杭州市锦绣中学数学分式解答题专题练习(解析版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、八年级数学分式解答题压轴题(难)
1.已知:方程﹣=﹣的解是x=,方程﹣=﹣的解是x=,试猜想:
(1)方程+=+的解;
(2)方程﹣=﹣的解(a、b、c、d表示不同的数).
【答案】(1)x=4;(2)x=.
【解析】
通过解题目中已知的两个方程的过程可以归纳出方程的解与方程中的常数之间的关系,利用这个关系可得出两个方程的解.
解:解方程﹣=﹣,先左右两边分别通分可得:
,
化简可得:,
整理可得:2x=15﹣8,
解得:x=,
这里的7即为(﹣3)×(﹣5)﹣(﹣2)×(﹣4),
这里的2即为[﹣2+(﹣4)]﹣[﹣3+(﹣5)];
解方程﹣=﹣,先左右两边分别为通分可得:
,
化简可得:,
解得:x=,
这里的11即为(﹣7)×(﹣5)﹣(﹣4)×(﹣6),
这里的2即为[﹣4+(﹣6)]﹣[﹣7+(﹣5)];
所以可总结出规律:方程解的分子为右边两个分中的常数项的积减去左边两个分母中的常数项的积,解的分母为左边两个分母中的常数项的差减去右边两个分母中常数项的差.(1)先把方程分为两边差的形式:方程﹣=﹣,
由所总结的规律可知方程解的分子为:(﹣1)×(﹣6)﹣(﹣7)×(﹣2)=﹣8,
分母为[﹣7+(﹣2)]﹣[﹣6+(﹣1)]=﹣2,
所以方程的解为x ==4;
(2)由所总结的规律可知方程解的分子为:cd ﹣ab ,分母为(a +b )﹣(c +d ), 所以方程的解为x =.
2.某一项工程,在工程招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队工程款1.5万元,乙工程队工程款1.1万元,工程领导小组根据甲乙两队的投标书测算,可有三种施工方案:
(1)甲队单独完成这项工程刚好如期完成;
(2)乙队单独完成这项工程要比规定日期多用5天;
(3)若甲、乙两队合作4天,余下的工程由乙队单独也正好如期完成.
据上述条件解决下列问题:
①规定期限是多少天?写出解答过程;
②在不耽误工期的情况下,你觉得那一种施工方案最节省工程款?
【答案】规定期限20天;方案(3)最节省
【解析】
【分析】
设这项工程的工期是x 天,根据甲队单独完成这项工程刚好如期完成,乙队单独完成这项工程要比规定日期多用5天,若甲、乙两队合做4天,余下的工程由乙队单独做也正好如期完成以及工作量=工作时间×工作效率可列方程求解.再看费用情况:方案(1)、(3)不耽误工期,符合要求,可以求费用,方案(2)显然不符合要求.
【详解】 解:设规定期限x 天完成,则有:
415
x x x +=+, 解得x=20.
经检验得出x=20是原方程的解;
答:规定期限20天.
方案(1):20×1.5=30(万元)
方案(2):25×1.1=27.5(万元 ),
方案(3):4×1.5+1.1×20=28(万元).
所以在不耽误工期的前提下,选第三种施工方案最节省工程款.
所以方案(3)最节省.
点睛:本题主要考查分式方程的应用,解题的关键是熟练掌握列分式方程解应用题的一般步骤,即①根据题意找出等量关系②列出方程③解出分式方程④检验⑤作答.注意:分式方程的解必须检验.
3.小明和小强两名运动爱好者周末相约到滨江大道进行跑步锻炼.
(1)周六早上6点,小明和小强同时从家出发,分别骑自行车和步行到离家距离分别为
4500米和1200米的滨江大道入口汇合,结果同时到达.若小明每分钟比小强多行220米,求小明和小强的速度分别是多少米/分?
(2)两人到达滨江大道后约定先跑1000米再休息.小强的跑步速度是小明跑步速度的m 倍,两人在同起点,同时出发,结果小强先到目的地n 分钟.
①当3m =,6n =时,求小强跑了多少分钟?
②小明的跑步速度为_______米/分(直接用含m n ,的式子表示).
【答案】(1)小强的速度为80米/分,小明的速度为300米/分;(2)①小强跑的时间为
3分;②
1000(1)m mn
-. 【解析】
【分析】 (1)设小强的速度为x 米/分,则小明的速度为(x+220)米/分,根据路程除以速度等于时间得到方程,解方程即可得到答案;
(2)①设小明的速度为y 米/分,由m =3,n =6,根据小明的时间-小强的时间=6列方程解答;
②根据路程一定,时间与速度成反比,可求小强的时间进而求出小明的时间,再根据速度=路程除以时间得到答案.
