(x+y)=u3-2vux2+xy+y2=(x+y)2-xy=u2-v从而原方程变为2v(u-4)=u3-8u2-8 (2)因u≠4,故(2)即为根据已知,u-4必整除72,所以只能有u-4=±2α3β,其中α=0,1,2,3;β=0,1,2进一步计算可知只有u-4=2·3=6,于是u=10,v=16A2-007 确定m2+n2的最大值,这里 m和 n是整数,满足 m,n∈{1,2,…,1981},(n2-mn-m2)2=1.【题说】第二十二届(1981年)国际数学奥林匹克题 3.【解】若m=n,由(n2-mn-m2)2=1得(mn)2=1,故m=n=1.若m≠n,则由n2-mn-m2=±1得 n>m.令n=m+u k,于是[(m+u k)2-m(m+u k)-m2]2=1于是有若u k≠u k-1,则以上步骤可以继续下去,直至从而得到数列:n,m,u k,u k-1,…,u k-l,u k-l-1此数列任意相邻三项皆满足u i=u i-1+u i-2,这恰好是斐波那契型数列.而{1,2,…,1981}中斐氏数为:1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,可见m=987,n=1597时,m2+n2=3524578为满足条件的最大值.A2-008 求方程w!=x!+y!+z!的所有正整数解.【题说】第十五届(1983年)加拿大数学奥林匹克题 1.【解】不妨设x≤y≤z.显然w≥z+1,因此(z+1)!≤w!=x!+y!+z!≤3·z!从而z≤2.通过计算知x=y=z=2,w=3是原方程的唯一解.A1-010 前1000个正整数中可以表示成[2x]+[4x]+[6x]+[8x]的正整数有多少个?【题说】第三届(1985年)数学邀请赛题 10.【解】令f(x)=[2x]+[4x]+[6x]+[8x].个不同的正整数值.另一方面f(x+n)=f(x)+20n对任一正整数n成立.将1-1000分为50段,每20个为1段.每段中,f(x)可取12个值.故总共可取到50×12=600个值,亦即在前1000个正整数中有600个可以表示成[2x]+[4x]+[6x]+[8x]的形式.A2-011 使n3+100能被n+10整除的正整数n的最大值是多少?【题说】第四届(1986年)数学邀请赛题 5.【解】由n3+100=(n+10)(n2-10n+100)-900知,若n3+100被n+10整除,则900也应被n+10整除.因此,n最大值是890.A2-012 a、b、c、d为两两不同的正整数,并且a+b=cd,ab=c+d求出所有满足上述要求的四元数组a、b、c、d.【题说】 1987年匈牙利数学奥林匹克题 1.【解】由于a≠b,所以当且仅当a=1或b=1时,才有a+b≥ab.如果a、b都不是1,那么c+d=ab>a+b=cd由此知c=1或d=1.因此a、b、c、d中总有一个(也只有一个)为1.如果a=1,那么由消去b可以推出从而得到c=2,d=3,或者c=3,d=2.这样,本题的答案可以列成下表A2-013 设[r,s]表示正整数r和s的最小公倍数,求有序三元正整数组(a,b,c)的个数,其中[a,b]=1000,[b,c]=2000,[c,a]=2000.【题说】第五届(1987年)数学邀请赛题 7.【解】显然,a、b、c都是形如2m·5n的数.设a=2m1·5n1,b=2m2·5n2,c=2m3·5n3.由[a,b]=1000=23·53,知max(m1,m2)=3,max(n1,n2)=3.同理,max (m2,m3)=4,max(n2,n3)=3;max(m1,m3)=4,max(n1,n3)=3.由此,知m3应是4,m1、m2中必有一是3.另一个可以是0、1、2或3之任一种,因此m1、m2的取法有7种.又,n1、n2、n3中必有两个是3,另一个可以是0、1、2或3.因此n1、n2、n3取法有10种.故m i、n i(i=1、2、3)不同取法共有7×10=70种,即三元组共有70个.A2-014 设m的立方根是一个形如n+r的数,这里n为正整数,r为小于1/1000的正实数.当m是满足上述条件的最小正整数时,求n的值.【题说】第五届(1987年)数学邀请赛题12.m=n3+1<(n+10-3)3=n3+3n2·10-3+3n·10-6+10-9于是从而n=19(此时m=193+1为最小).【题说】第十三届(1987年)全俄数学奥林匹克九年级题 1.【解】 144=122,1444=382设n>3,则则k必是一个偶数.所以也是一个自然数的完全平方,但这是不可能的.因为平方数除以4,因此,本题答案为n=2,3.A2-016 当n是怎样的最小自然数时,方程[10n/x]=1989有整数解?【题说】第二十三届(1989年)全苏数学奥林匹克十年级题 1.【解】1989≤10n/x<1990所以10n/1990<x≤10n/1989即10n·0.000502512…<x≤10n·0.000502765…所以n=7,这时x=5026与5027是解.A2-017 设a n=50+n2,n=1,2,….对每个n,a n与a n+1的最大公约数记为d n.求d n的最大值.【题说】 1990年第1轮选拔赛题 9.【解】d n=(a n,a n+1)=(50+n2,50+(n+1)2-(50+n2))=(50+n2,2n+1)=(2(n2+50),2n+1)(因 2n+1是奇数)=(2(n2+50)-n(2n+1),2n+1)=(100-n,2n+1)=(100- n,2n+1+2(100- n))=(100-n,201)≤201在n=100≠201k(k∈N)时,d n=201.故所求值为201.A2-018 n是满足下列条件的最小正整数:(1)n是75的倍数;(2)n恰为 75个正整数因子(包括1及本身).试求n/75.【题说】第八届(1990年)数学邀请赛题5.【解】为保证 n是75的倍数而又尽可能地小,可设n=2α·3β·5γ,其中α≥0,β≥1,γ≥2,并且(α+1)(β+1)(γ+1)=75由75=52·3,易知当α=β=4,γ=2时,符合条件(1)、(2).此时n=24·34·52,n/75=432.A2-019 1.求出两个自然数x、y,使得xy+x和xy+y分别是不同的自然数的平方.2.能否在988至1991范围内求到这样的x和y?【题说】第二十五届(1991年)全苏数学奥林匹克九年级题5.【解】 1.例如x=1,y=8即满足要求.2.假设988≤x<y≤1991x、y∈N,使得xy+x与xy+y是不同的自然数的平方,则x2<xy+x<xy+y这时y-x=(xy+y)-(xy+x)>(x+1)2-x2=2x+1即y>3x+1由此得1991≥y>3x+1≥3×998+1矛盾!故在988与1991之间不存在这样的自然数x、y.A2-020 求所有自然数n,使得这里[n/k2]表示不超过n/k2的最大整数,N是自然数集.【题说】 1991年中国数学奥林匹克题 5.【解】题给条件等价于,对一切k∈N,k2+n/k2≥1991 (1)且存在k∈N,使得k2+n/k2<1992.(2)(1)等价于对一切k∈N,k4-1991k2+n≥0即(k2-1991/2)2+n-19912/4≥0 (3)故(3)式左边在k取32时最小,因此(1)等价于n≥1991×322-324=1024×967又,(2)等价于存在k∈N,使(k2-996)2+n-9962<0上式左边也在k=32时最小,故(2)等价于n<1992×322-324=1024×968故n为满足1024×967≤n≤1024×967+1023的一切整数.A2-021 设n是固定的正整数,求出满足下述性质的所有正整数的和:在二进制的数字表示中,正好是由2n个数字组成,其中有n个1和n个0,但首位数字不是0.【题说】第二十三届(1991年)加拿大数学奥林匹克题2.【解】 n=1,易知所求和S1=2.n≥2时,首位数字为1的2n位数,在其余2n-1位上,只要n个0的位置确定了.则n-1个1的位置也就确定了,从而这个2n位二进制数也随之确定.现考虑第k(2n>k≥1)位数字是1的数的个数.因为其中n个0的位置只可从2n -2个位置(除去首位和第k位)中选择,故这样的将所有这样的2n位二进制数相加,按数位求和,便有A2-022 在{1000,1001,1002,…,2000}中有多少对相邻的数满足下列条件:每对中的两数相加时不需要进位?【题说】第十届(1992年)数学邀请赛题6.7或 8时,则当n和n+1相加时将发生进位.再若b=9而c≠9;a=9而b≠9或c≠9.则当n和n+1相加时也将发生进位.如果不是上面描述的数,则n有如下形式其中a,b,c∈{0,1,2,3,4}.对这种形式的n,当n和n+1相加时不会发生进位,所以共有53+52+5+1=156个这样的n.A2-023 定义一个正整数n是一个阶乘的“尾”,如果存在一个正整数m,使得m!