高中数学不等式典型例题解析

合集下载

高中数学证明不等式之对数单身狗,指数找朋友(解析版)

高中数学证明不等式之对数单身狗,指数找朋友(解析版)

证明不等式之对数单身狗,指数找朋友 【典型例题】例1.已知0<a≤14,函数f(x)=ln(x+1)-x+a.(Ⅰ)证明:y=f(x)在(0,1)上有唯一零点;(Ⅱ)记x0为函数y=f(x)在(0,1)上的零点.证明:(ⅰ)a<x0<2a;(ⅱ)x0f(2x0+1)-ln x0>1-5a.【解析】证明:(I)当x∈[0,1]时,f′(x)=1x+1-1=-xx+1≤0,所以f(x)在[0,1]是减函数(2分) f(0)=a>0,f(1)=ln2-1+a≤ln2-1+14=ln2-34=ln16-ln e34<0,所以f(x)在(0,1)上存在唯零点(5分)(Ⅱ)(ⅰ)即证a<x02<4a,x0∈(0,1),由已知ln(x0+1)-x0+a=0得a=x0-ln(x0+1),代入上式只要证x0-ln(x0+1)<x02<4x0-4ln(x0+1),(6分)构造函数φ(x)=x2-x+ln(x+1),φ′(x)=2x-1+1x+1=2x2+xx+1>0,所以φ(x)为增函数φ(x)>φ(0)=0,所以x-ln(x+1)<x2,(8分)构造函数h(x)=4x-x2-4ln(x+1),h′(x)=4-2x-4x+1=-2x(x-1)x+1>0,所以h(x)为增函数,h(x)>h(0)=0,所以x2<4x-4ln(x+1),故原不等式成立(10分)(ii)由已知ln(x0+1)=x0-a,所以x0f(2x0+1)-ln x0=x0[ln(2x0+2)-(2x0+1)+a]-ln x0 =x0[ln2+ln(x0+1)-2x0-1+a]-ln x0=x0(ln2+x0-a-2x0-1+a)-ln x0=-x02+(ln2-1)x0-ln x0,记m(x)=-x2+(ln2-1)x-ln x,m′(x)=-2x+ln2-1-1x<0,所以m(x)为减函数,因为x<2a≤1,所以m(x)>m(2a)=-4a+2(ln2-1)a-ln2a(12分)因为ln2a<2a-1,所以m(x)>-4a+2ln2-a-2a-(2a-1)>-4a+a-2a-2a+1=-4a-3a+1,由0<a≤14得a≤12a,所以-4a-3a+1≥-2a-3a+1=1-5a,故x0f(2x0+1)-ln x0>1-5a成立(15分)例2.已知函数f(x)=x-a ln x(a>0).(Ⅰ)求函数f(x)的单调区间;(Ⅱ)求函数g(x)=12x2-ax-f(x)的零点个数;(Ⅲ)当a=1时,求证不等式f(x)≤x-1x解集为空集.【解析】解:(Ⅰ)f(x)的定义域为(0,+∞),f (x)=1-ax=x-ax,令f (x)=0,得x=a,(a>0),当x>a时,有f (x)>0,所以f(x)在(a,+∞)上单调递增.当0<x<a时,有f (x)<0,所以f(x)在(0,a)上单调递减.所以f(x)的单调增区间为(a,+∞),单调减区间为(0,a);(Ⅱ)函数g(x)=12x2-ax-f(x)的导数为.g (x)=(x-a)(x-1)x,令g (x)=(x-a)(x-1)x=0,解得x1=a,x2=1,g(1)=-a-12<0,g(2a+3)=a+a ln(2a+3)+32>0,当a>1时,g(x)在(1,a)上递减,有g(1)>g(a),所以g(a)<0.所以g(x)有一个零点,当a=1时,g(x)在(0,+∞)上递增,所以g(x)有一个零点,当0<a<1时,g(x)在(0,a)上递增,在(a,1)上递减,在(1,+∞)上递增.此时g(a)=-12a2-a+a ln a<0,所以g(x)在(0,+∞)上只有一个零点;(Ⅲ)证明:当a=1时,不等式f(x)≤x-1x解集为空集,等价于f (x )>x -1x 在定义域内恒成立,即f (x )-x -1x>0在定义域内恒成立;令h (x )=f (x )-x -1x ,所以h (x )=x +1x -ln x -1;h(x )=1-1x 2-1x =x 2-x -1x 2令h (x )=0,得x =5+12,列表得:x 0,5+12 5+125+12,+∞h (x )-0+h (x )递减最小值递增h 5+12=5-1-ln 5+12,因为5+12<e ,所以ln 5+12<1.又5-1>1,所以h 5+12>0,所以h (x )=f (x )-x -1x >0恒成立,所以不等式f (x )≤x -1x 解集为空集.例3.设函数f (x )=x -a ln x +a -2xx 2(a >0).(Ⅰ)求函数f (x )的单调区间;(Ⅱ)记函数f (x )的最小值为g (a ),证明:g (a )<1.【解析】解:(Ⅰ)显然f (x )的定义域为(0,+∞).⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1分)f(x )=1-a x +-2x 2-2x (a -2x )x 4=x 2+2x 2-a ∙x 2+2x 3=(x 2+2)(x -a )x 3.⋯⋯⋯⋯(3分)∵x 2+2>0,x >0,∴若x ∈(0,a ),x -a <0,此时f (x )<0,f (x )在(0,a )上单调递减;若x ∈(a ,+∞),x -a >0,此时f (x )>0,f (x )在(a ,+∞)上单调递增;综上所述:f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增.⋯⋯⋯⋯⋯⋯⋯(5分)(Ⅱ)证明:由(Ⅰ)知:f (x )min =f (a )=a -2a -a ln a -1a2=a -a ln a -1a ,即:g(a)=a-a ln a-1a.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(6分)要证g(a)<1,即证明a-a ln a-1a<1,即证明1-ln a-1a2<1a,令h(a)=ln a+1a+1a2-1,则只需证明h(a)=ln a+1a+1a2-1>0,⋯⋯⋯⋯⋯⋯(8分)∵h (a)=1a -1a2-2a3=a2-a-2a3=(a-2)(a+1)a3,且a>0,∴当a∈(0,2),a-2<0,此时h (a)<0,h(a)在(0,2)上单调递减;当a∈(2,+∞),a-2>0,此时h (a)>0,h(a)在(2,+∞)上单调递增,∴h(a)min=h(2)=ln2+12+14-1=ln2-14>0.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(11分)∴h(a)=ln a+1a +1a2-1>0.∴g(a)<1.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(12分)例4.已知函数f(x)=12ax2-(2a+1)x+2ln x(a∈R).(Ⅰ)当a=-1时,求f(x)在点(1,f(1))处的切线方程;(Ⅱ)当a>0时,求函数f(x)的单调递增区间;(Ⅲ)当a=0时,证明:f(x)<2e x-x-4(其中e为自然对数的底数).【解析】解:(Ⅰ)当a=-1时,f(x)=-12x2+x+2ln x,f′(x)=-x+1+2x,∴f′(1)=2,f(1)=12,故f(x)在点(1,f(1))处的切线方程是4x-2y-3=0;(Ⅱ)f′(x)=ax-(2a+1)+2x =(ax-1)(x-2)x,(x>0),当0<1a<2,即当a>12时,由f′(x)>0,解得:0<x<1a或x>2,当a=12时,x∈(0,+∞),f′(x)≥0,当1a>2,即当0<a<12时,由f′(x)>0,解得:0<x<2或x>1a,综上,当a>12时,f(x)的递增区间是0,1a,(2,+∞),a=12时,f(x)的递增区间是(0,+∞),当0<a<12时,f(x)的递增区间是(0,2),1a,+∞;(Ⅲ)当a=0时,由f(x)<2e x-x-4,只需证明e x>ln x+2,令h (x )=e x -ln x -2(x >0),h ′(x )=e x -1x,h ′′(x )=e x +1x 2>0,故h ′(x )递增,h ′(1)=e -1>0,h ′12=e -2<0,故存在x 0∈12,1,使得h ′(x 0)=0,即e x 0-1x 0=0,当x ∈(0,x 0)时,h ′(x )<0,h (x )递减,当x ∈(x 0,+∞)时,h ′(x )>0,h (x )递增,故x =x 0时,h (x )取得唯一的极小值,也是最小值,h (x )的最小值是h (x )=e x 0-ln x 0-2=1x 0+x 0-2>0,0<x 0<1,e x 0≠1x 0【同步练习】1.已知函数f (x )=1-xax+ln x .(Ⅰ)当a =1时,求f (x )在12,2上最大值及最小值;(Ⅱ)当1<x <2时,求证(x +1)ln x >2(x -1).【解析】解:(Ⅰ)f (x )=1x +ln x -1,f ′(x )=-1x 2+1x =x -1x 2;∴x ∈12,1时,f ′(x )<0;x ∈(1,2]时,f ′(x )>0;f (1)=0是函数f (x )的极小值,即f (x )的最小值;又f 12 =1-ln2,f (2)=ln2-12;∴f (x )的最大值是1-ln2;∴函数f (x )在12,2上的最小值是0,最大值是1-ln2;(Ⅱ)∵x +1>0,∴要证明原不等式成立,只要证明ln x >2(x -1)x +1;设F (x )=ln x -2(x -1)x +1,则F ′(x )=1x -2(x +1)-2(x -1)(x +1)2=(x -1)2x (x +1)2>0;∴函数F (x )在(1,2)上是增函数,∴F (x )>F (1)=0;∴ln x >2(x -1)x +1;∴原不等式成立.2.已知函数f(x)=a ln x+b(x+1)x,曲线y=f(x)在点(1,f(1))处的切线方程为y=2.(1)求a、b的值;(2)当x>0且x≠1时.求证:f(x)>(x+1)ln x x-1.【解析】解:(1)函数f(x)=a ln x+b(x+1)x的导数为f′(x)=ax-bx2,曲线y=f(x)在点(1,f(1))处的切线方程为y=2,可得f(1)=2b=2,f′(1)=a-b=0,解得a=b=1;(2)证明:当x>1时,f(x)>(x+1)ln x x-1,即为ln x+1+1x>ln x+2ln xx-1,即x-1x-2ln x>0,当0<x<1时,f(x)>(x+1)ln x x-1,即为x-1x-2ln x<0,设g(x)=x-1x-2ln x,g′(x)=1+1x2-2x=(x-1)2x2≥0,可得g(x)在(0,+∞)递增,当x>1时,g(x)>g(1)=0,即有f(x)>(x+1)ln x x-1;当0<x<1时,g(x)<g(1)=0,即有f(x)>(x+1)ln x x-1.综上可得,当x>0且x≠1时,f(x)>(x+1)ln xx-1都成立.3.已知二次函数g(x)对任意实数x都满足g(x-1)+g(1-x)=x2-2x-1,且g(1)=-1,令f(x)=g x+12+m ln x+98(m∈R,x>0).(1)求g(x)的表达式;(2)设1<m≤e,H(x)=f(x)-(m+1)x.证明:对任意x1,x2∈[1,m],恒有|H(x1)-H(x2)|<1.【解析】(1)解:设g(x)=ax2+bx+c,于是g(x-1)+g(1-x)=2a(x-1)2+2c=(x-1)2-2,所以a=0.5,c=-1,又g(1)=-1,则b=-0.5.所以g(x)=0.5x2-0.5x-1.⋯(5分)(2)证明:因为对∀x∈[1,m],H′(x)=(x-1)(x-m)x≤0,所以H(x)在[1,m]内单调递减.于是|H(x1)-H(x2)|≤H(1)-H(m)=0.5m2-m ln m-0.5证明|H(x1)-H(x2)|<1,即证明0.5m-ln m-32m<0,记h(m)=0.5m-ln m-32m(1<m≤e),则h′(m)=321m-132+13>0,所以函数h(m)=0.5m-ln m-32m在(1,e]是单调增函数,所以h(m)≤h(e)=(e-3)(e+1)2e<0,故命题成立.⋯(12分)4.已知函数f(x)=ln x+ax-l(a∈R).(1)讨论函数f(x)的单调性;(2)若函数f(x)图象过点(1,0),求证:e-xx+ln x+x-1≥0.【解析】解:(1)函数f(x)的定义域为(0,+∞),又f′(x)=1x+a=ax+1x,当a≥0时,f′(x)>0,f(x)在(0,+∞)上单调递增;当a<0时,由f′(x)=0得x=-1 a,若x∈0,-1 a,f′(x)>0,则f(x)在0,-1a上单调递增;若x∈-1a,+∞,f′(x)<0,则f(x)在-1a,+∞上单调递减;(2)证明:函数f(x)图象过点(1,0),可得a=1,此时f(x)=ln x+x-1,要证e-xx+ln x+x-1≥0,令g(x)=1xe-x+ln x+x-1(x>0),则g′(x)=-x+1x2e-x+x+1x=(x+1)(xe x-1)x2e x,令y=xe x-1,则y′=(x+1)e x,当x∈(0,+∞)时,y′>0,故y=xe x-1在(0,+∞)上单调递增,由g′(x)=0,即xe x-1=0,故存在x0∈(0,+∞)使得x0e x0=1,此时e x0=1x0,故x0=-ln x0,当x∈(0,x0)时,g′(x)<0,当x∈(x0,+∞)时,g′(x)>0,∴函数g(x)在(0,x0)上单减,在(x0,+∞)上单增,故当x=x0时,g(x)有最小值g(x0)=1x0e x0+ln x0+x0-1=0,∴e-xx+ln x+x-1≥0成立,即得证.5.已知函数f(x)=ln x+ax-1(a∈R).(Ⅰ)讨论函数f (x )的单调性;(Ⅱ)若函数f (x )图象过点(1,0),求证:e -x +xf (x )≥0.【解析】解:(Ⅰ)函数f (x )的定义域为(0,+∞),f (x )=1x +a =ax +1x.当a ≥0时,f (x )>0,f (x )在(0,+∞)上单调递增;当a <0时,由f (x )=0,得x =-1a .若x ∈0,-1a,f(x )>0,f (x )单调递增;若x ∈-1a ,+∞ ,f (x )<0,f (x )单调递减综合上述:当a ≥0时,f (x )在(0,+∞)上单调递增;当a <0时,f (x )在0,-1a 单调递增,在-1a,+∞ 上单调递减.(Ⅱ)证明:函数f (x )图象过点(1,0),∴ln1+a -1=0,解得a =1.e -x+xf (x )≥0.即e -xx+ln x +x -1≥0.(x >0).令g (x )=e -x x +ln x +x -1≥0.(x >0).g ′(x )=-x +1x e -x +x +1x =(x +1)(xe x -1)x 2e x .令h (x )=xe x -1,h ′(x )=(x +1)e x ,∴函数h (x )在(0,+∞)上单调递增,∴存在x 0∈(0,+∞),使得x 0e x 0=1,可得e x 0=1x 0,x 0=-ln x 0.∴g (x )≥g (x 0)=1-x 0+x 0-1=0.∴e -x +xf (x )≥0成立.6.已知函数f (x )=ln x +ax 2+(2a +1)x .(1)讨论f (x )的单调性;(2)当a <0时,证明:f (x )≤-34a-2;(3)若不等式f (x )>0恰有两个整数解,求实数a 的取值范围.【解析】解:(1)由题意,得f (x )的定义域为(0,+∞),f ′(x )=1x +2ax +2a +1=(x +1)(2ax +1)x.若a ≥0,则当x ∈(0,+∞)时,f ′(x )>0,故f (x )在(0,+∞)上单调递增,若a <0,则当x ∈0,-12a 时,f ′(x )>0,当x ∈-12a ,+∞ 时f ′(x )<0,故f (x )在0,-12a上单调递增,在-12a ,+∞ 上单调递减.综上所述,若a ≥0,f (x )在(0,+∞)上单调递增;若a <0,f (x )在0,-12a上单调递增,在-12a,+∞ 上单调递减.(2)由(1)知,当a <0时,f (x )在=-12a取得最大值,最大值为f -12a =ln -12a -1-14a,所以f (x )≤-34a -2等价于ln -12a -1-14a ≤-34a-2,设g (x )=ln x -x +1,则g ′(x )=1x -1,当x ∈(0,1)时,g ′(x )>0;当x ∈(1,+∞)时,g ′(x )<0,所以g (x )在(0,1)上单调递增,在(1,+∞)上单调递减,故当x =1时,g (x )取得最大值,最大值为g (1)=0,所以当x >0时,g (x )≤0,从而当a <0时,-12a >0,ln -12a +12a+1≤0,即f (x )≤-34a-2.(3)①当a ≥0时,由(1)知f (x )在(0,+∞)上单调递增,因为f (1)=1+3a >0,所以当x >1时,f (x )>0恒成立,不符合题意;②当a <0时,由(1)知f (x )在0,-12a 上单调递增,在-12a,+∞ 上单调递减,且f (x )max =f -12a ≤-34a-2,(i )当a ≤-38时,此时-34a-2≤0,所以f (x )max ≤0,即f (x )≤0恒成立,显然不满足题意;(ii )当-38<a <0时,此时-12a ∈43,+∞ ,1°当-12a ∈43,2 ,即-38<a <-14时,此时结合题意有f 1 >0f 2 >0或f 3 ≤0f 1 ≤0f 2 >0,解得-13<a ≤-3+ln315⋅f 3 >02°当-12a ≥2时,即-14≤a <0时,此时f (1)=1+3a >0,f (2)=2+ln2+8a >0,f (3)=3+ln3+15a >0,与题意矛盾.综上所述,a 的取值范围为-13,-3+ln315.7.已知函数f (x )=a -ln x x.(1)若f(x)在x=1处取得极值,求实数a的值;(2)讨论f(x)在(0,1)上的单调性;(3)证明:在(1)的条件下f(x)+xe x>0.【解析】(1)解:因为f′(x)=-1-a+ln xx2,f(x)在x=1处取得极值,则f (1)=0,所以-1-a+ln1=0,解得a=-1,验证知a=-1符合条件.(2)解:f′(x)=-1-a+ln xx2,当a≥-1时,在x∈(0,1)上,f′(x)<0恒成立,f(x)单调递减;当a<-1时,令f′(x)=0,解得x=e a+1,当x∈(0,e a+1)时,f′(x)<0,f(x)单调递减,当x∈(e a+1,1)时,f′(x)>0,f(x)单调递增.综上,当a≥-1时,f(x)在(0,1)上单调递减;当a<-1时,f(x)在(0,e a+1)上单调递减,在(e a+1,1)上单调递增.(3)证明:由(1)知f(x)=-1-ln xx,则f(x)+xe x=x2e x-ln x-1x,令g(x)=x2e x-ln x-1,g′(x)=2xe x+x2e x-1x,g′(x)在(0,+∞)上单调递增,当x→0时,g′(x)→-∞,当x=12时,g′12=54e12-2=5e-84>0,则∃x0∈0,1 2,使g′(x0)=0,即e x0=1x02(x0+2),则当x∈(0,x0)时,g′(x)<0,g(x)单调递减,当(x0,+∞)时,g′(x)>0,g(x)单调递增,所以g(x)≥g(x0)=1x0+2-ln x0-1,令h(x)=1x+2-ln x-1,x∈0,12,h′(x)=-1(x+2)2-1x<0,所以h(x)单调递减,所以h(x)>h12=ln2-35>0,所以g(x)>0,所以f(x)+xe x>0,得证.。