【详解】
(1)设小强的速度为x 米/分,则小明的速度为(x+220)米/分, 根据题意得:1200x =4500220
x +. 解得:x =80.
经检验,x =80是原方程的根,且符合题意.
∴x+220=300.
答:小强的速度为80米/分,小明的速度为300米/分.
(2)①设小明的速度为y 米/分,∵m =3,n =6, ∴1000100063y y -=,解之得10009
y =. 经检验,10009y =
是原方程的解,且符合题意, ∴小强跑的时间为:10001000(3)39
÷⨯=(分) ②小强跑的时间:1n m -分钟,小明跑的时间:11
n mn n m m +=--分钟,
小明的跑步速度为: 1000(1)10001mn m m mn -÷
=-分. 故答案为:
1000(1)m mn
-. 【点睛】 此题考查分式方程的应用,正确理解题意根据路程、时间、速度三者的关系列方程解答是解题的关键.
4.为了迎接运动会,某校八年级学生开展了“短跑比赛”。
甲、乙两人同时从A 地出发,沿同一条道路去B 地,途中都使用两种不同的速度1v 与()212v v v <。
甲前一半的路程使用速度1v ,另一半的路程使用速度2v ;乙前一半的时间用速度1v ,另一半的时间用速度2v 。
(1)甲、乙二人从A 地到达B 地的平均速度分别为v v 甲乙、;则
=v 甲___________,=v 乙____________
(2)通过计算说明甲、乙谁先到达B 地?为什么?
【答案】(1)
12121222v v v v v v ++;;(2)乙先到达B 地. 【解析】
【分析】
(1)设AB 两地的路程为s ,乙从A 地到B 地的总时间为a .
先算出前一半的路程所用的时间,后一半的路程所用的时间相加,速度=路程÷时间求出V 甲;
先算出前一半的时间所行的路程,后一半的时间所行的路程相加,速度=路程÷时间求出V 乙
; (2)看甲、乙两人谁先到达B 地,因为路程一定,比较V 甲,V 乙的大小即可.
【详解】
(1)设AB 两地的路程为s ,乙从A 地到B 地的总时间为a .
v 甲=12121221122
v v s
v v s s v v =++,v 乙=1212222
v a v a v v a ++=. (2)v 乙﹣v 甲=122v v +-1212
2v v v v +=21212()2()v v v v -+ ∵0<v 1<v 2,∴v 乙﹣v 甲>0,乙先到B 地.
【点睛】
本题重点考查了列代数式和分式的混合运算,是一道难度中等的题目.
5.八年级某同学在“五一”小长假中,随父母驾车去蜀南竹海观光旅游.去时走高等级公路,全程90千米;返回时,走高速公路,全程120千米.返回时的平均速度是去时平均速度的1.6倍,所用时间比去时少用了18分钟.求返回时的平均速度是多少千米每小时?
【答案】 返回时的平均速度是80千米/小时.
【解析】
分析:根据题意,设去时的平均速度是x 千米/小时,找到等量关系:返回时所用时间比去时少用了18分钟,列分式方程求解即可.
详解:设去时的平均速度是x 千米/小时.
由题:
90120181.660
x x =+ 解得:50x = 检验:50x =是原方程的解.
并且,当50x =时,1.680x =,符合题意.
答:返回时的平均速度是80千米/小时.
点睛:此题主要考查了分式方程的应用,关键是确定问题的等量关系,根据等量关系列方程解答.
6.为进一步落实《中华人民共和国民办教育促进法》,某市教育局拿出了b 元资金建立民办教育发展基金会,其中一部分作为奖金发给了n 所民办学校.奖金分配方案如下:首先将n 所民办学校按去年完成教育、教学工作业绩(假设工作业绩均不相同)从高到低,由
1到n 排序,第1所民办学校得奖金
b n
元,然后再将余额除以n 发给第2所民办学校,按此方法将奖金逐一发给了n 所民办学校.
(1)请用n 、b 分别表示第2所、第3所民办学校得到的奖金; (2)设第k 所民办学校所得到的奖金为k a 元(1k n ≤≤),试用k 、n 和b 表示k a (不必证明);
(3)比较k a 和1k a +的大小(k=1,2 ,……,1n -),并解释此结果关于奖金分配原则的实际意义.
【答案】(1)211()(1)b b a b n n n n =-⨯
=- ,23111()(1)(1)b b a b n n n n n =-⨯-=-; (2)11
(1)k k b a n n
-=- ; (3)1k k a a +> .奖金分配的实际意义:名次越靠后,奖金越少.