的十进位制表示中,结尾恰好有n个零,那么小于1992的正整数中有多少个不是阶乘的尾?【题说】第十届(1992年)数学邀请赛题15.【解】设f(m)为m!的尾.则f(m)是m的不减函数,且当m是5的倍数时,有f(m)=f(m+1)=f(m+2)=f(m+3)=f(m+4)<f(m+5)因此,从f(0)=0开始,f(m)依次取值为:0,0,0,0,0;1,1,1,1,1;2,2,2,2,2;3,3,3,3,3;4,4,4,4,4;6,6,6,6,6;…;1991,1991,1991,1991,1991容易看出如果存在m使f(m)=1991,则因而m>4×1991=7964.由公式(1)可计算出f(7965)=1988,从而f(7975)=1991.在序列(1)中共有7980项,不同的值有7980/5=1596个.所以在{0,1,2,…,1991}中,有1992-1596=396个值不在(1)中出现.这就说明,有396个正整数不是阶乘的尾.A2-024 数列{a n}定义如下:a0=1,a1=2,a n+2=a n+(a n+1)2.求a1992除以7所得的余数.【题说】 1992年数学奥林匹克预选赛题1.【解】考虑a n以7为模的同余式:a0=1≡1(mod 7)a1=2≡2(mod 7)a1=1+22=5≡-2(mod 7)a3≡2+(-2)2=6≡-1(mod 7)a4≡-2+(-1)2=-1(mod 7)a5≡-1+(-1)2=0(mod 7)a6≡-1+02=-1(mod 7)a7≡0+(-1)2=1(mod 7)a8≡-1+12=0(mod 7)a9≡1+02=1(mod 7)a10≡0+12=1(mod 7)a11≡1+12=2(mod 7)所以,a n除以7的余数以10为周期,故a1992≡a2≡5(mod 7).A2-025 求所有的正整数n,满足等式S(n)=S(2n)=S(3n)=…=S(n2)其中S(x)表示十进制正整数x的各位数字和.【题说】 1992年捷克和斯洛伐克数学奥林匹克(最后一轮)题 3.【解】显然,n=1满足要求.由于对正整数x,有S(x)≡x(mod 9),故当n>1时,有n≡S(n)≡S(2n)≡2n(mod 9)所以9|n.若n是一位数,则n=9,又S(9)=S(2×9)=S(3×9)=…=S(92)=9,故9满足要求.10k≤n<10k+1又9 10k,故10k+1≤n<10k+1若n<10k+10k-1+…+10+1,则与已知矛盾,从而n≥10k+10k-1+…+10+1(1)令n=9m.设m的位数为l(k≤l≤k+1),m-1=S(n)=S((10k+10k-1+…+10+1)n)=S((10k+1-1)m)=S(10k+1(m-1)+(10k+1-10l)+(10l-m))其中9有k+1-l个,b i+c i=9,i=1,2,…,l.所以S(n)=9(k+1)(2)由于n是 k+1位数,所以 n=99…9=10k+1-1.另一方面,当 n=99…9=10k+1-1时,S(n)=S(2n)=S(3n)=…=S(n2).综上所述,满足要求的正整数为n=1及n=10k-1(k≥1).A2-026 求最大正整数k,使得3k|(23m+1),其中m为任意正整数.【题说】 1992年友谊杯国际数学竞赛十、十一年级题 2.【解】当m=1时,23m+1=9,故k≤2.又由于23m+1=(23)3m-1+1≡(-1)3m-1+1(mod 9)=0所以,对任意正整数m,9|(23m+1).即所求k的值为2.最大整数.【题说】 1993年全国联赛一试题2(4),原是填空题.【解】因为1093+33=(1031)3+33=(1031+3)((1031)2-3×1031+32)=(1031)(1031-3)+9-1它的个位数字是8,十位数字是0.A2-028 试求所有满足如下性质的四元实数组:组中的任一数都等于其余三个数中某两个数的乘积.【题说】第十九届(1993年)全俄数学奥林匹克十一年级二试题5.【解】设这组数的绝对值为a≤b≤c≤d.无论a为b,c,d哪两个数的乘积,均有a≥bc,类似地,d≤bc.从而,bc≤a≤b≤c≤d≤bc,即a=b=c=d=a2.所以a=0或1,不难验证,如果组中有负数,则负数的个数为2或3.所以,答案为{0,0,0,0},{1,1,1,1},{-1,-1,1,1},{-1,-1,-1,1}.A2-029 对任意的实数x,函数f(x)有性质f(x)+f(x-1)=x2.如果f (19)=94,那么f(94)除以1000的余数是多少?【题说】第十二届(1994年)数学邀请赛题3.【解】重复使用f(x)=x2-f(x-1),有f(94)=942-f(93)=942-932+f(92)=942-932+922-f(91)=…=942-932+922-…+202-f(19)=(94+93)(94-93)+(92+91)(92-91)+…+(22+21)(22-21)+202-94=(94+93+92+…+21)+306=4561因此,f(94)除以1000的余数是561.A2-030 对实数x,[x]表示x的整数部分,求使[log21]+[log22]+[log23]+…+[log2n]=1994成立的正整数n.【题说】第十二届(1994年)数学邀请赛题 4.【解】 [long21]+[log22]+[log23]+…+[log2128]+[log2129]+…+[log2255]=2×1+4×2+8×3+16×4+32×5+64×6+128×7=1538.A2-031 对给定的一个正整数n.设p(n)表示n的各位上的非零数字乘积(如果n只有一位数字,那么p(n)等于那个数字).若S=p(1)+p(2)+p(3)+…+p(999),则S的最大素因子是多少?【题说】第十二届(1994年)数学邀请赛题5.【解】将每个小于1000的正整数作为三位数,(若位数小于3,则前面补0,如25可写成 025),所有这样的正整数各位数字乘积的和是(0·0·0+0·0·1+0·0·2+…+9·9·8+9·9·9)-0·0·0=(0+1+2+…+9)3-0p(n)是n的非零数字的乘积,这个乘积的和可以由上面表达式将0换成1而得到.因此,=463-1=33·5·7·103最大的素因子是103.A2-032 求所有不相同的素数p、q、r和s,使得它们的和仍是素数,并且p2+qs 及p2+qr都是平方数.【题说】第二十届(1994年)全俄数学奥林匹克九年级题7.【解】因为四个奇素数之和是大于2的偶数,所以所求的素数中必有一个为偶数2.若p≠2,则p2+qs或p2+qr中有一个形如(2k+1)2+2(2l+1)=4(k2+k+l)+3,这是不可能的,因为奇数的平方除以4的余数是1,所以p=2.设22+qs=a2,则qs=(a+2)(a-2).若a-2=1,则qs=5,因为q、s是奇素数,所以上式是不可能的.于是只能是q=a-2, s=a+2q=a+2,s=a-2所以s=q-4或q+4.同理r=q-4或q+4.三个数q-4、q、q+4被3除,余数各不相同,因此其中必有一个被 3整除.q或q+4为3时,都导致矛盾,所以只能是q-4=3.于是(p,q,r,s)=(2,7,3,11)或(2,7,11,3)A2-033 求所有这样的素数,它既是两个素数之和,同时又是两个素数之差.【题说】第二十届(1994年)全俄数学奥林匹克十年级题5.【解】设所求的素数为p,因它是两素数之和,故p>2,从而p是奇数.因此,和为p的两个素数中有一个是2,同时差为p的两个素数中,减数也是2,即p=q +2,p=r-2,其中q、r为素数.于是p-2、p、p+2均为素数.在三个连续的奇数中必有一数被3整除,因这数为素数,故必为3.不难验证只有p-2=3,p=5,p+2=7时,才满足条件.所以所求的素数是5.个整数.【题说】第三十五届(1994年)国际数学奥林匹克题4.本题由澳大利亚提供.【解】 n3+1=n3+mn-(mn-1),所以mn-1|n(n2+m).因为(mn-1,n)=1,所以mn-1|n2+m.又n(m2+n)-(n2+m)=m(mn-1),所以mn-1|m2+n.因此m,n对称,不妨设m≥n.当n=1时,mn-1=m-1|n3+1=2,从而m=2或3,以下设n≥2.若m=n,则n2-1|(n3+1)=(n3-n)+(n+1),从而n2-1|(n+1),m=n=2.若m>n,则由于2(mn-1)≥n2+mn+n-2≥n2+2m>n2+m所以mn-1=n2+m,即(m-n-1)(n-1)=2于是本题答案为(m,n)=(2,1),(3,1),(1,2),(2,2),(5,2),(1,3),(5,3),(3,5),(2,5)共九组.【题说】第十三届(1995年)数学邀请赛题7.