高中数学必修一第二章一元二次函数方程和不等式典型例题(带答案)

高中数学必修一第二章一元二次函数方程和不等式典型例题(带答案)

高中数学必修一第二章一元二次函数方程和不等式典型例题单选题1、已知x >0,则下列说法正确的是( ) A .x +1x −2有最大值0B .x +1x −2有最小值为0 C .x +1x−2有最大值为-4D .x +1x−2有最小值为-4答案:B分析:由均值不等式可得x +1x ≥2√x ×1x =2,分析即得解 由题意,x >0,由均值不等式x +1x≥2√x ×1x=2,当且仅当x =1x,即x =1时等号成立故x +1x −2≥0,有最小值0 故选:B2、不等式x (2x +7)≥−3的解集为( ) A .(−∞,−3]∪[−12,+∞)B .[−3,−12] C .(−∞,−2]∪[−13,+∞)D .[−2,−13] 答案:A分析:解一元二次不等式即可.x (2x +7)≥−3可变形为2x 2+7x +3≥0, 令2x 2+7x +3=0,得x 1=−3,x 2=−12,所以x ≤−3或x ≥−12,即不等式的解集为(−∞,−3]∪[−12,+∞).故选:A.3、已知命题“∀x ∈R ,4x 2+(a −2)x +14>0”是假命题,则实数a 的取值范围为( ) A .(−∞,0]∪[4,+∞)B .[0,4] C .[4,+∞)D .(0,4)答案:A分析:先求出命题为真时实数a的取值范围,即可求出命题为假时实数a的取值范围.若“∀x∈R,4x2+(a−2)x+14>0”是真命题,即判别式Δ=(a−2)2−4×4×14<0,解得:0<a<4,所以命题“∀x∈R,4x2+(a−2)x+14>0”是假命题,则实数a的取值范围为:(−∞,0]∪[4,+∞).故选:A.4、设a>b>c>0,则2a2+1ab +1a(a−b)−10ac+25c2取得最小值时,a的值为()A.√2B.2C.4D.2√5答案:A解析:转化条件为原式=1ab +ab+1a(a−b)+a(a−b)+(a−5c)2,结合基本不等式即可得解.2a2+1ab+1a(a−b)−10ac+25c2=1ab+ab+1a(a−b)+a(a−b)−ab−a(a−b)+2a2−10ac+25c2 =1ab+ab+1a(a−b)+a(a−b)+a2−10ac+25c2=1ab+ab+1a(a−b)+a(a−b)+(a−5c)2≥2√1ab ⋅ab+2√1a(a−b)⋅a(a−b)+0=4,当且仅当{ab=1a(a−b)=1a=5c,即a=√2,b=√22,c=√25时,等号成立.故选:A.小提示:易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.5、若“﹣2<x <3”是“x 2+mx ﹣2m 2<0(m >0)”的充分不必要条件,则实数m 的取值范围是( ) A .m ≥1B .m ≥2C .m ≥3D .m ≥4 答案:C分析:x 2+mx ﹣2m 2<0(m >0),解得﹣2m <x <m .根据“﹣2<x <3”是“x 2+mx ﹣2m 2<0(m >0)”的充分不必要条件,可得﹣2m ≤﹣2,3≤m ,m >0.解出即可得出. 解:x 2+mx ﹣2m 2<0(m >0),解得﹣2m <x <m .∵“﹣2<x <3”是“x 2+mx ﹣2m 2<0(m >0)”的充分不必要条件,∴﹣2m ≤﹣2,3≤m ,(两个等号不同时取)m >0. 解得m ≥3.则实数m 的取值范围是[3,+∞). 故选:C.6、关于x 的不等式ax 2−(a 2+1)x +a <0的解集为{x|x 1<x <x 2},且x 2−x 1=1,则a 2+a −2=( ) A .3B .32C .2D .23答案:A分析:根据一元二次不等式与解集之间的关系可得x 1+x 2=a +1a 、x 1x 2=1,结合 (x 2−x 1)2=(x 1+x 2)2−4x 1x 2计算即可.由不等式ax 2−(a 2+1)x +a <0的解集为{x |x 1<x <x 2}, 得a >0,不等式对应的一元二次方程为ax 2−(a 2+1)x +a =0, 方程的解为x 1、x 2,由韦达定理,得x 1+x 2=a 2+1a=a +1a ,x 1x 2=1,因为x 2−x 1=1,所以(x 2−x 1)2=(x 1+x 2)2−4x 1x 2=1, 即(a +1a )2−4=1,整理,得a 2+a −2=3. 故选:A7、已知关于x 的不等式ax 2+bx +c <0的解集为{x|x <−1或x >4},则下列说法正确的是( )A.a>0B.不等式ax2+cx+b>0的解集为{x|2−√7<x<2+√7}C.a+b+c<0D.不等式ax+b>0的解集为{x|x>3}答案:B分析:根据解集形式确定选项A错误;化不等式为x2−4x−3<0,即可判断选项B正确;设f(x)=ax2+ bx+c,则f(1)>0,判断选项C错误;解不等式可判断选项D错误.解:因为关于x的不等式ax2+bx+c<0的解集为{x|x<−1或x>4},所以a<0,所以选项A错误;由题得{a<0−1+4=−ba−1×4=ca,∴b=−3a,c=−4a,所以ax2+cx+b>0为x2−4x−3<0,∴2−√7<x<2+√7.所以选项B正确;设f(x)=ax2+bx+c,则f(1)=a+b+c>0,所以选项C错误;不等式ax+b>0为ax−3a>0,∴x<3,所以选项D错误.故选:B8、不等式1+x1−x≥0的解集为()A.{x|x≥1或x≤−1}B.{x∣−1≤x≤1} C.{x|x≥1或x<−1}D.{x|−1≤x<1}答案:D分析:不等式等价于x+1x−1≤0,即(x+1)(x−1)≤0,且x−1≠0,由此求得不等式的解集.不等式等价于x+1x−1≤0,即(x+1)(x−1)≤0,且x−1≠0,解得−1≤x<1,故不等式的解集为{x|−1≤x<1},故选:D.多选题9、已知关于x的不等式ax2+bx+c>0解集为{x|−2<x<3},则()A.a>0B.不等式ax+c>0的解集为{x|x<6}C.a+b+c>0D.不等式cx2−bx+a<0的解集为{x|−13<x<12}答案:BCD解析:根据已知条件得−2和3是方程ax2+bx+c=0的两个实根,且a<0,根据韦达定理可得b=−a,c=−6a,根据b=−a,c=−6a且a<0,对四个选项逐个求解或判断可得解.因为关于x的不等式ax2+bx+c>0解集为{x|−2<x<3},所以−2和3是方程ax2+bx+c=0的两个实根,且a<0,故A错误;所以−2+3=−ba ,−2×3=ca,所以b=−a,c=−6a,所以不等式ax+c>0可化为ax−6a>0,因为a<0,所以x<6,故B正确;因为a+b+c=a−a−6a=−6a,又a<0,所以a+b+c>0,故C正确;不等式cx2−bx+a<0可化为−6ax2+ax+a<0,又a<0,所以−6x2+x+1>0,即6x2−x−1<0,即(3x+1)(2x−1)<0,解得−13<x<12,故D正确.故选:BCD.小提示:利用一元二次不等式的解集求出参数a,b,c的关系是解题关键.本题根据韦达定理可得所要求的关系,属于中档题.10、设0<b<a<1,则下列不等式不成立的是()A.ab<b2<1B.√a<√b<1C.1<1a <1bD.a2<ab<1答案:ABD分析:对于ABD举例判断即可,对于C,利用不等式的性质判断对于A,取a=12,b=13,则ab=16>b2=19,所以A错误,对于B,取a=14,b=19,则√a=12>√b=13,所以B错误,对于C,因为0<b<a<1,所以1ab >0,所以b⋅1ab<a⋅1ab,即1a<1b,因为0<a<1,所以0<a⋅1a <1×1a,即1<1a,综上1<1a<1b,所以C正确,对于D,取a=12,b=13,则ab=16<a2=14,所以D错误,故选:ABD11、下面所给关于x的不等式,其中一定为一元二次不等式的是()A.3x+4<0B.x2+mx-1>0C.ax2+4x-7>0D.x2<0答案:BD分析:利用一元二次不等式的定义和特征对选项逐一判断即可.选项A是一元一次不等式,故错误;选项B,D,不等式的最高次是二次,二次项系数不为0,故正确;当a=0时,选项C是一元一次不等式,故不一定是一元二次不等式,即错误.故选:BD.填空题12、若x>0,y>0,xy=10,则2x +5y的最小值为_____.答案:2分析:化简2x +5y=2x+102y=2x+xy2y=2x+x2,结合基本不等式,即可求解.由x>0,y>0,xy=10,则2x +5y=2x+102y=2x+xy2y=2x+x2≥2√2x×x2=2,当且仅当x=2时取“=”,即2x +5y的最小值为2.所以答案是:2.13、已知x,y为正数,且12+x +4y=1,则x+y的最小值为________.答案:7解析:由题设等式有x+y+2=5+y2+x +4(x+2)y,利用基本不等式可求x+y+2的最小值,从而可得x+y的最小值.x+y+2=[(x+2)+y]×(1x+2+4y)=5+y2+x+4(x+2)y,由基本不等式有y2+x +4(x+2)y≥4,当且仅当x=1,y=6时等号成立,故x+y+2的最小值为9即x+y的最小值为7.所以答案是:7.小提示:应用基本不等式求最值时,需遵循“一正二定三相等”,如果原代数式中没有积为定值或和为定值,则需要对给定的代数变形以产生和为定值或积为定值的局部结构.求最值时要关注取等条件的验证.14、已知函数f(x)=√mx2+mx+1的定义域是R,则m的取值范围为______.答案:[0,4]分析:根据函数的定义域为R可得mx2+mx+1≥0对x∈R恒成立,对参数m的取值范围分类讨论,分别求出对应m 的范围,进而得出结果.因为函数f(x)=√mx2+mx+1的定义域为R,所以mx2+mx+1≥0对x∈R恒成立,当m=0时,mx2+mx+1=1>0,符合题意;当m>0时,由Δ=m2-4m≤0,解得0<m≤4;当m<0时,显然mx2+mx+1不恒大于或等于0.综上所述,m的取值范围是[0,4].所以答案是:[0,4].解答题15、设a,b,c∈R,a+b+c=0,abc=1.(1)证明:ab+bc+ca<0;(2)用max{a,b,c}表示a,b,c中的最大值,证明:max{a,b,c}≥√43.答案:(1)证明见解析(2)证明见解析.分析:(1)方法一:由(a+b+c)2=a2+b2+c2+2ab+2ac+2bc=0结合不等式的性质,即可得出证明;(2)方法一:不妨设max{a,b,c}=a,因为a+b+c=0,abc=1,所以a>0,b<0,c<0,a=(−b)+(−c)≥2√bc=2√1a ,则a3≥4,a≥√43.故原不等式成立.(1)[方法一]【最优解】:通性通法∵(a+b+c)2=a2+b2+c2+2ab+2ac+2bc=0,∴ab+bc+ca=−12(a2+b2+c2).∵abc=1,∴a,b,c均不为0,则a2+b2+c2>0,∴ab+bc+ca=−12(a2+b2+c2)<0.[方法二]:消元法由a+b+c=0得b=−(a+c),则ab+bc+ca=b(a+c)+ca=−(a+c)2+ac=−(a2+ac+c2)=−(a +c 2)2−34c 2≤0,当且仅当a =b =c =0时取等号,又abc =1,所以ab +bc +ca <0. [方法三]:放缩法方式1:由题意知a ≠0, a +b +c =0, a =−(c +b ), a 2=(c +b )2=c 2+b 2+2cb ≥4bc ,又ab +bc +ca =a (b +c )+bc =−a 2+bc ≤−a 2+a 24=−3a 24<0,故结论得证.方式2:因为a +b +c =0,所以0=(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ca=12[(a 2+b 2)+(b 2+c 2)+(c 2+a 2)]+2ab +2bc +2ca ≥12(2ab +2bc +2ca )+2ab +2bc +2ca =3(ab +bc +ca ).即ab +bc +ca ≤0,当且仅当a =b =c =0时取等号, 又abc =1,所以ab +bc +ca <0. [方法四]:因为a +b +c =0,abc =1,所以a ,b ,c 必有两个负数和一个正数,不妨设a ≤b <0<c,则a =−(b +c ), ∴ab +bc +ca =bc +a (c +b )=bc −a 2<0. [方法五]:利用函数的性质方式1:6b =−(a +c ),令f (c )=ab +bc +ca =−c 2−ac −a 2, 二次函数对应的图像开口向下,又abc =1,所以a ≠0, 判别式Δ=a 2−4a 2=−3a 2<0,无根, 所以f (c )<0,即ab +bc +ca <0.方式2:设f (x )=(x −a )(x −b )(x −c )=x 3+(ab +bc +ca )x −1, 则f (x )有a ,b ,c 三个零点,若ab +bc +ca ≥0, 则f (x )为R 上的增函数,不可能有三个零点, 所以ab +bc +ca <0.(2)[方法一]【最优解】:通性通法不妨设max {a,b,c }=a ,因为a +b +c =0,abc =1,所以a >0, b <0, c <0, a =(−b )+(−c )≥2√bc =2√1a,则a 3≥4,a ≥√43.故原不等式成立. [方法二]:不妨设max {a,b,c }=a ,因为a +b +c =0,abc =1,所以a >0,且{b +c =−a,bc =1a , 则关于x 的方程x 2+ax +1a =0有两根,其判别式Δ=a 2−4a ≥0,即a ≥√43. 故原不等式成立. [方法三]:不妨设max {a,b,c }=a ,则a >0, b =−(a +c ), abc =1, −(a +c )ac =1, ac 2+a 2c +1=0,关于c 的方程有解,判别式Δ=(a 2)2−4a ≥0,则a 3≥4,a ≥√43.故原不等式成立. [方法四]:反证法假设max {a,b,c }<√43,不妨令a ≤b <0<√43,则ab =1c >√43,−a −b =c <√43,又√43>−a −b ≥2√ab >√√43=21−13=√43,矛盾,故假设不成立.即max {a,b,c }≥√43,命题得证.【整体点评】(1)方法一:利用三项平方和的展开公式结合非零平方为正数即可证出,证法常规,为本题的通性通法,也是最优解法;方法二:利用消元法结合一元二次函数的性质即可证出;方法三:利用放缩法证出;方法四:利用符号法则结合不等式性质即可证出;方法五:利用函数的性质证出. (2)方法一:利用基本不等式直接证出,是本题的通性通法,也是最优解;方法二:利用一元二次方程根与系数的关系以及方程有解的条件即可证出;方法三:利用消元法以及一元二次方程有解的条件即可证出;方法四:利用反证法以及基本不等式即可证出.。