【解析】
【试题分析】
(1)根据第1所民办学校得奖金b n
元,然后再将余额除以n 发给第2所民办学校,
得:22311111()(1),()(1)(1).b
b b b a b a b n n n n n n n n n
=-⨯=-=-⨯-=- (2)根据(1)中的两个式子,11
(1)
k k b a n n -=- ; (3)11
(1)k k b a n n -=-,+11(1)k k b a n n
=-,则1111+121111111(1)(1)(1)1(1)(1)(1)0k k k k k k k b b b b b a a n n n n n n n n n n n n
----⎡⎤-=---=---=-⋅⋅=-⋅>⎢⎥⎣⎦,则+1k k a a >.奖金分配的实际意义:名次越靠后,奖金越少.
【试题解析】
(1)根据题意得:22311111()(1),()(1)(1).b
b b b a b a b n n n n n n n n n
=-⨯=-=-⨯-=- (2)根据(1)中的两个式子,11
(1)
k k b a n n -=- (3)11
(1)k k b a n n -=-,+11(1)k k b a n n
=-,则1111+121111111(1)(1)(1)1(1)(1)(1)0k k k k k k k b b b b b a a n n n n n n n n n n n n
----⎡⎤-=---=---=-⋅⋅=-⋅>⎢⎥⎣⎦,则+1k k a a >.奖金分配的实际意义:名次越靠后,奖金越少.
【方法点睛】本题目是一道分式的实际应用问题,第一个问题有难度,依据奖金的分配规则,写出23a a 、 的表达式;第二问在第一问的基础上,找出规律,直接写出k a 的表达式即可;第三问用作差法比较两个分式的大小,若差为正数,则被减数大于减数;若差为0,则被减数等于减数;若差为负数,则被减数小于减数.
7.为了践行“绿色低碳出行,减少雾霾”的使命,小红上班的交通方式由驾车改为骑自行车,小红家距单位的路程是20千米,在相同的路线上,小红驾车的速度是骑自行车速度的4倍,小红每天骑自行车上班比驾车上班要早出发45分钟,才能按原时间到达单位,求小红骑自行车的速度.
【答案】小红骑自行车的速度是每小时20千米.
【解析】
【分析】
设骑自行车的速度为x 千米/时,则驾车的速度为4x 千米/时.依据“小王每天骑自行车上班比驾车上班要早出发45分钟”列出方程并解答.
【详解】
解:设小红骑自行车的速度是每小时x 千米,则驾车的速度是每小时4x 千米.根据题意得:
202045460
x x =+ 解得x =20
经检验x=20是分式方程的解,并符合实际意义
答:小红骑自行车的速度是每小时20千米.
【点睛】
本题考查了分式方程的应用.利用分式方程解应用题时,一般题目中会有两个相等关系,这时要根据题目所要解决的问题,选择其中的一个相等关系作为列方程的依据,而另一个则用来设未知数.
8.京广高速铁路工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数
的2
3
;若由甲队先做10天,剩下的工程再由甲、乙两队合作30天完成.
(1)求甲、乙两队单独完成这项工程各需多少天?
(2)已知甲队每天的施工费用为8.4万元,乙队每天的施工费用为5.6万元.工程预算的施工费用为500万元.为缩短工期并高效完成工程,拟安排预算的施工费用是否够用?若不够用,需追加预算多少万元?请给出你的判断并说明理由.
【答案】(1)甲队单独完成需60天,乙队单独完成这项工程需要90天;
(2)工程预算的施工费用不够,需追加预算4万元.
【解析】
【分析】
(1)设甲单独完成这项工程所需天数,表示出乙单独完成这项工程所需天数及各自的工作效率.根据工作量=工作效率×工作时间列方程求解;
(2)根据题意,甲乙合作工期最短,所以须求合作的时间,然后计算费用,作出判断.【详解】
(1)解:设乙队单独完成这项工程需要x天,则甲队单独完成需要2x
3
填;
4030
1
2x
x
3
+=
解得:x90
=
经检验,x=90是原方程的根.
则22
x9060
33
=⨯=(天)
答:甲、乙两队单独完成这项工程分别需60天和90天.(2)设甲、乙两队合作完成这项工程需要y天,
则有y(1
60
+
1
90
)=1.
解得y=36.
需要施工费用:36×(8.4+5.6)=504(万元).∵504>500.
∴工程预算的施工费用不够用,需追加预算4万元.
9.某一工程,在工程招标时,接到甲、乙两个工程队的投标书.施工一天,需付甲工程队工程款2.4万元,乙工程队工程款1万元.工程领导小组根据甲,乙两队的投标书测算,有如下方案:
(1)甲队单独完成这项工程刚好如期完成;
(2)乙队单独完成这项工程要比规定日期多用12天;
(3)若甲,乙两队合做6天,余下的工程由乙队单独做也正好如期完成.
试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.