【解】由已知得即所以A2-036 一个正整数不是42的正整数倍与合数之和.这个数最大是多少?【题说】第十三届(1995年)数学邀请赛题10.【解】设这数为42n+p,其中n为非负整数,p为小于42的素数或1.由于2×42+1,42+2,42+3,42×5+5,42+7,2×42+11,42+13,4×42+17,3×42+19,42+23,3×42+29,2×42+31,4×42+37,2×42+41,都是合数,所以在n≥5时,42n+p都可表成42的正整数倍与合数之和,只有42×5+5例外.因此,所求的数就是42×5+5=215.A2-038 求所有正整数x、y,使得x+y2+z3=xyz,这里z是x、y的最大公约数.【题说】第三十六届(1995年)IMO预选题.【解】由原方程及y2、z3、xyz均被z2整除得出z2|x.设x=az2,y=bz,则原方程化为a+b2+z=abz2 (1)由b2、abz2被b整除得b|(a+z).于是b≤a+z.a+z+b2=abz2=(a+z)b+(a+z)b+b((z2-2)a-2z)≥a+z+b2+b((z2-2)a-2z)(2)(2)中不等式的等号只在b=1并且b=a+z时成立,而这种情况不可能出现(a +z>1),所以(2)是严格的不等式.这表明(z2-2)a-2Z<0 (3)从而z≤2(否则(3)的左边≥z2-2-2z≥z-2>0).在z=2时,2a-2z<0,即a=1,代入(1)得b=1或3,从而x=4,y=2或6.在z=1时,(1)成为a+b2+1=ab (4)从而(a-b)(b-1)=b+1=(b-1)+2这表明(b-1)|2,b=2或3.代入(4)得a=5.于是x=5,y=2或3.因此本题共有四组解:(x,y)=(4,2),(4,6),(5,2),(5,3).A2-039 设 m、n∈N,(m,n)=1.求(5m+7m,5n+7n).其中(m,n)表示 m、n的最大公约数.【题说】 1996年数学奥林匹克题 2.【解】记H(m,n)=(5m+7m,5n+7n).则H(0,1)=(2,12)=2H(1,1)=(12,12)=12因H(m,n)=H(n,m),故可设n≥m.当n≥2m时,(5m+7m,5n+7n)=(5m+7m,(5m+7m)(5n-m+7n-m)-5m7m(5n-2m+7n-2m))=(5m+7m,5m7m(5n-2m+7n-2m))=(5m+7m,5n-2m+7n-2m)当m≤n<2m时,(5m+7m,5n+7n)=(5m+7m,(5m+7m)(5n-m+7n-m)-5n-m7n-m(52m-n+72m-n))=(5m+7m,52m-n+72m-n)记则(1)H(m′,n′)=H(m,n);(2)m′+n′≡m+n(mod 2);(3)(m′,n′)=(m,n).当(m,n)=1时,反复进行上面的操作,最后必有(m′,n′)=(1,0)或(m′,n′)=(1,1).从而有A2-040 求下列方程的正整数解:(a,b)+[a,b]+a+b=ab其中a≥b,[a,b]、(a,b)分别表示a与b的最小公倍数与最大公因数.【题说】 1996年数学奥林匹克预选赛题 7.【解】记(a,b)=d,a=da′,b=db′,则[a,b]=da′b′.题设条件变为1+a′+b′+a′b′=da′b′ (*)所以故1<d≤4.当d=4时,a′=b′=1,从而a=b=4;当d=3时,(*)等价于(2a′-1)(2b′-1)=3由a′≥b′得a′=2,b′-1.故a=6,b=3.当d=2时,(*)等价于(a′-1)(b′-1)=2由a′≥b′得a′=3,b′=2.从而a=6,b=4.综上所述,所求的正整数解有4,4;6,4;6,3.A2-041 一个幻方中,每一行,每一列及每一对角线上的三个数之和有相同的值.图示一个幻方中的四个数,求x.【题说】第十四届(1996年)数学邀请赛题1.【解】幻方中两条对角线的和与第二列的和都为同一值s,这3s也是第一行的和加上第二行的和,再加上中央一数的3倍.所以中央的左下角的数为19+96-1=114.因此x=3×105-19-96=200A2-042 对整数1,2,3,…,10的每一个排列a1,a2,…,a10,作和|a1-a2|+|a3-a4|+|a5-a6|+|a7-a8|+|a9-a10|数.求p+q.【题说】第十四届(1996年)数学邀请赛题12.【解】差|a i-a j|有如下的45种:这45种的和为1×9+2×8+3×7+4×6+5×5+6×4+7×3+8×2+9×1=165.每一种出现的次数相同,而在和|a1-a2|+|a3-a4|+|a5-a6|+|a7-a8|+|a9-a10|中有5种,所以A2-043 设正整数a、b使15a+16b和16a-15b都是正整数的平方.求这两个平方数中较小的数能够取到的最小值.【题说】第三十七届(1996年)国际数学奥林匹克题4.本题由俄罗斯提供.【解】 15a+16b=r2,16a-15b=s2于是16r2-15s2=162b+152b=481b (1)所以 16r2-15s2是481=13×37的倍数.由于0,±1,±2,±3,±4,±5,±6的平方为0,±1,±3,±4(mod 13),所以15≡2(mod 13)不是任一数的平方.因此,16r2≡15s2(mod 13)时,必有13|s.同样,由于0,±1,±2,±3,±4,±5,±6,±7,±8,±9,±10,±11,±12,±13,±14,±15,±16,±17,±18的平方为 0,±1,±3,±4,±9,±12,±16(mod 37),所以必有 37|s.于是481|s.由(1),481|r.在r=s=481时,b=(16-15)×481=481,a=(16+15)×481=31×481,满足15a+16b=r2,16a-15b=s2.所以所说最小值为481.A2-044 设自然数n为十进制中的10位数.从左边数起第1位上的数恰是n的数字中0的个数,第2位上的数恰是n的数字中1的个数,一般地,第k+1位上的数恰是n的数字中k的个数(0≤k≤9).求一切这样的数n.【题说】 1997年数学奥林匹克预选赛题 7.【解】设n的左数第k+1位上的数字为n k(0≤k≤9),则数字k出现的次数为n k.因为n是10位数,所以n0+n1+n2+…+n9=10 (1)又数字k若在左数第n j+1位上出现,则数字j在n中出现k次.n k个k意味着有数字j1,j2,…,j nk,共出现k nk次.于是,又有n i+2n2+…+9n9=10 (2)由(2)显然n5,n6,n7,n8,n9,至多一个非零,且n6,n7,n8,n9均≤1.若 n5=n6=n7=n8=n9=0 (3)则n0≥5.于是n中至少有一个数字≥5,与(3)矛盾.所以n5,n6,n7,n8,n9中有一个非零,其余四个为0.从而n1+2n2+3n3+4n4≤5 (4)(4)表明n1,n2,n3,n4中至少有两个为0,从而n中0的个数不少于6,即n0≥6.于是n6,n7,n8,n9中有一个为1,n5=0.若n9=1,则n0=9,n1≥1,这显然不可能.若n8=1,则n0=8,n1≥1,但无论n1>1或n1=1均不合要求.若n7=1,则n0=7,n1=1或2,前者显然不合要求.后者导致n2≥1,n0+n1+n2+n7>10也不合要求.若n6=1,则n0=6,n1=2或3.n1=2时,n2=1,数6210001000满足要求.n1=3时,n3>0,n0+n1+n3+n6>10,不合要求.综上所述,满足条件的10位数n只有6210001000.A2-045 求所有的整数对(a,b),其中a≥1,b≥1,且满足等式a b2=b a.【题说】第三十八届(1997年)国际数学奥林匹克题5.本题由捷克提供.【解】显然当a、b中有一个等于1时,(a,b)=(1,1).以下设a,b≥2.设t=b2/a,则由题中等式得到b=a t,at=a2t,从而t=a2t-1.如果2t-1≥1,则t =a2t-1≥(1+1)2t-1≥1+(2t-1)=2t>t,矛盾.所以2t-1<1.于是我们有0<t<1.记K=1/t,则K=a/b2>1为有理数,由a=b k可知K=b K-2 (1)如果K≤2,则K=b K-2≤1,与前面所证K>1矛盾,因此K>2.设K=p/q,p,q∈N,p、q互质,则p>2q.于是由(1)q=1,即K为一个大于2的自然数.当b=2时,由(2)式得到K=2K-2,所以K≥4.又因为等号当且仅当K=4时成立,所以得到a=b K=24=16.当b≥3时,=b K-2≥(1+2)K-2≥1+2(K-2)=2K-3.从而得到K≤3.这意味着K=3,于是得到b=3,a=b K=33=27.综上所述,满足题目等式的所有正整数对为(a,b)=(1,1),(16,2),(27,3).75=3×5^2显然N必含有质因数3、5,且质因数5的个数至少为2。