重要不等式汇总(例题答案)

重要不等式汇总(例题答案)

其他不等式综合问题例1:(第26届美国数学奥题之一)设a 、b 、c ∈R +,求证:.1111333333abcabc a c abc c b abc b a ≤++++++++(1)分析;最初,某刊物给出了一种通分去分母的较为复杂的证法,这里试从分析不等式的结构出发,导出该不等式的编拟过程,同时,揭示证明此类问题的真谛,并探索其推广命题成功的可能性。

思考方向:(1)的左边较为复杂,而右边较为简单,所以,证明的思想应该从左至右进行, 思考方法:(1)从左至右是一个由简单到复杂的逐步放大过程,所以,一个简单的想法就是将各分母设法缩小,但考虑到各分母结构的相似性,故只要对其中之一做恰倒好处的变形,并构造出右边之需要即便大功告成.实施步骤;联想到高中课本上熟知的不等式:x 3+y 3≥x 2y+xy 2=xy(x+y) (x 、y ∈R +)(*)知 (1)的左端.1)(1)(1)(1abcabc a c ca abc c b bc abc b a ab =++++++++≤这一证明是极其简单的,它仅依赖高中数学课本上的基础知识,由此可见,中学课本上的知识也能用来攻克高层次的数学竞赛题,看来,我们要好好守住课本这快阵地。

(1)刻画了3个变量的情形,左端的三个分式分母具有如下特征:三个字母中取两个的三次方与这三个变量的乘积之和,那么,对于更多个变量会有怎样的结论?以下为行文方便,记 (1)的左端为 ∑++abcb a 331,表示对a 、b 、c 轮换求和,以下其它的类似处理,不再赘述,为了搞清多个变量时(1)的演变,首先从4个变量时的情形入手,推广1:设a 、b 、c 、d ∈R +,求证:abcdabcd c b a 11333≤∑+++ 。

(2) 分析:注意到上面的(*),要证(2),需要证 x 4+y 4+z 4≥xyz(x+y+z) (**)(**)是(*)的发展,它的由来得益于证明(1)时用到的(*),这是一条有用的思维发展轨道。

高中数学不等式高考真题精选和解析

高中数学不等式高考真题精选和解析

高中数学不等式高考真题精选和解析1.(2020·全国卷Ⅱ)已知函数f(x)=|x-a2|+|x-2a+1|.(1)当a=2时,求不等式f(x)≥4的解集;(2)若f(x)≥4,求a的取值范围.2.(2020·全国卷Ⅰ)已知函数f(x)=|3x+1|-2|x-1|.(1)画出y=f(x)的图象;(2)求不等式f(x)>f(x+1)的解集.2.(2020·全国卷Ⅲ)设a,b,c∈R,a+b+c=0,abc=1.(1)证明:ab+bc+ca<0;(2)用max{a,b,c}表示a,b,c中的最大值,证明:max{a,b,c}≥3 4.4.(2019·全国卷Ⅰ)已知a,b,c为正数,且满足abc=1.证明:(1)1a +1b+1c≤a2+b2+c2;(2)(a+b)3+(b+c)3+(c+a)3≥24.5.已知函数f(x)=|x+1|+|2x-1|.(1)解不等式f(x)≤x+3;(2)若g(x)=|3x-2m|+|3x-2|,对任意的x1∈R,存在x2∈R,使得f(x1)=g(x2)成立,求实数m的取值范围.6.已知函数f(x)=|2x+1|+|x-1|.(1)求不等式f(x)≥3的解集;(2)若直线y=x+a与y=f(x)的图象所围成的多边形面积为92,求实数a的值.答案解析1.解 (1)当a =2时,f (x )=|x -4|+|x -3|.当x ≤3时,f (x )=4-x +3-x =7-2x ,由f (x )≥4,解得x ≤32;当3<x <4时,f (x )=4-x +x -3=1,f (x )≥4无解; 当x ≥4时,f (x )=x -4+x -3=2x -7,由f (x )≥4,解得x ≥112. 综上所述,f (x )≥4的解集为⎩⎨⎧⎭⎬⎫x |x ≤32或x ≥112. (2)f (x )=|x -a 2|+|x -2a +1|≥|(x -a 2)-(x -2a +1)|=|-a 2+2a -1|=(a -1)2(当且仅当2a -1≤x ≤a 2时取等号),∴(a -1)2≥4,解得a ≤-1或a ≥3,∴a 的取值范围为(-∞,-1]∪[3,+∞).2.解 (1)f (x )=⎩⎪⎨⎪⎧ x +3,x ≥1,5x -1,-13<x <1,-x -3,x ≤-13,作出图象,如图所示.(2)将函数f (x )的图象向左平移1个单位,可得函数f (x +1)的图象,如图所示:由-x -3=5(x +1)-1,解得x =-76.所以不等式的解集为⎝ ⎛⎭⎪⎫-∞,-76.3. 证明 (1)∵(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc =0,∴ab +bc +ca =-12(a 2+b 2+c 2).由abc =1得a ,b ,c 均不为0,则a 2+b 2+c 2>0,∴ab +bc +ca =-12(a 2+b 2+c 2)<0.(2)不妨设max{a ,b ,c }=a ,由a +b +c =0,abc =1可知,a >0,b <0,c <0,∵a =-b -c ,a =1bc ,∴a 3=a 2·a =(b +c )2bc =b 2+c 2+2bc bc ≥2bc +2bc bc =4. 当且仅当b =c 时,取等号,∴a ≥34,即max{a ,b ,c }≥34.4. 证明 (1)因为a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ac , 又abc =1,故有a 2+b 2+c 2≥ab +bc +ca=ab +bc +ca abc=1a +1b +1c . 当且仅当a =b =c =1时,等号成立.所以1a +1b +1c ≤a 2+b 2+c 2.(2)因为a ,b ,c 为正数且abc =1,故有(a +b )3+(b +c )3+(c +a )3≥3 3(a +b )3(b +c )3(c +a )3=3(a +b )(b +c )(c +a ) ≥3×(2ab )×(2bc )×(2ca )=24.当且仅当a =b =c =1时,等号成立.所以(a +b )3+(b +c )3+(c +a )3≥24.5.(1)原不等式等价于⎩⎨⎧ x ≤-1,-3x ≤x +3或⎩⎪⎨⎪⎧ -1<x ≤12,-x +2≤x +3或⎩⎪⎨⎪⎧ x >12,3x ≤x +3,解得-12≤x ≤32,故原不等式的解集为⎩⎨⎧⎭⎬⎫x |-12≤x ≤32. (2)由f (x )=|x +1|+|2x -1|=⎩⎪⎨⎪⎧ -3x ,x ≤-1,-x +2,-1<x ≤12,3x ,x >12,可知当x =12时,f (x )最小,无最大值,且f (x )min =f ⎝ ⎛⎭⎪⎫12=32. 设A ={y |y =f (x )},B ={y |y =g (x )}, 则A =⎩⎨⎧⎭⎬⎫y |y ≥32,因为g (x )=|3x -2m |+|3x -2|≥|(3x -2m )-(3x -2)|=|2m -2|,所以B ={y |y ≥|2m -2|}.由题意知A ⊆B ,所以|2m -2|≤32,所以m ∈⎣⎢⎡⎦⎥⎤14,74. 故实数m的取值范围为⎩⎨⎧⎭⎬⎫m |14≤m ≤74.6.解 (1)由题意,得f (x )=⎩⎪⎨⎪⎧ 3x ,x ≥1,x +2,-12<x <1,-3x ,x ≤-12.当x ≥1时,由f (x )≥3得3x ≥3,解得x ≥1;当-12<x <1时,由f (x )≥3得x +2≥3,解得x ≥1, 这与-12<x <1矛盾,故舍去;当x ≤-12时,由f (x )≥3得-3x ≥3,解得x ≤-1.综上可知,不等式f (x )≥3的解集为{x |x ≤-1或x ≥1}.(2)画出函数y =f (x )的图象,如图所示,其中A ⎝ ⎛⎭⎪⎫-12,32,B (1,3), ∴k AB =3-321+12=1,∴直线y =x +a 与直线AB 平行.若要围成多边形,则a >2.易得直线y =x +a 与y =f (x )的图象交于两点C ⎝ ⎛⎭⎪⎫a 2,3a 2,D ⎝ ⎛⎭⎪⎫-a 4,3a 4,则|CD|=2·|a2+a4|=324a,平行线AB与CD间的距离d=|a-2|2=a-22,|AB|=322,∴梯形ABCD的面积S=322+324a2·a-22=32+34a2·(a-2)=92(a>2),即(a+2)(a-2)=12,∴a=4.故所求实数a的值为4.。

高中数学专题7-1 基本不等式和对钩函数(解析版)

高中数学专题7-1 基本不等式和对钩函数(解析版)

4
4
无法直接使用基本不等式,需要凑配位和定:
f (x) 4x(3 2x) 22x(3 2x) 2( 2x 3 2x)2 9 ;
2
2
再如:f (x) 4x 2 1 直接使用基本不等式,则 f (x) 4x 2 1 2 (4x 2) 1 ,
4x 5
4x 5
4x 5
发现积不定,则需要凑配为积定:
【答案】1
【详解】因为 a 1,所以 a 2 a 1 2 1 2 a 1 2 1 2 2 1,
a 1
a 1
a 1
当且仅当 a 1 2 时取等号.故 m 2 2 1, n 2 1,所以, 2n m 1. 故答案为:1. 2.(2022·云南·屏边苗族自治县第一中学高一阶段练习)( 若 x 2 ,求: x 2 的最小值.
【答案】(1) 9
【详解】(1)由题得 y 4x 1 1 4(x 1) 1 5,
x 1
x 1
因为 x 1,所以 x 1 0 ,
所以 4(x 1) 1 5 2 4(x 1) 1 5 9 ,
x 1
x 1
当且仅当 4(x 1) 1 ,即 x 3 时取得等号,
x 1
2
所以 y 4x 1 1 的最小值为 9 . x 1
y
4x2
9 x2
2
4x2
9 x2
12 ,
当且仅当 4x2
9 x2
,即 x
6 时取等号,
2
所以 ymin 12 , 故选:C.
2.(2022·黑龙江·哈尔滨工业大学附属中学校高二学业考试)若 x 0 ,则 x 1 1的最小 x
值是( )
A.0 【答案】B
B.1
C. 3 2