【答案】在不耽误工期的前提下,选第三种施工方案最节省工程款.
【解析】
【分析】
关键描述语为:“甲,乙两队合做3天,余下的工程由乙队单独做也正好如期完成”;说明甲队实际工作了3天,乙队工作了x 天完成任务,工作量=工作时间×工作效率等量关系为:甲3天的工作量+乙规定日期的工作量=1列方程.再看费用情况:方案(1)、(3)不耽误工期,符合要求,可以求费用,方案(2)显然不符合要求.
【详解】
解:设规定日期为x 天.由题意得
66611212
x x x x -++=++, ∴6112
x x x +=+, ∴2267212x x x x ++=+,
∴12x =;
经检验:x=12是原方程的根.
方案(1):2.4×12=28.8(万元);
方案(2)比规定日期多用12天,显然不符合要求;
方案(3):2.4×6+1×12=26.4(万元).
∵28.8>26.4,
∴在不耽误工期的前提下,选第三种施工方案最节省工程款.
【点睛】
本题考查了分式方程的应用,找到合适的等量关系是解决问题的关键.在既有工程任务,又有工程费用的情况下.先考虑完成工程任务,再考虑工程费用.
10.某商场购进甲、乙两种空调共50台.已知购进一台甲种空调比购进一台乙种空调进价少0.3万元;用20万元购进甲种空调数量是用40万元购进乙种空调数量的2倍.请解答下列问题:
(1)求甲、乙两种空调每台进价各是多少万元?
(2)若商场预计投入资金不少于10万元,且购进甲种空调至少31台,商场有哪几种购
进方案?
(3)在(2)条件下,若甲种空调每台售价1100元,乙种空调每台售价4300元,甲、乙空调各有一台样机按八折出售,其余全部标价售出,商场从销售这50台空调获利中拿出2520元作为员工福利,其余利润恰好又可以购进以上空调共2台.请直接写出该商场购进这50台空调各几台.
【答案】(1)0.1,0.4;(2)商场有3种购进方案:①购买甲种空调31台,购买乙种空调19台;②购买甲种空调32台,购买乙种空调18台;③购买甲种空调33台,购买乙种空调17台;(3)购买甲种空调32台,购买乙种空调18台
【解析】
【分析】
(1)可设甲种空调每台进价是x 万元,则乙种空调每台进价是(x+0.3)万元,根据等量关系用20万元购进甲种空调数量=用40万元购进乙种空调数量×2,列出方程求解即可; (2)设购买甲种空调n 台,则购买乙种空调(50﹣n )台,根据商场预计投入资金不少于10万元,且购进甲种空调至少31台,求出n 的范围,即可确定出购买方案;
(3)找到(2)中3种购进方案符合条件的即为所求.
【详解】
解:(1)设甲种空调每台进价是x 万元,则乙种空调每台进价是(x+0.3)万元,依题意有
20x =400.3x ×2, 解得x =0.1,
x+0.3=0.1+0.3=0.4.
答:甲种空调每台进价是0.1万元,乙种空调每台进价是0.4万元;
(2)设购买甲种空调n 台,则购买乙种空调(50﹣n )台,依题意有
0.10.4(50)1031s
n n n +-⎧⎨⎩, 解得31≤n≤33
13
, ∵n 为整数, ∴n 取31,32,33,
∴商场有3种购进方案:①购买甲种空调31台,购买乙种空调19台;②购买甲种空调32台,购买乙种空调18台;③购买甲种空调33台,购买乙种空调17台;
(3)①购买甲种空调31台,购买乙种空调19台,
(31﹣1)×(1100﹣1000)+(1100×0.8﹣1000)+(19﹣1)×(4300﹣4000)+(4300×0.8﹣4000)﹣2520
=3000﹣120+5400﹣560﹣2520
=7720﹣2520
=5200(元),
不符合题意,舍去;
②购买甲种空调32台,购买乙种空调18台,
(32﹣1)×(1100﹣1000)+(1100×0.8﹣1000)+(18﹣1)×(4300﹣4000)+(4300×0.8﹣4000)﹣2520
=3100﹣120+5100﹣560﹣2520
=7520﹣2520
=5000(元),
符合题意;
③购买甲种空调33台,购买乙种空调17台,
(33﹣1)×(1100﹣1000)+(1100×0.8﹣1000)+(17﹣1)×(4300﹣4000)+(4300×0.8﹣4000)﹣2520
=3200﹣120+4800﹣560﹣2520
=7320﹣2520
=4800(元),
不符合题意,舍去.
综上所述,购买甲种空调32台,购买乙种空调18台.
【点睛】
此题考查了分式方程的应用,以及一元一次不等式组的应用,弄清题中的等量关系是解本题的关键.。