加拿大国际袋鼠数学竞赛试题-2013年

加拿大国际袋鼠数学竞赛试题-2013年

(A) 12
(B) 8
(C) 4
(D) 2
(E) 0
3. Which of the dresses has less than seven dots, but more than five dots?
(A)
(B)
(C)
(D)
(E)
Grade 1-2
Year 2013
4. A lot of babies were born in the zoo last year: two baby lions, three baby dolphins and four baby eagles.
tulips. They started at 9:00 in the morning. At what time will they finish planting all 20 tulips?
(A) At 9:10
(B) At 9:20 (C) At 9:40
(D) At 9:50
(E) At 10:00
(C) 2 and 0
(D) 6 and 9
(E) 7 and 1
2. There are twelve books on a shelf and four children in a room. How
many books will be left on the shelf if each child takes one book?
(A) 16
(B) 30
(C) 50
(D) 52
(E) 70
18. In a park there are babies in four-wheel strollers and children on two-wheel bikes. Paula counted wheels and the total was 12. When she added the number of strollers to the number of bikes, the total was 4. How many two-wheel bikes are there in the park?

2015加拿大欧几里得数学竞赛真题

2015加拿大欧几里得数学竞赛真题

A Note about BubblingPlease make sure that you have correctly coded your name,date of birth and grade on the Student Information Form,and that you have answered the question about eligibility.1.(a)What is value of 102−92 10+9?(b)If x+1x+4=4,what is the value of3x+8?(c)If f(x)=2x−1,determine the value of(f(3))2+2(f(3))+1.2.(a)If √a+√a=20,what is the value of a?(b)Two circles have the same centre.The radiusof the smaller circle is1.The area of theregion between the circles is equal to the areaof the smaller circle.What is the radius ofthe larger circle?(c)There were30students in Dr.Brown’s class.The average mark of the studentsin the class was80.After two students dropped the class,the average mark of the remaining students was82.Determine the average mark of the two students who dropped the class.3.(a)In the diagram,BD=4and point C is themidpoint of BD.If point A is placed sothat ABC is equilateral,what is the lengthof AD?AB C D(b) MNP has vertices M(1,4),N(5,3),and P(5,c).Determine the sum of thetwo values of c for which the area of MNP is14.4.(a)What are the x-intercepts and the y-intercept of the graph with equationy=(x−1)(x−2)(x−3)−(x−2)(x−3)(x−4)?(b)The graphs of the equations y=x3−x2+3x−4and y=ax2−x−4intersectat exactly two points.Determine all possible values of a.5.(a)In the diagram,∠CAB=90◦.Point Dis on AB and point E is on AC so thatAB=AC=DE,DB=9,and EC=8.Determine the length of DE.ABC D E(b)Ellie has two lists,each consisting of6consecutive positive integers.The smallestinteger in thefirst list is a,the smallest integer in the second list is b,and a<b.She makes a third list which consists of the36integers formed by multiplying each number from thefirst list with each number from the second list.(This third list may include some repeated numbers.)If•the integer49appears in the third list,•there is no number in the third list that is a multiple of64,and•there is at least one number in the third list that is larger than75, determine all possible pairs(a,b).6.(a)A circular disc is divided into36sectors.A number is writtenin each sector.When three consecutivesectors contain a ,b and c in thatorder,then b =ac .If the number 2is placed in one of the sectors andthe number 3is placed in one of theadjacent sectors,as shown,what is thesum of the 36numbers on the disc?23. . .. . . a b c . . . (b)Determine all values of x for which 0<x 2−11x +1<7.7.(a)In the diagram,ACDF is a rectanglewith AC =200and CD =50.Also,F BD and AEC are congruenttriangles which are right-angledat Band E ,respectively.What is the areaof the shaded region?F (b)The numbers a 1,a 2,a 3,...form an arithmetic sequence with a 1=a 2.The threenumbers a 1,a 2,a 6form a geometric sequence in that order.Determine all possiblepositive integers k for which the three numbers a 1,a 4,a k also form a geometricsequence in that order.(An arithmetic sequence is a sequence in which each term after the first is obtainedfrom the previous term by adding a constant.For example,3,5,7,9are the firstfour terms of an arithmetic sequence.A geometric sequence is a sequence in which each term after the first is obtainedfrom the previous term by multiplying it by a non-zero constant.For example,3,6,12is a geometric sequence with three terms.)8.(a)For some positive integers k ,the parabola with equation y =x 2k−5intersects the circle with equation x 2+y 2=25at exactly three distinct points A ,B and C .Determine all such positive integers k for which the area of ABC is an integer.(b)In the diagram, XY Z is isosceles withXY =XZ =a and Y Z =b where b <2a .A larger circle of radius R is inscribed inthe triangle (that is,the circle is drawn sothat it touches all three sides of the triangle).A smaller circle of radius r is drawn so thatit touches XY ,XZ and the larger circle.Determine an expression for R r in terms of a and b .b a a X Y Z9.Consider the following system of equations in which all logarithms have base 10:(log x )(log y )−3log 5y −log 8x =a(log y )(log z )−4log 5y −log 16z =b(log z )(log x )−4log 8x −3log 625z =c(a)If a =−4,b =4,and c =−18,solve the system of equations.(b)Determine all triples (a,b,c )of real numbers for which the system of equationshas an infinite number of solutions (x,y,z ).10.For each positive integer n ≥1,let C n be the set containing the n smallest positiveintegers;that is,C n ={1,2,...,n −1,n }.For example,C 4={1,2,3,4}.We call a set,F ,of subsets of C n a Furoni family of C n if no element of F is a subset of another element of F .(a)Consider A ={{1,2},{1,3},{1,4}}.Note that A is a Furoni family of C 4.Determine the two Furoni families of C 4that contain all of the elements of A and to which no other subsets of C 4can be added to form a new (larger)Furoni family.(b)Suppose that n is a positive integer and that F is a Furoni family of C n .For eachnon-negative integer k ,define a k to be the number of elements of F that contain exactly k integers.Prove thata 0 n 0 +a 1 n 1 +a 2 n 2 +···+a n −1 n n −1 +a n nn≤1(The sum on the left side includes n +1terms.)(Note:If n is a positive integer and k is an integer with 0≤k ≤n ,then n k =n !k !(n −k )!is the number of subsets of C n that contain exactly k integers,where 0!=1and,if m is a positive integer,m !represents the product of the integers from 1to m ,inclusive.)(c)For each positive integer n ,determine,with proof,the number of elements in thelargest Furoni family of C n (that is,the number of elements in the Furoni family that contains the maximum possible number of subsets of C n ).Euclid Contest(English) 2015。