利用基本不等式求最值(解析版)-高中数学

利用基本不等式求最值(解析版)-高中数学

利用基本不等式求最值题型梳理【题型1直接法求最值】【题型2配凑法求最值】【题型3常数代换法求最值】【题型4消元法求最值】【题型5构造不等式法求最值】【题型6多次使用基本不等式求最值】【题型7实际应用中的最值问题】【题型8与其他知识交汇的最值问题】命题规律基本不等式是高考热点问题,是常考常新的内容,是高中数学中一个重要的知识点.题型通常为选择题或填空题,但它的应用范围很广,涉及到函数、三角函数、平面向量、立体几何、解析几何、导数等内容,它在高考中常用于大小判断、求最值、求最值范围等.在高考中经常考察运用基本不等式求函数或代数式的最值,具有灵活多变、应用广泛、技巧性强等特点.在复习中切忌生搬硬套,在应用时一定要紧扣“一正二定三相等”这三个条件灵活运用.知识梳理【知识点1利用基本不等式求最值的方法】1.利用基本不等式求最值的几种方法(1)直接法:条件和问题间存在基本不等式的关系,可直接利用基本不等式来求最值.(2)配凑法:利用配凑法求最值,主要是配凑成“和为常数”或“积为常数”的形式.(3)常数代换法:主要解决形如“已知x+y=t(t为常数),求的最值”的问题,先将转化为,再用基本不等式求最值.(4)消元法:当所求最值的代数式中的变量比较多时,通常考虑利用已知条件消去部分变量后,凑出“和为常数”或“积为常数”的形式,最后利用基本不等式求最值.(5)构造不等式法:构建目标式的不等式求最值,在既含有和式又含有积式的等式中,对和式或积式利用基本不等式,构造目标式的不等式求解.【知识点2基本不等式的实际应用】1.基本不等式的实际应用的解题策略(1)根据实际问题抽象出函数的解析式,再利用基本不等式求得函数的最值.(2)解应用题时,一定要注意变量的实际意义及其取值范围.(3)在应用基本不等式求函数的最值时,若等号取不到,则可利用函数的单调性求解.举一反三【题型1直接法求最值】1(2023上·北京·高一校考阶段练习)已知a>0,则a+1a+1的最小值为()A.2B.3C.4D.5【解题思路】用基本不等式求解即可.【解答过程】因为a>0,所以a+1a+1≥2a⋅1a+1=3,当且仅当a=1a即a=1时取等号;故选:B.【变式训练】1(2023·北京东城·统考一模)已知x>0,则x-4+4x的最小值为()A.-2B.0C.1D.22【解题思路】由基本不等式求得最小值.【解答过程】∵x>0,∴x+4x-4≥2x×4x-4=0,当且仅当x=4x即x=2时等号成立.故选:B.2(2023上·山东·高一统考期中)函数y=x2-x+9x(x>0)的最小值为()A.1B.3C.5D.9【解题思路】利用均值不等式求最小值即可.【解答过程】y=x2-x+9x=x+9x-1≥2x⋅9x-1=5,当且仅当x=9x,即x=3时等号成立,故选:C.3(2023下·江西·高三校联考阶段练习)3+1 x21+4x2的最小值为()A.93B.7+42C.83D.7+43【解题思路】依题意可得3+1 x21+4x2=7+1x2+12x2,再利用基本不等式计算可得.【解答过程】3+1 x21+4x2=7+1x2+12x2≥7+21x2⋅12x2=7+43,当且仅当1x2=12x2,即x4=112时,等号成立,故3+1 x21+4x2的最小值为7+4 3.故选:D.【题型2配凑法求最值】1(2023·浙江·校联考模拟预测)已知a>1,则a+16a-1的最小值为()A.8B.9C.10D.11【解题思路】运用基本不等式的性质进行求解即可.【解答过程】因为a>1,所以由a+16a-1=a-1+16a-1+1≥2a-1⋅16a-1+1=9,当且仅当a-1=16a-1时取等号,即a=5时取等号,故选:B.【变式训练】1(2023上·吉林·高一校考阶段练习)已知x>3,则y=2x-3+2x的最小值是()A.6B.8C.10D.12【解题思路】利用基本不等式求和的最小值,注意取值条件.【解答过程】由x-3>0,则y=2x-3+2(x-3)+6≥22x-3⋅2(x-3)+6=10,当且仅当x=4时等号成立,故最小值为10.故选:C.2(2023上·海南省直辖县级单位·高三校联考阶段练习)设x>2,则函数y=4x-1+4x-2,的最小值为()A.7B.8C.14D.15【解题思路】利用基本不等式求解.【解答过程】因为x>2,所以x-2>0,所以y=4x-1+4x-2=4x-2+4x-2+7≥24x-2⋅4x-2+7=15,当且仅当4x -2 =4x -2,即x =3时等号成立,所以函数y =4x -1+4x -2的最小值为15,故选:D .3(2023上·辽宁·高一校联考期中)若x >0,y >0且满足x +y =xy ,则2xx -1+4y y -1的最小值为()A.6+26B.4+62C.2+46D.6+42【解题思路】结合条件等式,利用基本不等式求和的最小值.【解答过程】若x >0,y >0且满足x +y =xy ,则有1x +1y=1,所以x >1,y >1,2x x -1+4y y -1=2x -1 +2x -1+4y -1 +4y -1=6+2x -1+4y -1≥6+22x -1⋅4y -1=6+28xy -x +y +1=6+42,当且仅当2x -1=4y -1,即x =1+22,y =1+2时等号成立.所以2x x -1+4y y -1的最小值为6+4 2.故选:D .【题型3 常数代换法求最值】1(2023上·内蒙古通辽·高三校考阶段练习)已知a >0,b >0,若2a +3b=1,则2a +b3的最小值是()A.8B.9C.10D.11【解题思路】利用基本不等式“1”的应用即可求解.【解答过程】由题意得a >0,b >0,2a +3b=1,所以2a +b 3=2a +b 3 2a +3b =4+1+2b 3a +6ab ≥5+22b 3a ×6a b=9,当且仅当2b 3a =6ab 时,即a =3,b =9,取等号,故B 项正确.故选:B .【变式训练】1(2023·河南·校联考模拟预测)已知正实数a ,b ,点M 1,4 在直线xa +y b=1上,则a +b 的最小值为()A.4B.6C.9D.12【解题思路】根据题意可得1a+4b=1,结合基本不等式运算求解.【解答过程】由题意得1a+4b=1,且a>0,b>0,故a+b=a+b⋅1a+4b=5+b a+4a b≥5+2b a×4a b=9,当且仅当ba=4ab,即a=3,b=6时,等号成立.故选:C.2(2023上·重庆·高一统考期末)若正实数x,y满足2x+8y-xy=0,则2x+y的最大值为()A.25B.16C.37D.19【解题思路】根据等式计算得出1,再结合常值代换求和的最值,计算可得最大值.【解答过程】∵x>0,y>0,2x+8y-xy=0,∴2y+8x=1,x+y=x+y2y+8x=2x y+8+2+8y x≥22x y×8y x+10=18,∴2 x+y ≤218=19.故选:D.3(2023·重庆·统考一模)已知a,b为非负实数,且2a+b=1,则2a2a+1+b2+1b的最小值为()A.1B.2C.3D.4【解题思路】首先根据题意求出0≤a<12,0<b≤1,然后将原式变形得2a2a+1+b2+1b=2a+1+1b-1,最后利用1的妙用即可求出其最值.【解答过程】∵2a+b=1,且a,b为非负实数,b≠0,则a≥0,b>0则b=1-2a>0,解得0≤a<12,2a=1-b≥0,解得0<b≤1,∴2a2 a+1+b2+1b=2(a+1)2-4(a+1)+2a+1+b2+1b=2(a+1)-4+2a+1+b+1b=(2a+b-2)+2a+1+1b=2a+1+1b-12 a+1+1b=42a+2+1b=13(2a+2)+b⋅42a+2+1b=135+4b2a+2+2a+2b≥135+24b2a+2⋅2a+2b=3,当且仅当4b2a+2=2a+2b即2a+2=2b,2a+b=1时,即b=1,a=0时等号成立,故2a+1+1b-1min=2,故选:B.【题型4消元法求最值】1(2023上·江苏·高一校联考阶段练习)已知正数x,y满足3x-4=9y,则x+8y的最小值为12.【解题思路】根据指数方程,得出x,y的关系式,运用消元法将所求式化成关于y的关系式,再利用基本不等式求解.【解答过程】由3x-4=9y,可得x-4=2y,即x=2y+4,代入x+8y中,可得2y+4+8y=2y+8y+4≥22y⋅8y+4=12,当且仅当y=2,x=8时,取等号,所以x+8y的最小值为12.故答案为:12.【变式训练】1(2023上·安徽池州·高一统考期中)已知x,y∈R+,若2x+y+xy=7,则x+2y的最小值为62-5.【解题思路】根据题意,化简得到x+2y=x2-3x+14x+1,设t=x+1,求得x2-3x+14x+1=t+18t-5,结合基本不等式,即可求解.【解答过程】由x,y∈R+,且2x+y+xy=7,可得y=7-2xx+1,则x+2y=x+2×7-2xx+1=x2-3x+14x+1,设t=x+1,可得x=t-1且t>1,可得x2-3x+14x+1=t2-5t+18t=t+18t-5≥2t⋅18t-5=62-5,当且仅当t=18t时,即t=32时,等号成立,所以x+2y的最小值为62-5.故答案为:62-5.2(2023上·山东淄博·高一校考阶段练习)已知正实数a,b,且2a+b+6=ab,则a+2b的最小值为13.【解题思路】根据基本不等式即可求解.【解答过程】由2a+b+6=ab可得a=b+6b-2>0,由于b>0,所以b>2,故a+2b=b+6b-2+2b=8b-2+2b-2+5,由于b>2,所以8b-2+2b-2≥216=8,当且仅当b=4时等号成立,故a+2b=8b-2+2b-2+5≥13,故a+2b的最小值为13,故答案为:13.3(2023·上海崇明·统考一模)已知正实数a, b, c, d满足a2-ab+1=0,c2+d2=1,则当(a-c)2+(b-d)2取得最小值时,ab=22+1.【解题思路】将(a-c)2+(b-d)2转化为a,b与c,d两点间距离的平方,进而转化为a,b与圆心0,0的距离,结合基本不等式求得最小值,进而分析求解即可.【解答过程】可将(a-c)2+(b-d)2转化为a,b与c,d两点间距离的平方,由a2-ab+1=0,得b=a+1 a,而c2+d2=1表示以0,0为圆心,1为半径的圆,c,d为圆上一点,则a,b与圆心0,0的距离为:a2+b2=a2+a+1 a2=2a2+1a2+2≥22a2⋅1a2+2= 22+2,当且仅当2a2=1a2,即a=±412时等号成立,此时a,b与圆心0,0的距离最小,即a,b与c,d两点间距离的平方最小,即(a-c)2+(b-d)2取得最小值.当a=412时,ab=a2+1=22+1,故答案为:22+1.【题型5构造不等式法求最值】1(2023下·河南·高三校联考阶段练习)已知2a+b=ab(a>0,b>0),下列说法正确的是()A.ab的最大值为8B.1a-1+2b-2的最小值为2C.a+b有最小值3+2D.a2-2a+b2-4b有最大值4【解题思路】根据基本不等式运用的三个条件“一正、二定、三相等”,可知ab≥8,所以A错误;将原式化成a-1b-2=2,即可得1a-1+2b-2=1a-1+a-1≥2,即B正确;不等式变形可得2b+1a=1,利用基本不等式中“1”的妙用可知a+b≥3+22,C错误;将式子配方可得a2-2a+b2 -4b=(a-1)2+(b-2)2-5,再利用基本不等式可得其有最小值-1,无最大值,D错误.【解答过程】对于A选项,ab=2a+b≥22ab,即ab≥22,故ab≥8,当且仅当a=2,b=4时等号成立,故ab的最小值为8,A错误;对于B选项,原式化为a-1b-2=2,b=2aa-1>0,故a-1>0;a=bb-2>0,故b-2>0;所以1a-1+2b-2=1a-1+a-1≥2,当且仅当a=2,b=4时等号成立,B正确;对于C选项,原式化为2b+1a=1,故a+b=a+b2b+1a=2a b+1+2+b a≥3+22,当且仅当a=2+1,b=2+2时等号成立,C错误;对于D选项,a2-2a+b2-4b=(a-1)2+(b-2)2-5≥2a-1b-2-5=-1,当且仅当a=1+2,b=2+2时等号成立,故有最小值-1,D错误.故选:B.【变式训练】1(2022上·山东青岛·高一青岛二中校考期中)已知x>0,y>0,且x+y+xy-3=0;则下列结论正确的是()A.xy的最小值是1B.x+y的最小值是2C.x+4y的最小值是8D.x+2y的最大值是42-3【解题思路】利用基本不等式得x+y+xy-3≥(xy+3)(xy-1)、x+y+xy-3≤(x+y)24+(x+y)-3分别求xy、x+y的最值,注意取等条件;由题设有x=3-yy+1且0<y<3代入x+4y、x+2y,结合基本不等式求最值,注意取等条件.【解答过程】由x+y+xy-3≥xy+2xy-3=(xy+3)(xy-1),当且仅当x=y=1时等号成立,即(xy+3)(xy-1)≤0,又x>0,y>0,故0<xy≤1,仅当x=y=1时等号成立,所以0<xy≤1,故xy的最大值是1,A错误;由x+y+xy-3≤(x+y)24+(x+y)-3,当且仅当x=y=1时等号成立,所以(x+y)24+(x+y)-3≥0,即(x+y+6)(x+y-2)≥0,又x>0,y>0,则x+y≥2,仅当x=y=1时等号成立,故x+y的最小值是2,B正确;由x+y+xy-3=0,x>0,y>0,可得x=3-yy+1,且0<y<3,所以x +4y =3-y y +1+4y =4y 2+3y +3y +1=4(y +1)2-5(y +1)+4y +1=4(y +1)+4y +1-5≥24(y +1)⋅4y +1-5=3,当且仅当y +1=1,即y =0、x =3时等号成立,故x +4y >3,C 错误;同上,x +2y =3-y y +1+2y =2y 2+y +3y +1=2(y +1)2-3(y +1)+4y +1=2(y +1)+4y +1-3≥22(y +1)⋅4y +1-3=42-3,当且仅当y +1=2,即y =2-1、x =22-1时等号成立,故x +2y ≥42-3,D 错误;故选:B .2(2023上·江苏·高一专题练习)下列说法正确的是()A.若x >2,则函数y =x +1x -1的最小值为3B.若x >0,y >0,3x +1y =5,则5x +4y 的最小值为5C.若x >0,y >0,x +y +xy =3,则xy 的最小值为1D.若x >1,y >0,x +y =2,则1x -1+2y的最小值为3+22【解题思路】选项A :将函数变形再利用基本不等式进行判断最值即可,选项B :由基本不等式进行判断即可,选项C :结合换元法与基本不等式求最值进行判断即可,选项D :对式子进行变形得到1+yx -1+2x -1 y+2,再利用基本不等式进行判断即可.【解答过程】解:选项A :y =x +1x -1=x -1+1x -1+1≥2x -1·1x -1+1=3,当且仅当x -12=1时可以取等号,但题设条件中x >2,故函数最小值取不到3,故A 错误;选项B :若x >0,y >0,3x +1y =5,则5x +4y =153x +1y 5x +4y =1519+5x y +12y x ≥1519+25x y ·12y x=19+4155,当且仅当5xy =12y x时不等式可取等号,故B 错误;选项C :3-xy =x +y ≥2xy ⇒xy +2xy -3≤0当且仅当x =y 时取等号,令xy =t t ≥0 ,t 2+2t -3≤0,解得-3≤t ≤1,即0<xy ≤1,故xy 的最大值为1,故C 错误;选项D :x +y =2,(x -1)+y =1,1x -1+2y =1x -1+2y·x -1 +y =1+y x -1+2x -1 y+2≥3+2y x -1·2x -1y=3+22,当且仅当y =2x -2时取等号,又因为x +y =2,故x =2y =2-2 时等号成立,即1x -1+2y最小值可取到3+22,故D 正确.故选:D .3(2023上·广东中山·高三校考阶段练习)设正实数x ,y 满足x +2y =3,则下列说法错误的是()A.y x +3y 的最小值为4 B.xy 的最大值为98C.x +2y 的最大值为2D.x 2+4y 2的最小值为92【解题思路】根据基本不等式以及“1”的妙用判断各选项.【解答过程】对于A ,y x +3y =y x +x +2y y =y x +x y +2≥2yxxy+2=4,当且仅当x =y =1时取等号,故A 正确;对于B ,xy =12⋅x ⋅2y ≤12×x +2y 2 2=12×94=98,当且仅当x =2y ,即x =32,y =34时取等号,故B 正确;对于C ,(x +2y )2=x +2y +22xy ≤3+22×98=3+3=6,则x +2y ≤6,当且仅当x =2y ,即x =32,y =34时,故C 错误;对于D ,x 2+4y 2=(x +2y )2-4xy ≥9-4×98=92,当且仅当x =32,y =34时取等号,故D 正确.故选:C .【题型6 多次使用基本不等式求最值】1(2023·河南·校联考模拟预测)已知正实数a ,b ,满足a +b ≥92a +2b,则a +b 的最小值为()A.5B.52C.52D.522【解题思路】先根据基本不等式求出92a +2ba +b ≥252.然后即可根据不等式的性质得出a +b2≥92a +2ba +b ≥252,列出两个等号同时成立的条件,即可得出答案.【解答过程】由已知可得,a >0,b >0,a +b >0.因为92a+2ba+b=92+2+9b2a+2ab≥29b2a×2ab+132=6+132=252,当且仅当9b2a=2ab,即2a=3b时等号成立.所以,a+b2≥92a+2ba+b≥252,当且仅当2a=3ba+b=92a+2b,即a=322b=2时,两个等号同时成立.所以,a+b≥322+2=522.故选:D.【变式训练】1(2023·山东菏泽·统考一模)设实数x,y满足x+y=1,y>0,x≠0,则1x+2xy的最小值为()A.22-1B.22+1C.2-1D.2+1【解题思路】分为x>0与x<0,去掉绝对值后,根据“1”的代换,化简后分别根据基本不等式,即可求解得出答案.【解答过程】当x>0时,1x+2xy=x+yx+2xy=yx+2xy+1≥2yx⋅2xy+1=22+1,当且仅当yx=2xy,即x=2-1,y=2-2时等号成立,此时有最小值22+1;当x<0时,1x+2xy=x+y-x+-2xy=y-x+-2xy-1≥2y-x⋅-2xy-1=22-1.当且仅当y-x=-2xy,即x=-1-2,y=2+2时等号成立,此时有最小值22-1.所以,1x+2xy的最小值为22-1.故选:A.2(2023·河北衡水·衡水市第二中学校考模拟预测)已知实数x,y,z>0,满足xy+zx=2,则当4y+1z取得最小值时,y+z的值为()A.1B.32C.2 D.52【解题思路】两次应用基本不等式,根据两次不等式等号成立的条件列方程求解即可.【解答过程】因为实数x,y,z>0,满足xy+zx=2,所以xy +zx=2≥2xy ×z x =2yz ⇒yz ≤1,当且仅当z =yx 2时,yz =1,所以4y +1z≥24y ×1z=24yz≥241=4,当且仅当4y =1z且yz =1时,等号成立;所以当yz =1且4y =1z 时,4y +1z取得最小值4,此时解得y =2z =12 ⇒y +z =52,故选:D .3(2023上·辽宁大连·高一期末)若a >0,b >0,a +b =1,则a 2+3ab a +2b +2b +1-1b 的最大值为()A.2B.2-2C.3-2D.3-22【解题思路】由已知可得a 2+3ab a +2b +1b +1=3-2b -1b +1,进而有a 2+3ab a +2b +2b +1-1b =3-2b -1b,结合基本不等式求最大值,注意取值条件.【解答过程】由题设,a 2+3ab a +2b +1b +1=a (a +3b )+1b +1=a (2b +1)+1b +1,而a =1-b >0,b >0,所以a (2b +1)+1b +1=2+b -2b 2b +1=1+1-2b 2b +1=1+2(1-b 2)-1b +1=3-2b -1b +1,所以a 2+3ab a +2b +2b +1-1b =3-2b -1b 且0<b <1,又2b +1b≥22b ⋅1b =22,当且仅当b =22时取等号,所以a 2+3ab a +2b +2b +1-1b ≤3-22,当且仅当a =1-22,b =22时取等号,即目标式最大值为3-2 2.