高中数学奥林匹克竞赛试题及答案0204192339

高中数学奥林匹克竞赛试题及答案0204192339

1 求一个四位数,它的前两位数字及后两位数字分别相同,而该数本身等于一个整数的平方.1956年波兰.x=1000a+100a+10b+b=11(100a+b)其中0<a≤9,0≤b≤9.可见平方数x被11整除,从而x被112整除.因此,数100a+b=99a+(a+b)能被11整除,于是a+b能被11整除.但0<a+b≤18,以a+b=11.于是x=112(9a+1),由此可知9a+1是某个自然数的平方.对a=1,2,…,9逐一检验,易知仅a=7时,9a+1为平方数,故所求的四位数是7744=882.2 假设n是自然数,d是2n2的正约数.证明:n2+d不是完全平方.1953年匈牙利.【证设2n2=kd,k是正整数,如果n2+d是整数x的平方,那么k2x2=k2(n2+d)=n2(k2+2k)但这是不可能的,因为k2x2与n2都是完全平方,而由k2<k2+2k<(k+1)2得出k2+2k不是平方数.3 试证四个连续自然数的乘积加上1的算术平方根仍为自然数.1962年上海高三决赛题.【证】四个连续自然数的乘积可以表示成n(n+1)(n+2)(n+3)=(n2+3n)(n2+8n+2)=(n2+3n+1)2-1因此,四个连续自然数乘积加上1,是一完全平方数,故知本题结论成立.4 已知各项均为正整数的算术级数,其中一项是完全平方数,证明:此级数一定含有无穷多个完全平方数.1963年俄【证】设此算术级数公差是d,且其中一项a=m2(m∈N).于是a+(2km+dk2)d=(m+kd)2对于任何k∈N,都是该算术级数中的项,且又是完全平方数.5 求一个最大的完全平方数,在划掉它的最后两位数后,仍得一个完全平方数(假定划掉的两个数字中的一个非零).1964年俄.【解】设n2满足条件,令n2=100a2+b,其中0<b<100.于是n>10a,即n≥10a+1.因此b=n2100a2≥20a+1由此得 20a+1<100,所以a≤4.经验算,仅当a=4时,n=41满足条件.若n>41则n2-402≥422-402>100.因此,满足本题条件的最大的完全平方数为412=1681.6 求所有的素数p,使4p2+1和6p2+1也是素数.1964年波兰【解】当p≡±1(mod 5)时,5|4p2+1.当p≡±2(mod 5)时,5|6p2+1.所以本题只有一个解p=5.7 证明存在无限多个自然数a有下列性质:对任何自然数n,z=n4+a都不是素数.1969德国.【证】对任意整数m>1及自然数n,有n4+4m4=(n2+2m2)2-4m2n2=(n2+2mn+2m2)(n2-2mn+2m2)而 n2+2mn+2m2>n2-2mn+2m2=(n-m)2+m2≥m2>1故n4+4m4不是素数.取a=4·24,4·34,…就得到无限多个符合要求的a.8 将某个17位数的数字的顺序颠倒,再将得到的数与原来的数相加.证明:得到的和中至少有一个数字是偶数.1970年苏【证】假设和的数字都是奇数.在加法算式中,末一列数字的和d+a为奇数,从而第一列也是如此,因此第二列数字的和b+c≤9.于是将已知数的前两位数字a、b与末两位数字c、d去掉,所得的13位数仍具有性质:将它的数字颠倒,得到的数与它相加,和的数字都是奇数.照此进行,每次去掉首末各两位数字.最后得到一位数,它与自身相加显然是偶数.矛盾!9 证明:如果p和p+2都是大于3的素数,那么6是p+1的因数.1973年加拿大【证】因p是奇数,2是p+1的因数.因为p、p+1、p+2除以3余数不同,p、p+2都不被3整除,所以p+1被3整除.10 证明:三个不同素数的立方根不可能是一个等差数列中的三项(不一定是连续的).美国1973年【证】设p、q、r是不同素数.假如有自然数l、m、n和实数a、d,消去a,d,得化简得(m-n)3p=(l-n)3q+(m-l)3r+3(l-n)(m11 设n为大于2的已知整数,并设V n为整数1+kn的集合,k=1,2,….数m∈V n称为在V n中不可分解,如果不存在数p,q∈V n使得pq=m.证明:存在一个数r∈V n可用多于一种方法表达成V n中不可分解的元素的乘积.1977年荷兰【证】设a=n-1,b=2n-1,则a2、b2、a2b2都属于V n.因为a2<(n+1)2,所以a2在V n中不可分解.式中不会出现a2.r=a2b2有两种不同的分解方式:r=a2·b2=a2…(直至b2分成不可分解的元素之积)与r=ab·ab=…(直至ab分成不可分解的元素之积),前者有因数a2,后者没有.12 证明在无限整数序列10001,100010001,1000100010001,…中没有素数.注意第一数(一万零一)后每一整数是由前一整数的数字连接0001而成.1979年英国【证】序列1,10001,100010001,…,可写成1,1+104,1+104+108,…一个合数.即对n>2,a n均可分解为两个大于1的整数的乘积,而a2=10001=137·73.故对一切n≥2,a n均为合数.13 如果一个自然数是素数,并且任意地交换它的数字,所得的数仍然是素数,那么这样的数叫绝对素数.求证:绝对素数的不同数字不能多于3个.1984年苏【证】若不同数字多于3个,则这些数字只能是1、3、7、9.不难验证1379、3179、9137、7913、1397、3197、7139除以7,余数分别为0、1、2、3、4、5、6.因此对任意自然数M,104×M与上述7个四位数分别相加,所得的和中至少有一个被7整除,从而含数字1、3、7、9的数不是绝对素数.14正整数d不等于2、5、13.证在集合{2,5,13,d}中可找到两个不同元素a、b,使得ab-1不是完全平方数.1986年德【证】证明2d-1、5d-1、13d-1这三个数中至少有一个不是完全平方数即可.用反证法,设5d-1=x2 5d-1=y2 13d-1=z2 其中x、y、z是正整数.x是奇数,设x=2n-1.代入有2d-1=(2n-1)2即d=2n2-2n+1 说明d也是奇数.y、Z是偶数,设y=2p,z=2q,代入(2)、(3)相减后除以4有2d=q2-p2=(q+p)(q-p)因2d是偶数,即q2-p2是偶数,所以p、q同为偶数或同为奇数,从而q+p和q-p都是偶数,即2d是4的倍数,因此d是偶数.这与d是奇数相矛盾,故命题正确.15 .求出五个不同的正整数,使得它们两两互素,而任意n(n≤5)个数的和为合数.1987年全苏【解】由n个数a i=i·n!+1,i=1,2,…,n组成的集合满足要求.因为其中任意k个数之和为m·n!+k(m∈N,2≤k≤n)由于n!=1·2·…·n是k的倍数,所以m·n!+k是k的倍数,因而为合数.对任意两个数a i与a j(i>j),如果它们有公共的质因数p,则p也是a i-a j=(i-j)n!的质因数,因为0<i-j<n,所以p也是n!的质因数.但a i与n!互质,所以a i与a j不可能有公共质因数p,即a i、a j(i≠j)互素.令n=5,便得满足条件的一组数:121,241,361,481,601.16 n≥2,证:如果k2+k+n对于整数k素数.1987苏联(1)若m≥p,则p|(m-p)2+(m-p)+n.又(m-p)2+(m-p)+n≥n>P,这与m是使k2+k+n为合数的最小正整数矛盾.(2)若m≤p-1,则(p-1-m)2+(p-1-m)+n=(p-1-m)(p-m)+n被p整除,且(p-1-m)2+(p-1-m)+n≥n>p因为(p-1-m)2+(p-1-m)+n为合数,所以p-1-m≥m,p≥2m+1由得4m2+4m+1≤m2+m+n即3m2+3m+1-n≤0由此得17 正整数a与b使得ab+1整除a2+b2.求证:(a2+b2)/(ab+1)是某个正整数的平方.1988德国a2-kab+b2=k (1)显然(1)的解(a,b)满足ab≥0(否则ab≤-1,a2+b2=k(ab+1)≤0).又由于k不是完全平方,故ab>0.设(a,b)是(1)的解中适合a>0(从而b>0)并且使a+b最小的那个解.不妨设a≥b.固定k与b,把(1)看成a的二次方程,它有一根为a.设另一根为a′,则由韦达定理a′为整数,因而(a′,b)也是(1)的解.由于b>0,所以a′>0.但由(3)从而a′+b<a+b,这与a+b的最小性矛盾,所以k必为完全平方.18 求证:对任何正整数n,存在n个相继的正整数,它们都不是素数的整数幂.1989年瑞典提供.【证】设a=(n+1)!,则a2+k(2≤k≤n+1),被k整除而不被k2整除(因为a2被k2整除而k不被k2整除).如果a2+k是质数的整数幂p l,则k=p j(l、j都是正整数),但a2被p2j整除因而被p j+1整除,所以a2+k被p j整除而不被p j+1整除,于是a2+k=p j=k,矛盾.因此a2+k(2≤k≤n+1)这n个连续正整数都不是素数的整数幂.19 n为怎样的自然数时,数32n+1-22n+1-6n是合数?1990年全苏解32n+1-22n+1-6n=(3n-2n)(3n+1+2n+1)当n>l时,3n-2n>1,3n+1+2n+1>1,原数是合数.当n=1时,原数是13 20 设n是大于6的整数,且a1、a2、…、a k是所有小于n且与n互素的自然数,如果a2-a1=a3-a2=…=a k-a k-1>0求证:n或是素数或是2的某个正整数次方.1991年罗马尼亚.证由(n-1,n)=1,得a k=n-1.令d=a2-a1>0.当a2=2时,d=1,从而k=n-1,n与所有小于n的自然数互素.由此可知n是素数.当a2=3时,d=2,从而n与所有小于n的奇数互素.故n是2的某个正整数次方.设a2>3.a2是不能整除n的最小素数,所以2|n,3|n.由于n-1=a k=1+(k-1)d,所以3d.又1+d=a2,于是31+d.由此可知3|1+2d.若1+2d<n,则a3=1+2d,这时3|(a3,n).矛盾.若1+2d≥n,则小于n且与n互素自然数的个数为2.设n=2m(>6).若m为偶数,则m+1与n互质,若m为奇数,则m+2与m互质.即除去n-1与1外、还有小于n且与n互质的数.矛盾.综上所述,可知n或是素数或是2的某个正整数次方.21 试确定具有下述性质的最大正整数A:把从1001至2000所有正整数任作一个排列,都可从其中找出连续的10项,使这10项之和大于或等于A.1992年台北数学奥林匹克【解】设任一排列,总和都是1001+1002+…+2000=1500500,将它分为100段,每段10项,至少有一段的和≥15005,所以A≥15005另一方面,将1001~2000排列如下:2000 1001 1900 1101 18001201 1700 1301 1600 14011999 1002 1899 1102 17991202 1699 1302 1599 1402………………1901 1100 1801 1200 17011300 1601 1400 1501 1300并记上述排列为a1,a2,…,a2000(表中第i行第j列的数是这个数列的第10(i-1)+j项,1≤i≤20,1≤j≤10)令 S i=a i+a i+1+…+a i+9(i=1,2,…,1901)则S1=15005,S2=15004.易知若i为奇数,则S i=15005;若i为偶数,则S i=15004.综上所述A=15005.22 相继10个整数的平方和能否成为完全平方数?1992年友谊杯国际数学竞赛七年级【解】(n+1)2+(n+2)2+…+(n+10)2=10n2+110n+385=5(2n2+22n+77)不难验证n≡0,1,-1,2,-2(mod 5)时,均有2n2+22n+77≡2(n2+n+1)0(mod 5)所以(n+1)2+(n+2)2+…+(n+10)2不是平方数,23 是否存在完全平方数,其数字和为1993?1993年澳门数学奥林匹克第二轮【解】存在,取n=221即可.24 能表示成连续9个自然数之和,连续10个自然数之和,连续11个自然数之和的最小自然数是多少?1993年美国数学邀请赛【解】答495.连续9个整数的和是第5个数的9倍;连续10个整数的和是第5项与第6项之和的5倍;连续11个整数的和是第6项的11倍,所以满足题目要求的自然数必能被9、5、11整除,这数至少是495.又495=51+52+…+59=45+46+…+54=40+41+…+5025 如果自然数n使得2n+1和3n+1都恰好是平方数,试问5n+3能否是一个素数?1993年全俄数学奥林匹克【解】如果2n+1=k2,3n+1=m2,则5n+3=4(2n+1)-(3n+1)=4k2-m2=(2k+m)(2k-m).因为5n+3>(3n+1)+2=m2+2>2m+1,所以2k-m≠1(否则5n+3=2k+m=2m+1).从而5n+3=(2k+m)(2k-m)是合数.26 设n是正整数.证明:2n+1和3n+1都是平方数的充要条件是n+1为两个相邻的平方数之和,并且为一平方数与相邻平方数2倍之和.1994年澳大利亚数学奥林匹克【证】若2n+1及3n+1是平方数,因为2(2n+1),3(3n+1),可设2n+1=(2k+1)2,3n+1=(3t±1)2,由此可得n+1=k2+(k+1)2,n+1=(t±1)2+2t2反之,若n+1=k2+(k+1)2=(t±1)2+2t2,则2n+1=(2k+1)2,3n+1=(3t±1)2从而命题得证.27 设a、b、c、d为自然数,并且ab=cd.试问a+b+c+d能否为素数.1995年莫斯科数学奥林匹克九年级题【解】由题意知正整数,将它们分别记作k与l.由a+c>c≥c1,b+c>c≥c2。