故选:D .【题型7 实际应用中的最值问题】1(2023上·四川眉山·高一校联考期中)如图,高新区某居民小区要建一座八边形的休闲场所,它的主体造型平面图是由两个相同的矩形ABCD 和EFGH 构成的面积为400m 2的十字形地域.计划在正方形MNPQ 上建一座花坛,造价为8400元/m 2;在四个相同的矩形(图中阴影部分)上铺花岗岩地坪,造价为420元/m 2;再在四个空角(图中四个三角形)上铺草坪,造价为160元/m 2.设总造价为y (单位:元),AD 长为x (单位:m ).(1)用x表示AM的长度,并求x的取值范围;(2)当x为何值时,y最小?并求出这个最小值.【解题思路】(1)由题意可得矩形AMQD的面积,即可得出AM=400-x2 4x;(2)先表示出总造价y,再由基本不等式求解即可.【解答过程】(1)由题意可得,矩形AMQD的面积为S AMQD=400-x24,因此AM=400-x24x,∵AM>0,∴0<x<20.(2)y=8400x2+420×400-x2+160×4×12×400-x24x2=8000x2+3200000x2+152000,0<x<20,由基本不等式y≥28000x2×3200000x2+152000=472000,当且仅当8000x2=3200000x2,即x=25时,等号成立,故当x=25时,总造价y最小,最小值为472000元.【变式训练】1(2023上·山东·高一校联考期中)某校地势较低,一遇到雨水天气校园内会有大量积水,不但不方便师生出行,还存在严重安全问题.为此学校决定利用原水池改建一个深3米,底面面积16平方米的长方体蓄水池.不但能解决积水问题,同时还可以利用蓄水灌溉学校植被.改建及蓄水池盖儿固定费用800元,由招标公司承担.现对水池内部地面及四周墙面铺设公开招标.甲工程队给出的报价如下:四周墙面每平方米150元,地面每平方米400元.设泳池宽为x米.2≤x≤6(1)当宽为多少时,甲工程队报价最低,并求出最低报价.(2)现有乙工程队也要参与竞标,其给出的整体报价为900a x+2x元(a>0)(整体报价中含固定费用).若无论宽为多少米,乙工程队都能竞标成功,试求a的取值范围.【解题思路】(1)根据题意,列出函数关系式,结合基本不等式代入计算,即可得到结果;(2)根据题意,列出不等式,分离参数,再结合基本不等式代入计算,即可得到结果.【解答过程】(1)设甲工程队的总造价为y 元,则y =150×2x +16x×3+400×16+800=900x +16x+7200≥900×2x ⋅16x +7200=14400当且仅当x =16x时,即x =4时等号成立.即当宽为4m 时,甲工程队的报价最低,最低为14400元.(2)由题意可得900x +16x +7200>900a x +2 x.对∀x ∈2,6 恒成立.即a <x 2+8x +16x +12令y =x 2+8x +16x +2=x +2 +4x +2+4∵2≤x ≤6,∴4≤x +2≤8.令t =x +2,t ∈4,8 ,则y =t +4t+4在4,8 上单调递增.且t =4时,y min =9.∴0<a <9.即a 的取值范围为0,9 .2(2023上·江苏苏州·高一校考阶段练习)因新冠疫情零星散发,某实验中学为了保障师生安全,同时考虑到节省费用,拟借助校门口一侧原有墙体建造一间高为4米、底面积为24平方米、背面靠墙体的长方体形状的隔离室.隔离室的正面需开一扇安全门,此门高为2米,且此门高为此门底的13.因此室的后背面靠墙,故无需建墙费用,但需粉饰.现学校面向社会公开招标,甲工程队给出的报价:正面为每平方米360元,左右两侧面为每平方米300元,已有墙体粉饰为每平方米100元,屋顶和地面以及安全门报价共计12000元.设隔离室的左右两侧面的底边长度均为x 米(1≤x ≤5).(1)记y 为甲工程队整体报价,求y 关于x 的关系式;(2)现有乙工程队也要参与此隔离室建造的竞标,其给出的整体报价为4800t (x +1)x元,问是否存在实数t ,使得无论左右两侧底边长为多少,乙工程队都能竞标成功(注:整体报价小者竞标成功),若存在,求出t 满足的条件;若不存在,请说明理由.【解题思路】(1)根据题意分别计算正面和侧面以及其它各面的费用,相加,可得答案;(2)由题意可得不等关系240184x +10x-3120>4800t (x +1)x,对任意x ∈[1,5]都成立,进而转化t <10x 2-13x +18420(x +1)恒成立,采用换元法,结合基本不等式求得答案.【解答过程】(1)由题意,隔离室的左右两侧的长度均为x米(1≤x≤5),则底面长为24x米,正面费用为3604×24x-2×6,故y=3604×24x-2×6+4×24x×100+2×300×4x+1200=240184x +10x-3120,1≤x≤5.(2)由题意知, 240184x +10x-3120>4800t(x+1)x,对任意x∈[1,5]都成立,即t<10x2-13x+18420(x+1)对任意x∈[1,5]恒成立,令k=x+1,则x=k-1,k∈[2,6],则t<10(k-1)2-13(k-1)+18420k=10k2-33k+20720k=k2+20720k-3320,而k2+20720k≥2k2⋅20720k=20710,当且仅当k=20710∈[2,6]取等号,故0<t<20710-3320,即存在实数0<t<20710-3320,无论左右两侧长为多少,乙工程队都能竞标成功.3(2023上·重庆·高一校考阶段练习)为宜传2023年杭州亚运会,某公益广告公司拟在一张面积为36000cm2的矩形海报纸(记为矩形ABCD,如图)上设计四个等高的宣传栏(栏面分别为两个等腰三角形和两个全等的直角三角形),为了美观,要求海报上所有水平方向和竖直方向的留空宽度均为10cm,设DC=xcm.(1)将四个宣传栏的总面积y表示为x的表达式,并写出x的范围;(2)为充分利用海报纸空间,应如何选择海报纸的尺寸(AD和CD分别为多少时),可使用宣传栏总面积最大?并求出此时宣传栏的最大面积.【解题思路】(1)根据题意列出总面积y表示为x的表达式即可.(2)根据(1)利用基本不等式求可使用宣传栏总面积最大时AD和CD的值.【解答过程】(1)根据题意DC=xcm,矩形海报纸面积为36000cm2,所以AD=36000xcm,又因为海报上所有水平方向和竖直方向的留空宽度均为10cm,所以四个宣传栏的总面积y =CD -5×10 AD -2×10 =x -50 36000x-20 ,其中x -50>036000x -20>0 所以x ∈50,1800 .即y =x -50 36000x-20,x ∈50,1800 .(2)由(1)知y =x -50 36000x-20 ,x ∈50,1800 ,则y =x -50 36000x -20 =37000-20x +1800000x,x ∈50,1800 20x +1800000x≥220x ×1800000x =12000,当且仅当x =300时取等号,则y =37000-20x +1800000x≤25000,当且仅当x =300时取等号,即CD =300cm ,AD =36000300=120cm 时,可使用宣传栏总面积最大为25000cm 2.【题型8 与其他知识交汇的最值问题】1(2023上·安徽·高三校联考阶段练习)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,满足c +b cos2A =2a cos A cos B A ≤B .(1)求A ;(2)若角A 的平分线交BC 于D 点,且AD =1,求△ABC 面积的最小值.【解题思路】(1)由已知结合正弦定理边化角即可求解;(2)表示出所求面积后运用基本不等式即可求解.【解答过程】(1)由已知和正弦定理可得:sin C +sin B cos2A =2sin A cos A cos B ,所以sin C =sin2A cos B -sin B cos2A =sin (2A -B )>0.又因为C ∈(0,π),2A -B ∈(0,π),所以C =2A -B 或者C +2A -B =π.当C =2A -B 时,A +B +2A -B =π,A =π3;当C +2A -B =π时,A =2B 与题设A ≤B 不符.综上所述,A =π3.(2)△ABC 面积S =12bc sin π3=34bc ,由AD 是角平分线,∠BAD =∠CAD =π6,因为S △ABC =S △ABD +S △ADC ,得12bc sin π3=12b sin π6+12c sin π6,即b +c =3bc ,由基本不等式3bc ≥2bc ,bc ≥43,当且仅当b=c=233时等号成立.所以面积S=34bc≥34×43=33.故△ABC面积的最小值3 3.【变式训练】1(2023上·安徽铜陵·高二校联考期中)已知圆C的圆心在坐标原点,面积为9π.(1)求圆C的方程;(2)若直线l,l 都经过点(0,2),且l⊥l ,直线l交圆C于M,N两点,直线l 交圆C于P,Q两点,求四边形PMQN面积的最大值.【解题思路】(1)根据面积解出半径,再应用圆的标准方程即可;(2)根据几何法求出弦长,再应用面积公式计算,最后应用基本不等式求最值即可.【解答过程】(1)由题可知圆C的圆心为C(0,0),半径r=3.所以圆C的方程为x2+y2=9.(2)当直线l的斜率存在且不为0时,设直线l的方程为y=kx+2,圆心到直线l的距离为d,则d=2k2+1,|MN|=232-d2=29-4k2+1,同理可得|PQ|=29-41k2+1=29-4k2k2+1,则S PMQN=12|MN|⋅|PQ|=12×29-4k2+1×29-4k2k2+1=29-4k2+19-4k2k2+1≤9-4 k2+1+9-4k2k2+1=14,当且仅当9-4k2+1=9-4k2k2+1,即k2=1时等号成立.当直线l的斜率不存在时,|MN|=6,|PQ|=232-22=25,此时S PMQN=12|MN|⋅|PQ|=12×6×25=65.当直线l的斜率为0时,根据对称性可得S PMQN=65.综上所述,四边形PMQN面积的最大值为14.2(2023上·江苏盐城·高一校考阶段练习)已知在定义域内单调的函数f x 满足f f x +12x+1-ln x=23恒成立.(1)设f x +12x+1-ln x=k,求实数k的值;(2)解不等式f7+2x>-2x2x+1+ln-ex;(3)设g x =f x -ln x,若g x ≥mg2x对于任意的x∈1,2恒成立,求实数m的取值范围.【解题思路】(1)由题意列方程求解;(2)由函数的单调性转化后求解;(3)参变分离后转化为最值问题,由换元法结合基本不等式求解.【解答过程】(1)由题意得f x =ln x-12x+1+k,f k =ln k-12k+1+k,由于y=ln k-12k+1+k在k∈0,+∞上单调递增,观察ln k-12k+1+k=23,可得k=1;(2)由于f x 在定义域内单调,所以f x +12x+1-ln x为常数,由(1)得f x =ln x-12x+1+1,f x 在x∈0,+∞上单调递增,f-x=ln-x-12-x+1+1=ln-ex-2x2x+1,故原不等式可化为f7+2x>-2x2x+1+ln-ex=f-x,由2x+7>0-x>07+2x>-x,解得-73<x<0,故原不等式的解集为-7 3 ,0;(3)g x =f x -ln x=-12x+1+1=2x2x+1>0,g x ≥mg2x可化为m≤2x2x+1⋅4x+14x=4x+14x+2x=1+-2x+14x+2x对于任意的x∈1,2恒成立,设t=-2x+1∈-3,-1,则-2x+14x+2x=t1-t2+1-t=1t+2t-3,t∈-3,-1,由基本不等式得t+2t=--t+2-t≤-22,当且仅当-t=2-t即t=-2时等号成立,故当t=-2时1t+2t-3min=22-3,故m≤22-2,当且仅当x=log22+1等号成立.实数m的取值范围为-∞,22-2.3(2023下·湖南长沙·高三长沙一中校考阶段练习)如图,在长方体ABCD-A1B1C1D1中,点P是长方形A1B1C1D1内一点,∠APC是二面角A-PD1-C的平面角.(1)证明:点P 在A 1C 1上;(2)若AB =BC ,求直线PA 与平面PCD 所成角的正弦的最大值.【解题思路】(1)由二面角定义知AP ⊥PD 1,CP ⊥PD 1,利用线面垂直的判定及性质可证PD 1⊥面APC 、PD 1⊥面ACC 1A 1,结合面APC 与面ACC 1A 1有交线,确定它们同平面,进而证结论;(2)构建空间直角坐标系,令P 12,12,k且k >0,C (1,1,0),D (0,1,0),求直线方向向量、平面法向量,应用空间向量夹角坐标表示、基本不等式求线面角正弦值的最大值,注意取值条件.【解答过程】(1)由∠APC 是二面角A -PD 1-C 的平面角,则AP ⊥PD 1,CP ⊥PD 1,又AP ∩CP =P ,AP ,CP ⊂面APC ,则PD 1⊥面APC ,又AC ⊂面APC ,即PD 1⊥AC ,由长方体性质知A 1C 1⎳AC ,故PD 1⊥A 1C 1,由长方体性质:AA 1⊥面A 1B 1C 1D 1,又PD 1⊂面A 1B 1C 1D 1,则PD 1⊥AA 1,又A 1C 1∩AA 1=A 1,A 1C 1,AA 1⊂面ACC 1A 1,故PD 1⊥面ACC 1A 1,而面APC ∩面ACC 1A 1=AC ,且PD 1⊥面APC 、PD 1⊥面ACC 1A 1,根据过AC 作与PD 1垂直的平面有且仅有一个,所以面APC 与面ACC 1A 1为同一平面,又P ∈面A 1B 1C 1D 1,面ACC 1A 1∩面A 1B 1C 1D 1=A 1C 1,所以点P 在A 1C 1上;(2)构建如下图示的空间直角坐标系A -xyz ,令AB =BC =1,AA 1=k ,由题设,长方体上下底面都为正方形,由(1)知PD 1⊥A 1C 1,则P 为A 1C 1中点,所以P 12,12,k且k >0,C (1,1,0),D (0,1,0),则AP =12,12,k ,PC =12,12,-k ,PD =-12,12,-k ,若m =(x ,y ,z )是面PCD 的一个法向量,则m ⋅PC =12x +12y -kz =0m ⋅PD =-12x +12y -kz =0,令y =2,则m =0,2,1k,所以|cos ‹AP ,m ›|=|AP ⋅m||AP ||m |=212+k 2⋅4+1k 2=23+4k 2+12k 2≤23+22=2(2-1),仅当k =422时等号成立,故直线PA 与平面PCD 所成角的正弦的最大值为2(2-1).直击真题1(2022·全国·统考高考真题)若x ,y 满足x 2+y 2-xy =1,则()A.x +y ≤1B.x +y ≥-2C.x 2+y 2≤2D.x 2+y 2≥1【解题思路】根据基本不等式或者取特值即可判断各选项的真假.【解答过程】因为ab ≤a +b 2 2≤a 2+b 22(a ,b ∈R ),由x 2+y 2-xy =1可变形为,x +y 2-1=3xy ≤3x +y 2 2,解得-2≤x +y ≤2,当且仅当x =y =-1时,x +y =-2,当且仅当x =y =1时,x +y =2,所以A 错误,B 正确;由x 2+y 2-xy =1可变形为x 2+y 2-1=xy ≤x 2+y 22,解得x 2+y 2≤2,当且仅当x =y =±1时取等号,所以C 正确;因为x 2+y 2-xy =1变形可得x -y 2 2+34y 2=1,设x -y 2=cos θ,32y =sin θ,所以x =cos θ+1 3sinθ,y=23sinθ,因此x2+y2=cos2θ+53sin2θ+23sinθcosθ=1+13sin2θ-13cos2θ+13=43+23sin2θ-π6∈23,2,所以当x=33,y=-33时满足等式,但是x2+y2≥1不成立,所以D错误.故选:BC.2(2020·山东·统考高考真题)已知a>0,b>0,且a+b=1,则()A.a2+b2≥12B.2a-b>12C.log2a+log2b≥-2D.a+b≤2【解题思路】根据a+b=1,结合基本不等式及二次函数知识进行求解.【解答过程】对于A,a2+b2=a2+1-a2=2a2-2a+1=2a-1 22+12≥12,当且仅当a=b=12时,等号成立,故A正确;对于B,a-b=2a-1>-1,所以2a-b>2-1=12,故B正确;对于C,log2a+log2b=log2ab≤log2a+b22=log214=-2,当且仅当a=b=12时,等号成立,故C不正确;对于D,因为a+b2=1+2ab≤1+a+b=2,所以a+b≤2,当且仅当a=b=12时,等号成立,故D正确;故选:ABD.3(2020·全国·统考高考真题)设O为坐标原点,直线x=a与双曲线C:x2a2-y2b2=1(a>0,b>0)的两条渐近线分别交于D,E两点,若△ODE的面积为8,则C的焦距的最小值为() A.4 B.8 C.16 D.32【解题思路】因为C:x2a2-y2b2=1(a>0,b>0),可得双曲线的渐近线方程是y=±bax,与直线x=a联立方程求得D,E两点坐标,即可求得|ED|,根据△ODE的面积为8,可得ab值,根据2c=2a2+b2,结合均值不等式,即可求得答案.【解答过程】∵C:x2a2-y2b2=1(a>0,b>0)∴双曲线的渐近线方程是y=±bax∵直线x=a与双曲线C:x2a2-y2b2=1(a>0,b>0)的两条渐近线分别交于D,E两点不妨设D为在第一象限,E在第四象限联立{x=ay=bax,解得{x=ay=b故D(a,b)联立{x=ay=-bax,解得{x=ay=-b故E(a,-b)∴|ED|=2b∴△ODE面积为:S△ODE=12a×2b=ab=8∵双曲线C:x2a2-y2b2=1(a>0,b>0)∴其焦距为2c=2a2+b2≥22ab=216=8当且仅当a=b=22取等号∴C的焦距的最小值:8故选:B.4(2021·天津·统考高考真题)若a>0,b>0,则1a+ab2+b的最小值为22.【解题思路】两次利用基本不等式即可求出.【解答过程】∵a>0,b>0,∴1 a +ab2+b≥21a⋅ab2+b=2b+b≥22b⋅b=22,当且仅当1a=ab2且2b=b,即a=b=2时等号成立,所以1a+ab2+b的最小值为2 2.故答案为:2 2.5(2020·天津·统考高考真题)已知a>0, b>0,且ab=1,则12a+12b+8a+b的最小值为4【解题思路】根据已知条件,将所求的式子化为a+b2+8a+b,利用基本不等式即可求解.【解答过程】∵a>0,b>0,∴a+b>0,ab=1,∴12a+12b+8a+b=ab2a+ab2b+8a+b=a+b2+8a+b≥2a+b2×8a+b=4,当且仅当a+b=4时取等号,结合ab=1,解得a=2-3,b=2+3,或a=2+3,b=2-3时,等号成立.故答案为:4.6(2020·江苏·统考高考真题)已知5x 2y 2+y 4=1(x ,y ∈R ),则x 2+y 2的最小值是45.【解题思路】根据题设条件可得x 2=1-y 45y 2,可得x 2+y 2=1-y 45y 2+y 2=15y 2+4y 25,利用基本不等式即可求解.【解答过程】∵5x 2y 2+y 4=1∴y ≠0且x 2=1-y 45y 2∴x 2+y 2=1-y 45y 2+y 2=15y2+4y 25≥215y 2⋅4y 25=45,当且仅当15y2=4y 25,即x 2=310,y 2=12时取等号.∴x 2+y 2的最小值为45.故答案为:45.7(2019·天津·高考真题)设x >0, y >0, x +2y =5,则(x +1)(2y +1)xy的最小值为43【解题思路】把分子展开化为2xy +6,再利用基本不等式求最值.【解答过程】∵(x +1)(2y +1)xy =2xy +x +2y +1xy,∵x >0, y >0, x +2y =5,xy >0,∴2xy +6xy ≥2⋅23xyxy =43,当且仅当xy =3,即x =3,y =1时成立,故所求的最小值为43.8(2017·江苏·高考真题)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是30.【解题思路】得到总费用为4x +600x ×6=4x +900x,再利用基本不等式求最值.【解答过程】总费用为4x +600x ×6=4x +900x≥4×2900=240,当且仅当x =900x,即x =30时等号成立.故答案为30.。

高中数学练习题附带解析不等式的应用与优化问题

高中数学练习题附带解析不等式的应用与优化问题

高中数学练习题附带解析不等式的应用与优化问题高中数学练习题附带解析--不等式的应用与优化问题(一)1. 解不等式$x^2-5x+6>0$。

解:首先,我们可以将不等式$x^2-5x+6>0$化为二次方程$x^2-5x+6=0$的解集。

我们将方程$x^2-5x+6=0$因式分解得到$(x-2)(x-3)=0$。

由此可知,方程$x^2-5x+6=0$的解集为$x=2$和$x=3$。

接下来,我们可以将数轴上的数分段,将方程$x^2-5x+6=0$的解集和不等号所表示的数区间标记在数轴上。

根据$x^2-5x+6>0$,我们需要找到满足此不等式的$x$的取值范围。

从数轴上可以看出,当$x<2$或$x>3$时,方程$x^2-5x+6>0$成立。

因此,不等式$x^2-5x+6>0$的解集为$x<2$或$x>3$。

2. 解不等式$\frac{x+1}{x-2}\leq0$。

解:首先,我们可以得到不等式$\frac{x+1}{x-2}\leq0$的定义域为$x\neq2$。

接下来,我们需要确定分子分母的正负情况。

当$x+1>0$,即$x>-1$时,分子$x+1$为正。

当$x+1<0$,即$x<-1$时,分子$x+1$为负。

当$x-2>0$,即$x>2$时,分母$x-2$为正。

当$x-2<0$,即$x<2$时,分母$x-2$为负。

综上所述,我们可以得到如下情况:1) 当$x>-1$且$x>2$时,不等式$\frac{x+1}{x-2}\leq0$成立。

此时,不等式$\frac{x+1}{x-2}\leq0$的解集为$x>-1$。

2) 当$x<-1$且$x<2$时,不等式$\frac{x+1}{x-2}\leq0$成立。

此时,不等式$\frac{x+1}{x-2}\leq0$的解集为$x<2$。

高中数学第二章一元二次函数方程和不等式典型例题(带答案)

高中数学第二章一元二次函数方程和不等式典型例题(带答案)

高中数学第二章一元二次函数方程和不等式典型例题单选题1、已知a,b为正实数,且a+b=6+1a +9b,则a+b的最小值为()A.6B.8C.9D.12答案:B分析:根据题意,化简得到(a+b)2=(6+1a +9b)(a+b)=6(a+b)+10+ba+9ab,结合基本不等式,即可求解.由题意,可得(a+b)2=(6+1a +9b)(a+b)=6(a+b)+10+ba+9ab≥6(a+b)+16,则有(a+b)2−6(a+b)−16≥0,解得a+b≥8,当且仅当a=2,b=6取到最小值8.故选:B.2、某工厂近期要生产一批化工试剂,经市场调查得知,生产这批试剂的成本分为以下三个部分:①生产1单位试剂需要原料费50元;②支付所有职工的工资总额由7500元的基本工资和每生产1单位试剂补贴20元组成;③后续保养的费用是每单位(x+600x−30)元(试剂的总产量为x单位,50≤x≤200),则要使生产每单位试剂的成本最低,试剂总产量应为()A.60单位B.70单位C.80单位D.90单位答案:D分析:设生产每单位试剂的成本为y,求出原料总费用,职工的工资总额,后续保养总费用,从而表示出y,然后利用基本不等式求解最值即可.解:设每生产单位试剂的成本为y,因为试剂总产量为x单位,则由题意可知,原料总费用为50x元,职工的工资总额为7500+20x元,后续保养总费用为x(x+600x−30)元,则y=50x+7500+20x+x2−30x+600x =x+8100x+40≥2√x⋅8100x+40=220,当且仅当x=8100x,即x=90时取等号,满足50≤x≤200,所以要使生产每单位试剂的成本最低,试剂总产量应为90单位.故选:D.3、不等式−x2+3x+18<0的解集为()A.{x|x>6或x<−3}B.{x|−3<x<6}C.{x|x>3或x<−6}D.{x|−6<x<3}答案:A分析:根据二次不等式的解法求解即可.−x2+3x+18<0可化为x2−3x−18>0,即(x−6)(x+3)>0,即x>6或x<−3.所以不等式的解集为{x|x>6或x<−3}.故选:A4、已知正实数a、b满足1a +1b=m,若(a+1b)(b+1a)的最小值为4,则实数m的取值范围是()A.{2}B.[2,+∞)C.(0,2]D.(0,+∞)答案:B分析:由题意可得(a+1b )(b+1a)=ab+1ab+2≥2√ab1ab+2=4,当ab=1ab,即ab=1时等号成立,所以有b=1a ,将1a+1b=m化为a+1a=m,再利用基本不等式可求得m的范围.解:因为a,b为正实数,(a+1b )(b+1a)=ab+1ab+2≥2√ab1ab+2=4,当ab=1ab,即ab=1时等号成立,此时有b=1a,又因为1a +1b=m,所以a+1a=m,由基本不等式可知a+1a≥2(a=1时等号成立),所以m ≥2. 故选:B.5、已知a,b ∈R 且满足{1≤a +b ≤3−1≤a −b ≤1,则4a +2b 的取值范围是( )A .[0,12]B .[4,10]C .[2,10]D .[2,8] 答案:C分析:设4a +2b =A (a +b )+B (a −b ),求出A ,B 结合条件可得结果. 设4a +2b =A (a +b )+B (a −b ),可得{A +B =4A −B =2,解得{A =3B =1,4a +2b =3(a +b )+a −b ,因为{1≤a +b ≤3−1≤a −b ≤1可得{3≤3(a +b )≤9−1≤a −b ≤1,所以2≤4a +2b ≤10. 故选:C.6、关于x 的不等式(x −a )(x −3)>0成立的一个充分不必要条件是−1<x <1,则a 的取值范围是( ) A .a ≤−1B .a <0C .a ≥2D .a ≥1 答案:D分析:由题意可知,(−1,1)是不等式(x −a )(x −3)>0解集的一个真子集,然后对a 与3的大小关系进行分类讨论,求得不等式的解集,利用集合的包含关系可求得实数a 的取值范围. 由题可知(−1,1)是不等式(x −a )(x −3)>0的解集的一个真子集.当a =3时,不等式(x −a )(x −3)>0的解集为{x |x ≠3},此时(−1,1){x |x ≠3}; 当时,不等式(x −a )(x −3)>0的解集为(−∞,3)∪(a,+∞), ∵(−1,1)(−∞,3),合乎题意;当a <3时,不等式(x −a )(x −3)>0的解集为(−∞,a )∪(3,+∞), 由题意可得(−1,1)(−∞,a ),此时1≤a <3. 综上所述,a ≥1. 故选:D.3a小提示:本题考查利用充分不必要条件求参数,同时也考查了一元二次不等式的解法,考查计算能力,属于中等题.7、已知函数y =ax 2+2bx −c(a >0)的图象与x 轴交于A (2,0)、B (6,0)两点,则不等式cx 2+2bx −a <0 的解集为( )A .(−6,−2)B .(−∞,16)∪(12,+∞) C .(−12,−16)D .(−∞,−12)∪(−16,+∞)答案:D解析:利用函数图象与x 的交点,可知ax 2+2bx −c =0(a >0)的两个根分别为x 1=2或x 2=6,再利用根与系数的关系,转化为b =−4a ,c =−12a ,最后代入不等式cx 2+2bx −a <0,求解集. 由条件可知ax 2+2bx −c =0(a >0)的两个根分别为x 1=2或x 2=6, 则2+6=−2b a,2×6=−ca,得b =−4a ,c =−12a ,∴cx 2+2bx −a <0⇔−12ax 2−8ax −a <0, 整理为:12x 2+8x +1>0⇔(2x +1)(6x +1)>0, 解得:x >−16或x <−12,所以不等式的解集是(−∞,−12)∪(−16,+∞).故选:D小提示:思路点睛:本题的关键是利用根与系数的关系表示b =−4a ,c =−12a ,再代入不等式cx 2+2bx −a <0化简后就容易求解. 8、a,b,c 是不同时为0的实数,则ab+bc a 2+2b 2+c 2的最大值为( )A .12B .14C .√22D .√32答案:A分析:对原式变形,两次利用基本不等式,求解即可. 若要使ab+bc a 2+2b 2+c 2最大,则ab,bc 均为正数,即a,b,c 符号相同,不妨设a,b,c 均为正实数,则ab+bc a 2+2b 2+c 2=a+c a 2+c 2b+2b≤2√a 2+c 2b×2b=(22)=12√a 2+2ac+c 22(a 2+c 2)=12√12+ac a 2+c 2≤12√12+2√a 2×c2=12, 当且仅当a 2+c 2b=2b ,且a =c 取等,即取等号,即则ab+bca 2+2b 2+c 2的最大值为12, 故选:A .小提示:易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方,注意多次运用不等式,等号成立条件是否一致. 多选题9、下列函数中最大值为12的是( ) A .y =x 2+116x 2B .y =x ⋅√1−x 2,x ∈[0,1]C .y =x 2x 4+1D .y =x +4x+2,x >−2 答案:BC解析:利用基本不等式逐项判断即可. 解:对A ,y =x 2+116x2≥2√x 2⋅116x 2=12,当且仅当x 2=116x2,即x =±12时取等号,故A 错误;对B ,y =x ⋅√1−x 2=√x 2⋅(1−x 2)≤x 2+1−x 22=12,当且仅当x 2=1−x 2,又∵x ∈[0,1],即x =√22时取等号,故B 正确;对C ,y =x 2x 4+1=1x 2+1x2≤12,a b c ==当且仅当x2=1x2,即x=±1时等号成立,故C正确;对D,y=x+4x+2=x+2+4x+2−2≥2√(x+2)⋅4x+2−2=2,当且仅当x+2=4x+2,又∵x>−2,∴x=0时取等号,故D错误.故选:BC.10、设正实数m、n满足m+n=2,则下列说法中正确的是()A.2m−n>14B.mn的最大值为1C.√m+√n的最小值为2D.m2+n2的最小值为2答案:ABD分析:利用不等式的性质以及指数函数的性质可判断A选项的正误,利用基本不等式可判断BCD选项的正误. 对于A选项,因为正实数m、n满足m+n=2,则0<m<2,m−n=m−(2−m)=2−2m∈(−2,2),故2m−n>2−2=14,A对;对于B选项,由基本不等式可得mn≤(m+n2)2=1,当且仅当m=n=1时,等号成立,B对;对于C选项,由基本不等式可得(√m+√n)2=m+n+2√mn≤2(m+n)=4,因为√m+√n>0,故√m+√n≤2,当且仅当m=n=1时,等号成立,C错;对于D选项,∵2(m2+n2)=(m2+n2)+(m2+n2)≥m2+n2+2mn=(m+n)2=4,可得m2+n2≥2,当且仅当m=n=1时,等号成立,D对.故选:ABD.11、已知a,b,c∈R+,则下列不等式正确的是()A.1a +1b≥4a+bB.a+b≤√a2+b2C.b2a +a2b≥a+b D.a2+b22≥a+b−1答案:ACD分析:对AC,利用基本不等式可求解;对B,根据(a+b)2=a2+b2+2ab>a2+b2可判断;对D,利用(a−1)2+(b−1)2≥0可判断.对A ,因为(1a +1b )(a +b )=b a +a b +2≥2√b a ⋅a b +2=4,当且仅当b a =a b 时等号成立,所以1a +1b ≥4a+b ,故A正确;对B ,(a +b )2=a 2+b 2+2ab >a 2+b 2,所以a +b >√a 2+b 2,故B 错误; 对C ,b 2a+a +a 2b+b ≥2√b 2a⋅a +2√a 2b⋅b =2a +2b ,当且仅当a =b 等号成立,所以b 2a+a 2b≥a +b ,故C正确;对D ,因为(a −1)2+(b −1)2≥0,所以a 2+b 2−2a −2b +2≥0,所以a 2+b 22≥a +b −1,当且仅当a =b =1等号成立,故D 正确. 故选:ACD.12、对任意两个实数a,b ,定义min{a ,b}={a,a ≤b,b,a >b,若f (x )=2−x 2,g (x )=x 2,下列关于函数F (x )=min {f (x ),g (x )}的说法正确的是( ) A .函数F (x )是偶函数 B .方程F (x )=0有三个解C .函数F (x )在区间[−1,1]上单调递增D .函数F (x )有4个单调区间 答案:ABD分析:结合题意作出函数F (x )=min {f (x ),g (x )}的图象,进而数形结合求解即可.解:根据函数f (x )=2−x 2与g (x )=x 2,,画出函数F (x )=min {f (x ),g (x )}的图象,如图. 由图象可知,函数F (x )=min {f (x ),g (x )}关于y 轴对称,所以A 项正确; 函数F (x )的图象与x 轴有三个交点,所以方程F (x )=0有三个解,所以B 项正确;函数F (x )在(−∞,−1]上单调递增,在[−1,0]上单调递减,在上单调递增,在[1,+∞)上单调递减,所以C 项错误,D 项正确. 故选:ABD[0,1]13、已知a >0,b >0,且a +2b =1,则( ) A .ab 的最大值为19B .1a +2b 的最小值为9C .a 2+b 2的最小值为15D .(a +1)(b +1)的最大值为2答案:BC分析:对A ,直接运用均值不等式2√2ab ≤a +2b 即可判断; 对B ,1a +2b =(1a +2b)⋅(a +2b )=5+2b a+2a b,运用均值不等式即可判断;对C ,a 2+b 2=(1−2b )2+b 2,讨论二次函数最值即可;对D ,(a +1)(b +1)=2(a +b )(a +3b )=2[(a +2b )2−b 2]=2(1−b 2),讨论最值即可. a >0,b >0,2√2ab ≤a +2b =1⇒ab ≤18,当a =2b 时,即a =12,b =14时,可取等号,A 错;1a+2b =(1a +2b )⋅(a +2b )=5+2b a+2a b≥5+2√2b a ⋅2a b=9,当2b a =2ab时,即a =b =13时,可取等号,B 对; a 2+b 2=(1−2b)2+b 2=5b 2−4b +1=5(b −25)2+15≥15,当a =15,b =25时,可取等号,C 对;(a +1)(b +1)=2(a +b )(a +3b )=2(a 2+4ab +3b 2)=2[(a +2b )2−b 2]=2(1−b 2)<2,D 错. 故选:BC 填空题14、若一个三角形的三边长分别为a ,b ,c ,设p =12(a +b +c ),则该三角形的面积S =√p (p −a )(p −b )(p −c ),这就是著名的“秦九韶-海伦公式”若△ABC 的周长为8,AB =2,则该三角形面积的最大值为___________. 答案:2√2分析:计算得到p =4,c =2,a +b =6,根据均值不等式得到ab ≤9,代入计算得到答案. p =12(a +b +c )=4,c =2,a +b =6,a +b =6≥2√ab ,ab ≤9,当a =b =3时等号成立.S =√p (p −a )(p −b )(p −c )=√8(4−a )(4−b )=√128−32(a +b )+8ab ≤2√2. 所以答案是:2√2.15、若关于x 的二次方程x 2+mx +4m 2−3=0的两个根分别为x 1,x 2,且满足x 1+x 2=x 1x 2,则m 的值为______ 答案:分析:先求出方程有两根时m 的范围,再由根与系数关系将x 1,x 2用m 表示,建立关于m 的方程,求解即可. 关于x 的二次方程x 2+mx +4m 2−3=0有两个根, 则Δ=m 2−4(4m 2−3)=−3(5m 2−4)≥0, ∴−2√55≤m ≤2√55,x 1+x 2=−m,x 1⋅x 2=4m 2−3,又∵x 1+x 2=x 1x 2,∴−m =4m 2−3,即4m 2+m −3=0, 解得m =34或m =−1(舍去),∴m 的值为.小提示:本题考查一元二次方程根与系数关系的应用,要注意两根存在的条件,属于基础题.16、若关于x 的不等式x 2−(m +2)x +2m <0的解集中恰有3个正整数,则实数m 的取值范围为___________. 答案:(5,6]分析:不等式化为(x −m)(x −2)<0,根据解集中恰好有3个正整数即可求得m 的范围. x 2−(m +2)x +2m <0可化为(x −m)(x −2)<0, 该不等式的解集中恰有3个正整数,∴不等式的解集为{x|2<x <m},且5<m ⩽6; 所以答案是:(5,6]. 解答题343417、求实数m 的范围,使关于x 的方程x 2+2(m −1) x +2m +6=0. (1)有两个实根,且一个比2大,一个比2小; (2)有两个实根α , β,且满足0<α<1<β<4; (3)至少有一个正根. 答案:(1)m <−1 (2)−75<m <−54(3)m ≤−1分析:设y =f (x )=x 2+2(m −1)x +2m +6,一元二次方程根的分布主要从对称轴、判别式、端点值、开口方向这几个方面来确定. (1)设y =f (x )=x 2+2(m −1)x +2m +6.依题意有f (2)<0,即4+4(m −1)+2m +6<0,得m <−1. (2)设y =f (x )=x 2+2(m −1)x +2m +6.依题意有{f (0)=2m +6>0f (1)=4m +5<0f (4)=10m +14>0,解得−75<m <−54.(3)设y =f (x )=x 2+2(m −1)x +2m +6. 方程至少有一个正根,则有三种可能:①有两个正根,此时可得{Δ≥0f (0)>02(m−1)−2>0,即{m ≤−1或m ≥5m >−3m <1.∴−3<m ≤−1. ②有一个正根,一个负根,此时可得f (0)<0,得m <−3. ③有一个正根,另一根为0,此时可得{6+2m =02(m −1)<0,∴m =−3.综上所述,得m ≤−1.18、阅读材料:我们研究了函数的单调性、奇偶性和周期性,但是这些还不能够准确地描述出函数的图象,例如函数y=x2和y=√x,虽然它们都是增函数,图象在上都是上升的,但是却有着显著的不同.如图1所示,函数y=x2的图象是向下凸的,在上任意取两个点M1,M2,函数y=x2的图象总是在线段M1M2的下方,此时函数y=x2称为下凸函数;函数y=√x的图象是向上凸的,在上任意取两个点M1,M2,函数y=√x的图象总是在线段M1M2的上方,则函数y=√x称为上凸函数.具有这样特征的函数通常称做凸函数.定义1:设函数y=f(x)是定义在区间I上的连续函数,若∀x1,x2∈I,都有f(x1+x22)≤f(x1)+f(x2)2,则称y=f(x)为区间I上的下凸函数.如图2.下凸函数的形状特征:曲线上任意两点M1,M2之间的部分位于线段M1M2的下方.定义2:设函数y=f(x)是定义在区间I上的连续函数,若∀x1,x2∈I,都有f(x1+x22)≥f(x1)+f(x2)2,则称y=f(x)为区间I上的上凸函数.如图3.上凸函数的形状特征:曲线上任意两点M1,M2之间的部分位于线段M1M2的上方.上凸(下凸)函数与函数的定义域密切相关的.例如,函数y=x3在(−∞,0]为上凸函数,在[0,+∞)上为下凸函数.函数的奇偶性和周期性分别反映的是函数图象的对称性和循环往复,属于整体性质;而函数的单调性和凸性分别刻画的是函数图象的升降和弯曲方向,属于局部性质.关于函数性质的探索,对我们的启示是:在认识事物和研究问题时,只有从多角度、全方位加以考查,才能使认识和研究更加准确.结合阅读材料回答下面的问题:(1)请尝试列举一个下凸函数:___________;(2)求证:二次函数f(x)=−x2+bx+c是上凸函数;(3)已知函数f(x)=x|x−a|,若对任意x1,x2∈[2,3],恒有f(x1+x22)≥f(x1)+f(x2)2,尝试数形结合探究实数a的取值范围.答案:(1)y=1x,x∈(0,+∞);(2)证明见解析;(3)a≥3.[0,1][0,1][0,1]分析:(1)根据下凸函数的定义举例即可;(2)利用上凸函数定义证明即可;(3)根据(2)中结论,结合条件,函数满足上凸函数定义,根据数形结合求得参数取值范围.(1)y =1x ,x ∈(0,+∞); (2)对于二次函数f(x)=−x 2+bx +c ,∀x 1,x 2∈R ,满足f (x 1+x 22)−f (x 1)+f (x 2)2=−(x 1+x 22)2+b ⋅x 1+x 22+c −−x 12+bx 1+c −x 22+bx 2+c 2=−x 12+x 22+2x 1x 24+x 12+x 222=(x 1−x 2)24≥0, 即f (x 1+x 22)≥f (x 1)+f (x 2)2,满足上凸函数定义,二次函数f(x)=−x 2+bx +c 是上凸函数.(3)由(2)知二次函数f(x)=−x 2+bx +c 是上凸函数,同理易得二次函数f(x)=x 2+bx +c 为下凸函数,对于函数f(x)=x |x −a |={x 2−ax,x >a −x 2+ax,x ≤a,其图像可以由两个二次函数的部分图像组成,如图所示,若对任意x 1,x 2∈[2,3],恒有f (x 1+x 22)≥f (x 1)+f (x 2)2,则函数f(x)=x|x −a|满足上凸函数定义,即[2,3]⊆(−∞,a],即a ≥3.。