加拿大数学竞赛历年试题(滑铁卢大学)

加拿大数学竞赛历年试题(滑铁卢大学)

Each question is worth 10 marks
Calculating devices are allowed, provided that they do not have any of the following features: (i) internet access, (ii) the ability to communicate with other devices, (iii) information previously stored by students (such as formulas, programs, notes, etc.), (iv) a computer algebra system, (v) dynamic geometry software.
Parts of each question can be of two types: 1. SHORT ANSWER parts indicated by
• worth 3 marks each • full marks given for a correct answer which is placed in the box • part marks awarded only if relevant work is shown in the space provided
WRITE ALL ANSWERS IN THE ANSWER BOOKLET PROVIDED. • Extra paper for your finished solutions must be supplied by your supervising teacher and inserted into your answer booklet. Write your name, school name, and question number on any inserted pages. • Express answers as simpli√fied exact numbers except where otherwise indicated. For example, π + 1 and 1 − 2 are simplified exact numbers.

高中数学竞赛典型题目

高中数学竞赛典型题目

数学竞赛典型题目(一)1.(美国数学竞赛)设n a a a ,,,21 是整数列,并且他们的最大公因子是1.令S 是一个整数集,具有性质:(1)),,2,1(n i S a i =∈(2) }),,2,1{,(n j i S a a j i ∈∈-,其中j i ,可以相同(3)对于S y x ∈,,若S y x ∈+,则S y x ∈-证明:S 为全体整数的集合。

2.(美国数学竞赛)c b a ,,是正实数,证明:3252525)()3)(3)(3(c b a c c b b a a ++≥+-+-+-3.(加拿大数学竞赛)T 为1002004的所有正约数的集合,求集合T 的子集S 中的最大可能的元素个数。

其中S 中没有两个元素,一个是另一个的倍数。

4.(英国数学竞赛)证明:存在一个整数n 满足下列条件:(1)n 的二进制表达式中恰好有2004个1和2004个0;(2)2004能整除n .5.(英国数学竞赛)在0和1之间,用十进制表示为 21.0a a 的实数x 满足:在表达式中至多有2004个不同的区块形式,)20041(20031≤≤++k a a a k k k ,证明:x 是有理数。

6.(亚太地区数学竞赛)求所有由正整数组成的有限非空数集S ,满足:如果S n m ∈,,则S n m n m ∈+),( 7.(亚太地区数学竞赛)平面上有2004个点,并且无三点共线,S 为通过任何两点的直线的集合。

证明:点可以被染成两种颜色使得两点同色当且仅当S 中有奇数条直线分离这两点。

8.(亚太地区数学竞赛)证明:)()!1(*2N n n n n ∈⎥⎦⎤⎢⎣⎡+-是 偶数。

9.(亚太地区数学竞赛)z y x ,,是正实数,证明:)(9)2)(2)(2(222zx yz xy z y x ++≥+++10.(越南数学竞赛)函数f 满足)0(2sin 2cos )(cot π<<+=x x x x f ,令 )11)(1()()(≤≤--=x x f x f x g ,求)(x g 在区间]1,1[-的上最值。

2015年全国高中数学联合竞赛加试解答(B卷)

2015年全国高中数学联合竞赛加试解答(B卷)
a | bc − 1, b | ac + 1, c | ab + 1 .
A
I
D C
O
E
F
三、 (本题满分 50 分) 证明: 存在无穷多个正整数组 (a, b, c) (a, b, c > 2015) ,
c ab + 1 的特殊情况,此时 c | ab + 1 成立. 证明:考虑=பைடு நூலகம்
由 a | bc − 1 知, a | b(ab + 1) − 1 ,故
A
圆.过点 C 作 BD 的平行线,与 AD 的延长线交于点 E . 2 求证: CD = BD ⋅ CE . 证明:连接 BI , CI .设 I , B, C , D 四点在圆 O 上,延长 DE 交圆 O 于 F ,连接 FB, FC . 180° − ∠BDC = ∠BFC . 因为 BD∥CE , 所以 ∠DCE = 又 由于 ∠CDE = ∠CDF = ∠CBF , 所以 BFC ∽ DCE ,从而 DC BF . = CE FC
n m 中任取 m 2
下面来求坏排列的个数. 设 P 是坏排列全体,Q 是在 1, 2, , 项组成的单调递增数列的全体. 对于 P 中的任意一个排列 a1 , a2 , , am ,定义
a1 1 a2 2 a m , , , m f (a1 , a2 , , am ) . 2 2 2
因 为 ak ≤ n, k ≤ m , 故 由 条 件 ( 1 ) 可 知 , 所 有 的
ak + k 均属于集合 2
n + m ak + k 1, 2, , .再由条件(2)可知, (k = 1, 2, , m) 单调递增.故如 2 2

2015加拿大数学奥林匹克(CMO)试题

2015加拿大数学奥林匹克(CMO)试题
A w U P B C Q O
AB AC BC BA CA CB 2。 AH AD BH BE CH CF
4、O 是锐角 ABC 的外心, AD 是 ABC 的高。圆 的 圆 心 在 AD 上 , 并 与 AB, AC 交 于 P, Q 。 已 知 求证: 与 BOC 的外接圆相切。 BP CQ AP AQ ,



2015 加拿大数学奥林匹克
1 、 求 所 有 函 数
f :Z Z , 使 得 对 于 任 意 正 整 数 n , (n) n 2 n 。
2、AD , BE , CF 是锐角 ABC 的高, H 是垂心。 求证: 3、 n 是一个正整数,有一个小机器人开始在 (4n 2) (4n 2) 的正方形的一个角,它每次 可以从一个单元格走到与之有公共边的另一个单元格,已知它经过每个单元格回到出发点。 求最大的整数 k ,使得总是存在一行或一列,机器人至少进入此行或此列 k 次。
D
5、 p,
p 1 都是素数,整数 a, b, c 与 p 互素,求证:最多有 1 2 p 个正整数 n p ,使 2
得 p a n b n c n 。




2015年全国高中数学联合竞赛试题及解答.(B卷)

2015年全国高中数学联合竞赛试题及解答.(B卷)

2015年全国高中数学联合竞赛一试(B 卷)一、填空题:本大题共8个小题,每小题8分,共64分。

2015B1、已知函数⎩⎨⎧+∞∈∈-=),3(log ]3,0[)(2x a x x a x f x ,其中a 为常数,如果)4()2(f f <,则a 的取值范围为◆答案:()+∞-,2★解析:(2)2,(4)2f a f a =-=,所以22a a -<,解得:2a >-.2015B 2、已知3)(x x f y +=为偶函数,且15)10(=f ,则)10(-f 的值为◆答案:2015★解析:由己知得33(10)(10)(10)10f f -+-=+,即(10)(10)2000f f -=+=2015.2015B 3、某房间的室温T (单位:摄氏度)与时间t (单位:小时)的函数关系为:),0(,cos sin +∞∈+=t t b t a T ,其中b a ,为正实数,如果该房间的最大温差为10摄氏度,则b a +的最大值为◆答案:★解析:由辅助角公式:sin cos )T a t b t t ϕ=+=+,其中ϕ满足条件sin ϕϕ==T 的值域是[,室内最大温差为10≤5≤.故a b +≤≤等号成立当且仅当a b ==2015B 4、设正四棱柱1111D C B A ABCD -的底面ABCD 是单位正方形,如果二面角11C BD A --的大小为3π,则=1AA ◆答案:62★解析:取BD 的中点O ,连接OA,OA 1,OC 1.则∠A 1OC 1是二面角A 1-BD-C 1的平面角,因此∠A 1OC 1=3π,又△OA 1C 1是等边三角形.故A 1O=A 1C 1,所以12AA ===.2015B 5、已知数列{}n a 为等差数列,首项与公差均为正数,且952,,a a a 依次成等比数列,则使得121100a a a a k >+⋅⋅⋅++的最小正整数k 的值是◆答案:34★解析:设数列{}n a 的公差为d ,则215191,4,8a a d a a d a a d =+=+=+.因为952,,a a a 依次成等比数列,所以2295a a a =,即2111()(8)(4)a d a d a d ++=+.化简上式得到:218a d d =.又0d >,所以18a d =.由11211(1)(1)210016k k k a k d a a a k k k a a -++++-==+> .解得min 34k =.2015B 6、设k 为实数,在平面直角坐标系中有两个点集{})(2),(22y x y x y x A +=+=和{}03),(≥++-=k y kx y x B ,若B A 是单元集,则k 的值为◆答案:2-★解析:点集A 是圆周22:(1)(1)2x y Γ-+-=,点集B 是恒过点)3,1(-P 的直线:3(1)l y k x -=+及下方(包括边界).作出这两个点集知,当A 自B 是单元集时,直线l 是过点P 的圆Γ的一条切线.故圆Γ的圆心M (1,l )到直线l,=2k =-2015B 7、设P 为椭圆122=+x y 上的动点,点)1,0(),1,1(-B A ,则PB PA +的最大值为◆答案:5★解析:取F (0,l ),则F,B 分别是椭圆的上、下焦点,由椭圆定义知,|PF|+|PB|=4.因此,|PA|+|PB|=4-|PF|+|PA |≤4+|FA|=4+l=5.当P 在AF 延长线与椭圆的交点3(,1)2-时,|PA|+|PB|最大值为5.2015B 8、正2015边形201521A A A ⋅⋅⋅内接于单位圆O ,任取它的两个不同顶点j i A A ,,1≥+OA 的概率为◆答案:6711007★解析:因为||||1i j OA OA == ,所以222||||||22(1cos ,)i j i j i j i j OA OA OA OA OA OA OA OA +=++⋅=+<> .故1≥+OA 的充分必要条件是1cos ,2i j OA OA <>≥- ,即向量,i j OA OA 的夹角不超过32π.对任意给定的向量i OA,满足条件1≥的向量可的取法共有:222134232015ππ⎡⎤÷⨯=⎢⎥⎣⎦1≥+OA 的概率是:20151342671201520141007p ⨯==⨯.二、解答题:本大题共3小题,共56分。

矿产

矿产

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Canadian Intermediate Mathematics Contest NOTE:1.Please read the instructions on the front cover of this booklet.2.Write solutions in the answer booklet provided.3.Express calculations and answers as exact numbers such as π+1and √2,etc.,rather than as4.14...or 1.41...,except where otherwise indicated.4.While calculators may be used for numerical calculations,other mathematical steps must be shown and justified in your written solutions and specific marks may be allocated for these steps.For example,while your calculator might be able to find the x -intercepts of the graph of an equation like y =x 3−x ,you should show the algebraic steps that you used to find these numbers,rather than simply writing these numbers down.5.Diagrams are not drawn to scale.They are intended as aids only.6.No studentmay write both the Canadian Senior Mathematics Contest and the Canadian Intermediate Mathematics Contest in the same year.PART AFor each question in Part A,full marks will be given for a correct answer which is placed in the box.Part marks will be awarded only if relevant work is shown in the space provided in the answer booklet.1.Stephanie has 1000eggs to pack into cartons of 12eggs.While packingthe eggs,she breaks n eggs.The unbroken eggs completely fill a collection of cartons with no eggs left over.If n <12,what is the value of n ?2.In the diagram,ABCD is a square with side length 4.Points P ,Q ,R ,and S are the midpoints of the sides ofthe square,as shown.What is the area of the shadedregion?3.In the diagram,line segments AB ,CD and EF parallel,and points A and E lie on CG and respectively.If ∠GAB =100◦,∠CEF =30◦,∠ACE =x ◦,what is the value of x ?H4.If 12x =4y +2,determine the value of the expression 6y −18x +7.5.Determine the largest positive integer n with n <500for which 6048(28n )is a perfect cube (that is,it is equal to m 3for some positive integer m ).6.A total of2015tickets,numbered1,2,3,4,...,2014,2015,are placed in an emptybag.Alfie removes ticket a from the bag.Bernice then removes ticket b from the bag.Finally,Charlie removes ticket c from the bag.They notice that a<b<c and a+b+c=2018.In how many ways could this happen?PART BFor each question in Part B,your solution must be well organized and contain words of explanation or justification.Marks are awarded for completeness,clarity,and style of presentation.A correct solution,poorly presented,will not earn full marks.1.At Cornthwaite H.S.,many students enroll in an after-school arts program.Theprogram offers a drama class and a music class.Each student enrolled in the program is in one class or both classes.(a)This year,41students are in the drama class and28students are in the musicclass.If15students are in both classes,how many students are enrolled in theprogram?(b)In2014,a total of80students enrolled in the program.If3x−5students werein the drama class,6x+13students were in the music class,and x studentswere in both classes,determine the value of x.(c)In2013,half of the students in the drama class were in both classes and one-quarter of the students in the music class were in both classes.A total ofN students enrolled in the program in2013.If N is between91and99,inclusive,determine the value of N.2.Alistair,Conrad,Emma,and Salma compete in a three-sport race.They each swim2km,then bike40km,andfinally run10km.Also,they each switch instantly from swimming to biking and from biking to running.(a)Emma has completed113of the total distance of the race.How many kilometershas she travelled?(b)Conrad began the race at8:00a.m.and completed the swimming portion in30minutes.Conrad biked12times as fast as he swam,and ran3times as fast as he swam.At what time did hefinish the race?(c)Alistair and Salma also began the race at8:00a.m.Alistairfinished theswimming portion in36minutes,and then biked at28km/h.Salmafinished the swimming portion in30minutes,and then biked at24km/h.Alistair passed Salma during the bike portion.At what time did Alistair pass Salma?2015Canadian Intermediate Mathematics Contest (English)3.Heron’s Formula says that if a triangle has side lengths a ,b and c ,then its area equals s (s −a )(s −b )(s −c ),where s =12(a +b +c )is called the semi-perimeter ofthe triangle.A B Ca b c(a)In the diagram, ABC has side lengthsAB =20,BC =99,and AC =101.If his the perpendicular distance from A toBC ,determine the value of h .A BC 9910120h (b)In the diagram,trapezoid P QRS hasP S parallel to QR .Also,P Q =7,QR =40,RS =15,and P S =20.Ifx is the distance between parallel sidesP S and QR ,determine the value of x .(c)The triangle with side lengths 3,4and 5has the following five properties:•its side lengths are integers,•the lengths of its two shortest sides differ by one,•the length of its longest side and the semi-perimeter differ by one,•its area is an integer,and •its perimeter is less than 200.Determine all triangles that have thesefive properties.。

相关文档
最新文档