第9讲 基本不等式9种常见题型(解析版)高一数学同步教学题型(人教A版2019必修第一册)

第9讲 基本不等式9种常见题型(解析版)高一数学同步教学题型(人教A版2019必修第一册)

第9讲基本不等式9种常见题型【考点分析】考点一:重要不等式若a b ∈,R ,则ab b a 222≥+,当且仅当b a =时取等号;考点二:基本不等式若a b ∈,+R ,则ab ba ≥+2(或ab b a 2≥+),当且仅当b a =时取等号.其中,2ba +叫作b a ,的算术平均数,ab 叫作b a ,的几何平均数.即正数b a ,的算术平均数不小于它们的几何平均数.考点三:几个常见重要的不等式①()2222a b a b ++≥(沟通两和a b +与两平方和22a b +的不等关系式)②222a b ab +≤(沟通两积ab 与两平方和22a b +的不等关系式)③22a b ab +⎛⎫≤ ⎪⎝⎭(沟通两积ab 与两和a b +的不等关系式)④重要不等式串:)2,112a ba b R a b++≤≤≤∈+即调和平均值≤几何平均值≤算数平均值≤平方平均值(注意等号成立的条件).【题型目录】题型一:直接利用基本不等式求最值题型二:“1”的代换,乘1法题型三:常规凑配法题型四:换元法题型五:消参法题型六:双换元题型七:齐次化题型八:和、积、平方和的转化题型九:多选题【典型例题】题型一直接利用基本不等式求最值【例1】(2021·湖南邵阳市)若正实数y x ,满足12=+y x .则xy 的最大值为()A .14B .18C .19D .116【答案】B【解析】1218x y xy +≥≥≤ 当且仅当122x y ==时取等号,即xy 的最大值为18故选:B 【例2】(2021·六安市裕安区新安中学)已知01x <<,则)(33x x -的最大值为()A .12B .14C .23D .34【答案】D【解析】因为01x <<,所以10,0x x ->>,所以()1x x +-≥,当且仅当1x x =-,即12x =时,等号成立,所以1≤,整理得()114x x -≤,即3(33)4x x -≤.所以(33)x x -的最大值为34.故选:D.【题型专练】1.(2022·甘肃酒泉·模拟预测(理))若x ,y 为实数,且26x y +=,则39x y +的最小值为()A .18B .27C .54D .90【答案】C【解析】由题意可得2393322754x y x y +=+≥=⨯=,当且仅当233x y =时,即2x y =等号成立.故选:C .2.(2022·河南河南·三模(理))已知二次函数()22f x ax x c =++(x ∈R )的值域为[)0,∞+,则14c a+的最小值为()A .4-B .4C .8D .8-【答案】B【详解】由于二次函数()22f x ax x c =++(x ∈R )的值域为[)0,∞+,所以0Δ440a ac >⎧⎨=-=⎩,所以1,0ac c =>,所以144c a +≥=,当且仅当14c a=即12,2a c ==时等号成立.故选:B 题型二“1”的代换,乘1法1的代换就是指凑出1,使不等式通过变形出来后达到运用基本不等式的条件,即积为定值,凑的过程中要特别注意等价变形.【例1】(2021·上海市大同中学)设b a ,为正数,且1a b +=,则ba 11+的最小值为_______.【答案】4【解析】因为b a ,为正数,且1a b +=,所以11111111124a b a b a b a b a b b a +=+⨯=+⨯+=+++≥+=()()(),当且仅当a=b=1时取等号即11a b+的最小值为4.故答案为:4【例2】(2021·河北石家庄市)已知0,0x y >>,且350x y xy +-=,则34x y +的最小值是()A .4B .5C .6D .9【答案】B【解析】由350x y xy +-=,得135y x+=,所以1131312134(34)13(135555x y x y x y y x y x ⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪⎝⎭⎝⎭,当且仅当11,2x y ==,取等号.故选:B.【例3】(2021·北京师范大学万宁附属中学)已知0,0a b >>,122a b+=,则a b +的最小值为()A .3222-B .3222+C .3-D .3+【答案】B【解析】因为0a >,0b >,且122a b+=,所以()112121322332222b a a b a b a b a b ⎛+⎛⎫⎛⎫+=+⋅+=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当b =即212a +=,222b +=时,a b +有最小值3222+.故选:B.【例4】(2021·浙江高一期末)0a >,0b >,且21a b +=,不等式1102m b a b+-≥+恒成立,则m 的范围为_______.【答案】32m ≤【解析】因为21a b +=,所以1111()22a b b b a b b a b ⎛⎫+=+++ ⎪++⎝⎭1122a b b b a b +=++++322a b b b a b+=+++333222≥+=+=当且仅当2a b bb a b+=+,即1)a b =-时,取等号,因为不等式1102m b a b +-≥+恒成立,所以m 小于等于112b a b++最小值,所以32m ≤【例5】(2021·浙江)当104x <<时,不等式11014m x x+-≥-恒成立,则实数m 的最大值为()A .7B .8C .9D .10【答案】C 【解析】不等式11014m x x+-≥-恒成立化为41414m x x ≤+-恒成立,因为104x <<,所以140x ->,所以()4141414414414x x x x x x ⎛⎫+=+-+ ⎪--⎝⎭44(14)5144x x x x -=++-5≥+549=+=,当且仅当44(14)144x x x x -=-,即16x =时,等号成立.所以9m ≤,所以m 的最大值为9.故选:C【例6】若1,0m n >>,3m n +=,则211m n+-的最小值为__________.【答案】232+【解析】因为3=+n m ,所以21=+-n m ,所以1221=+-nm ,所以232232112212111221112112+=+⎪⎭⎫ ⎝⎛-⋅⎪⎭⎫ ⎝⎛-≥+-+-+=⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+-=+-n m m n n m m n n m n m n m 当且仅当⎪⎩⎪⎨⎧=+-=-3211n m n m m n,等号成立.【例7】若b a ,是正实数,且1a b +=,则11a ab+的最小值为.【答案】322+【解析】因为1=+b a ,所以()b a b a b a a b a ab b a a ab a +⎪⎭⎫ ⎝⎛+=+=++=++=+1212111111322322122+=+⎪⎭⎫⎝⎛⋅⎪⎭⎫ ⎝⎛≥+++=b a a b b a a b ,当且仅当⎪⎩⎪⎨⎧=+=12b a b aa b ,等号成立.【例8】设2=+b a ,0>b ,则ba a ||||21+的最小值是.【答案】43【解析】因为2=+b a ,所以14412444421+=+≥++=++=+aa a ab a a b a a b a a b a b a a ,当0>a 时,45141||||21=+≥+b a a ,当当0<a 时,43141||||21=+-≥+b a a 【题型专练】1.(2022·辽宁·模拟预测)已知正实数x ,y 满足211x y+=,则436xy x y --的最小值为()A .2B .4C .8D .12【答案】C 【解析】【分析】依题意可得2xy x y =+,则4362xy x y x y --=+,再由乘“1”法及基本不等式计算可得;【详解】解:由0x >,0y >且211x y+=,可得2xy x y =+,所以43648362xy x y x y x y x y--=+--=+()2142448y x x y x y x y ⎛⎫=++=+++ ⎪⎝⎭,当且仅当4y x x y =,即4x =,2y =时取等号.故选:C2.(2022·安徽·南陵中学模拟预测(理))若实数a ,b 满足123,12a b a b ⎛⎫+=>> ⎪⎝⎭,则2211a ba b +--的最小值为()A .6B .4C .3D .2【答案】A 【解析】【分析】对已知条件和要求最值的代数式恒等变形之后应用均值不等式即可求解【详解】()()232111a b a b +=⇒-+-=因为12a >,1b >,所以210a ->,10b ->又221111112211211211a b a b a b a b a b -+-++=+=++------所以()()1111211211211a b a b a b ⎛⎫+=+-+-⎡⎤ ⎪⎣⎦----⎝⎭21122224121a b b a --=++≥+=+=--当且仅当23211121a b a b b a +=⎧⎪--⎨=⎪--⎩即34a =,32b =时,取等号所以21126211211a b a b a b +=++≥----故选:A3.(2022·四川·石室中学三模(文))已知0a >,0b >且1a b +=,则1811a b ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭的最小值是()A .49B .50C .51D .52【答案】B 【解析】【分析】将1a 中分子1替换为a +b ,将8b中分子8替换为8(a +b ),化简即可利用基本不等式求该式子的最小值.【详解】由已知,得188********a b a b b a a b a b a b ++⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++=++=++ ⎪⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭916262650b a a b =++≥+=,当且仅当916b a a b =,即37a =,47b =时等号成立.因此,1811a b ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭的最小值是50.故选:B .4.(2022·河南·宝丰县第一高级中学模拟预测(文))已知正数a ,b 满足0ab a b --=,则4a b +的最小值为___________.【答案】9【解析】【分析】由0ab a b --=得111a b +=,则()4141a a b b a b ⎛⎫+=+ ⎪⎝⎭+,展开利用基本不等式可求得最值.【详解】由0ab a b --=得111a b +=,所以()11444559b a a b a b a b a b ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当4b a a b=,即32a =,3b =时取等号,故4a b +的最小值为9.故答案为:95.(2022·天津·南开中学模拟预测)设0x >,0y >,1x y +=,则212x xy+的最小值为______.1.【解析】【分析】两次运用“1”进行整体代换,结合基本不等式,即可得结果.【详解】因为1x y +=,所以2211122222222x x x y x x x y x yxy xy y y x y y x+++++==++=++1122222x x y y y x =++++1112x y y x =++≥=当且仅当1,2x y ==212x xy+1,1.6.(2022·重庆·三模)已知0a >,0b >,且2233a b ab a b +=+,则3a b +的最小值为___________.【答案】4【解析】【分析】由题得313a b b a+=+,再利用基本不等式求出2(3)a b +的最小值即得解.【详解】解:由题得331(3)3,3a b ab a b a b a b ab b a++=+∴+==+,所以23133(3)()(3)101016a b a b a b b a b a +=++=++≥+=.(当且仅当1a b ==时取等)因为34a b +≥,所以3a b +的最小值为4.故答案为:4题型三常规凑配法【例1】(2021·云南文山壮族苗族自治州)已知(3,)x ∈+∞,函数43y x x =+-的最小值为()A .4B .7C .2D .8【答案】B【解析】因为3()x ∈+∞,,所以43003x x ->>-,,44(3)33=733y x x x x =+=-++≥+--当且仅当43=3x x --即5x =时取等号,所以43y x x =+-的最小值为7.故选:B 【例2】(2021·安徽省泗县第一中学)函数19()(1)41f x x x x =+>-的最小值为()A .134B .3C .72D .94【答案】A【解析】因为1x >,所以10x ->,所以9191113()(1)4141444x f x x x x =+=-+++=-- ,当且仅当1941x x -=-,即7x =时等号成立,所以()f x 的最小值为134.故选:A .【例3】若对任意0>x ,a x x x≤++132恒成立,则a 的取值范围是__________.【答案】51≥a 【解析】max221313⎪⎭⎫ ⎝⎛++≥⇔++≥x x x a x x x a ,因51131132≤++=++xx x x x ,所以51≥a 【例4】设0abc >>>,则221121025()a ac c ab a a b ++-+-的最小值是(A )2(B )4(C)(D )5【答案】4【解析】原式()()()()()22251212251011c a b a a b a a ab ab c ac a b a a b a a ab ab -+-⋅-+⋅≥+-+-+-++=4022=++=【例5】(2022·全国·高三专题练习(理))若11x -<<,则22222x x y x -+=-有()A .最大值1-B .最小值1-C .最大值1D .最小值1【答案】A 【解析】【分析】将给定函数化简变形,再利用均值不等式求解即得.【详解】因11x -<<,则012x <-<,于是得21(1)1111[(1)]121212x y x x x -+=-⋅=--+≤-⋅---,当且仅当111x x -=-,即0x =时取“=”,所以当0x =时,22222x x y x -+=-有最大值1-.故选:A 【题型专练】1.(2022·全国·高三专题练习)函数131y x x =+-(1)x >的最小值是()A .4B .3C .D .3【答案】D 【解析】由()13131y x x =-++-,利用基本不等式求最小值即可.【详解】因为1x >,所以()131331y x x =-++≥+-3=,当且仅当()1311x x -=-,即13x =+时等号成立.所以函数131y x x =+-(1)x >的最小值是3.故选:D.【点睛】本题考查利用基本不等式求最值,考查学生的计算求解能力,属于基础题.2.(2022·全国·高三专题练习)若0x >,0y >且x y xy +=,则211x y x y +--的最小值为()A .3B .52+C .3D .3+【答案】D 【解析】【分析】利用给定条件确定1,1x y >>,变形211x y x y +--并借助均值不等式求解即得.【详解】因0x >,0y >且x y xy +=,则xy x y y =+>,即有1x >,同理1y >,由x y xy +=得:(1)(1)1x y --=,于是得11222123()33111111x y x y x y x y +=+++=++≥+=------,当且仅当2111x y =--,即112x y =+=+“=”,所以211x y x y +--的最小值为3+故选:D3.(2022·上海·高三专题练习)若1x >,则函数211x x y x -+=-的最小值为___________.【答案】3【解析】【分析】由2111111x x y x x x -+==-++--,及1x >,利用基本不等式可求出最小值.【详解】由题意,()()()()222211111111111111x x x x x x x y x x x x x -++-+-+-+-+====-++----,因为1x >,所以111131y x x =-++≥=-,当且仅当111x x -=-,即2x =时等号成立.所以函数211x x y x -+=-的最小值为3.故答案为:3.题型四换元法【例1】(2021·永丰县永丰中学高一期末)函数21()1x x f x x ++=-(1x >)的最小值为()A .B .3+C .2+D .5【答案】B【解析】因为1x >,设01>-=x t ,所以1+=t x 所以()()332333311122+≥++=++=++++=tt t t t t t t t f ,当且仅当tt 3=,即3=t ,所以1x =+时取等号,所以函数21()1x x f x x ++=-(1x >)的最小值为3+B【例2】(2021·全国高一课时练习)函数2y =___________.【答案】4【解析】令1t =≥,则244y t t==+≥,当且仅当2t =,即x =时,min 4y =.所以函数2y =4.故答案为:4题型五消参法消参法就是对应不等式中的两元问题,用一个参数表示另一个参数,再利用基本不等式进行求解.解题过程中要注意“一正,二定,三相等”这三个条件缺一不可!【例1】已知22451()x y y x y +=∈R ,,则22x y +的最小值是.【答案】54【解析】因22451x y y +=,所以42215y x y-=,所以422222222211142425555555y y y x y y y y y y -+=+=-+=+≥=⨯=当且仅当221455y y =,即212y =时取等号【例2】若实数x ,y 满足133(0)2xy x x +=<<,则313x y +-的最小值为.【答案】8【解析】因33xy x +=,所以33x y =+,所以33y x=+,因此311133668333y y x y y y +=++=-++≥+=---当且仅当133y y -=-时取等号【题型专练】1.(2022·浙江绍兴·模拟预测)若直线30(0,0)ax by a b --=>>过点(1,1)-,的最大值为___________.【答案】【解析】【分析】将点(1,1)-代入直线方程可得3a b +=.【详解】直线30ax by --=过点(1,1)-,则3a b +=又0,0a b >>,设t =,则0t >21262t a b =+++++由()()2121292a b a b +++⎛⎫++≤= ⎪⎝⎭,当且仅当12+=+a b ,即2,1a b ==时等号成立.所以2612t =+≤,即t ≤2,1a b ==时等号成立.故答案为:2.(2022·全国·高三专题练习)设正实数x ,y ,z 满足22340x xy y z -+-=,则当xyz取得最大值时,212x y z+-的最大值为()A .0B .3C .94D .1【答案】D 【解析】【分析】利用22340x xy y z -+-=可得143xy x y z y x=+-,根据基本不等式最值成立的条件可得22,2x y z y ==,代入212x y z++可得关于y 的二次函数,利用单调性求最值即可.【详解】由正实数x ,y ,z 满足22340x xy y z -+-=,2234z x xy y ∴=-+.∴22114343xy xy x y z x xy y y x ==-++-,当且仅当20x y =>时取等号,此时22z y =.∴222122121(1)1122x y z y y y y+-=+-=--+ ,当且仅当1y =时取等号,即212x y z+-的最大值是1.故选:D 【点睛】本题主要考查了基本不等式的性质和二次函数的单调性,考查了最值取得时等号成立的条件,属于中档题.3.(2022·全国·高三专题练习(理))已知正实数a ,b 满足220ab a +-=,则4a b +的最小值是()A .2B.2C.2D .6【答案】B 【解析】【分析】根据220ab a +-=变形得22a b =+,进而转化为a b b b +=++842,用凑配方式得出()b b ++-+8222,再利用基本不等式即可求解.【详解】由220ab a +-=,得22a b =+,所以()a b b b b b +=+=++-=++88422224222 ,当且仅当,a b b b ==+++28222,即a b ==2取等号.故选:B.题型六双换元若题目中含是求两个分式的最值问题,对于这类问题最常用的方法就是双换元,分布运用两个分式的分母为两个参数,转化为这两个参数的不等关系.【例1】若00a b >>,,且11121a b b =+++,则2a b +的最小值为.【答案】1【解析】设21a b x b y +=⎧⎨+=⎩,则121x y a b y --⎧=⎪⎨⎪=-⎩,所以111x y =+,因此21223a b x y y x y =--+-=+-+因()111124x y x y x y x y y x ⎛⎫+=++=+++≥+= ⎪⎝⎭所以2431a b ≥-=+【例2】已知0x y >,,求44x yx y x y+++的最大值.【答案】1【解析】设4x y a x y b +=⎧⎨+=⎩,则343a b x b a y -⎧=⎪⎪⎨-⎪=⎪⎩,因此441453343333333a b b ax y b a b a x y x y a b a b a b --⎛⎫+=+=-+-=-+ ⎪++⎝⎭因2333b a a b +≥=所以421433x x y x y +≥-=++【例3】(2022·浙江省江山中学高三)设0a >,0b >,若221a b +=2ab -的最大值为()A.3B.C.1D.2+【答案】D 【解析】【分析】法一:设c b =-,进而将问题转化为已知221a c +=,求ac 的最大值问题,再根据基本不等式求解即可;法二:由题知221()124a b b -+=进而根据三角换元得5cos ,(062sin a b πθθθθ⎧=⎪<<⎨=⎪⎩,再根据三角函数最值求解即可.【详解】解:法一:(基本不等式)设c b =-2ab -=)a b ac -=,条件222211a b a c +=⇔+=,2212a c ac +=+≥,即2≤ac 故选:D.法二:(三角换元)由条件221()124a b b -+=,故可设cos sin 2a b θθ⎧=⎪⎪⎨⎪=⎪⎩,即cos ,2sin a b θθθ⎧=⎪⎨=⎪⎩,由于0a >,0b >,故cos 02sin 0θθθ⎧+>⎪⎨>⎪⎩,解得506πθ<<所以,5cos ,(0)62sin a b πθθθθ⎧=⎪<<⎨=⎪⎩,22sin 22ab θ-+≤当且仅当4πθ=时取等号.故选:D.【题型专练】1.(2022·天津南开·一模)若0a >,0b >,0c >,2a b c ++=,则4a ba b c+++的最小值为______.【答案】2+【解析】【分析】令2,,(0,0)c m c n m n -==>>,则2m n +=,由此可将4a b a b c+++变形为421m n +-,结合基本不等式,即可求得答案。

不等式的性质及应用(高中数学)

不等式的性质及应用(高中数学)

01 不等式的性质及应用【知识分析】不等式的性质及应用是不等式的一个基础内容,高考中主要以客观题形式呈现,难度不大,分值5分,复习时注意不等式的等价变形,特别是不等式两边同乘以或同除以一个数时,不等式的方向变化. 【经典例题】(1)已知a ,b ,c ,d 均为实数,有下列命题: ①若ab >0,bc -ad >0,则c a -db >0;②若ab >0,c a -db >0,则bc -ad >0;③若bc -ad >0,c a -db >0,则ab >0.其中正确命题的个数是( ) A .0 B .1 C .2 D .3(2)不等式组⎩⎪⎨⎪⎧x +y≥1,x -2y≤4的解集记为D.有下面四个命题:p 1:∀(x ,y)∈D ,x +2y≥-2, p 2:∃(x ,y)∈D ,x +2y≥2, p 3:∀(x ,y)∈D ,x +2y≤3, p 4:∃(x ,y)∈D ,x +2y≤-1. 其中的真命题是( )A .p 2,p 3B .p 1,p 2C .p 1,p 4D .p 1,p 3【解析】 (1)对于①,∵ab >0,bc -ad >0,∴c a -d b =bc -ad ab >0,∴①正确;对于②,∵ab >0,又c a -db >0,即bc -ad ab >0,∴bc -ad >0,∴②正确;对于③,∵bc -ad >0,又c a -db >0,即bc -ad ab>0,∴ab >0,∴③正确.(2)设x +2y =m(x +y)+n(x -2y),则⎩⎪⎨⎪⎧1=m +n ,2=m -2n ,解得⎩⎨⎧m =43,n =-13.∵⎩⎪⎨⎪⎧x +y≥1,x -2y≤4,∴43(x +y)≥43,-13(x -2y)≥-43,∴x +2y =43(x +y)-13(x -2y)≥0.故命题p 1,p 2正确,p 3,p 4错误. 【答案】 (1)D (2)B题(1)实质为ab >0,bc -ad >0,c a -db >0三个结论之间的轮换,知二推一,利用不等式的性质判断.(2)利用不等式组求x +2y 的范围,注意性质应用的条件,以免扩大取值范围.判断关于不等式的命题真假的三种方法(1)直接运用不等式的性质:把要判断的命题和不等式的性质联系起来考虑,找到与命题相近的性质,然后进行推理判断.(2)利用函数的单调性:当直接利用不等式性质不能比较大小时,可以利用指数函数、对数函数、幂函数的单调性等进行判断.(3)特殊值验证法:给要判断的几个式子中涉及的变量取一些特殊值,然后进行比较、判断.利用不等式的性质求取值范围的方法由a <f(x ,y)<b ,c <g(x ,y)<d 求F(x ,y)的取值范围,可利用待定系数法解决,即设F(x ,y)=mf(x ,y)+ng(x ,y),用恒等变形求得m ,n ,再利用不等式的性质求得F(x ,y)的取值范围. 【针对训练】1.若a >b >0,c <d <0,则一定有( ) A.a c >b a B.a c <b d C.a d >b c D.a d <b c1.D 方法一:c<d<0⇒cd>0⇒c cd <d cd <0⇒1d <1c<0⇒⎭⎪⎬⎪⎫-1d >-1c >0a>b>0⇒-a d >-b c ⇒a d <b c .方法二:依题意取a =2,b =1时,c =-2,d =-1,代入验证得A ,B ,C 均错,只有D 正确. 2.设x ,y 为实数,满足3≤xy 2≤8,4≤x 2y ≤9,则x 3y4的最大值是________. 2.【解析】 方法一:由题意知,实数x ,y 均为正数,则条件可化为lg 3≤lg x +2lg y≤lg 8,lg 4≤2lg x -lg y≤lg 9.令lg x =a ,lg y =b ,则有⎩⎪⎨⎪⎧lg 3≤a +2b≤3lg 2,2lg 2≤2a -b≤2lg 3.设t =x 3y 4,则lg t =3lg x -4lg y =3a -4b.令3a -4b =m(a +2b)+n(2a -b),解得m =-1,n =2,故lg t =-(a +2b)+2(2a -b)≤-lg 3+4lg 3=lg 27.所以x 3y 4的最大值为27.方法二:将4≤x 2y ≤9两边平方,得16≤x 4y2≤81.①由3≤xy 2≤8,得18≤1xy 2≤13.②由①②,得2≤x 3y 4≤27,即x 3y 4的最大值是27.【答案】 27, 【测试】1.设a ,b 为实数,命题甲:ab >b 2,命题乙:1b <1a <0,则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.已知a <0,-1<b <0,那么下列不等式成立的是( ) A .a >ab >ab 2 B .ab 2>ab >a C .ab >a >ab 2 D .ab >ab 2>a2.D 由-1<b <0,得b <b 2<1.又∵a <0,∴ab >ab 2>a. 3.已知0<a<b<1,则( ) A.1b >1aB.⎝⎛⎭⎫12a <⎝⎛⎭⎫12bC .(lg a)2<(lg b)2 D.1lg a >1lg b3.D 因为0<a<b<1,所以1b -1a =a -b ab<0.可得1b <1a ,⎝⎛⎭⎫12a >⎝⎛⎭⎫12b,(lg a)2>(lg b)2,lg a<lg b<0.由lg a<lg b<0得1lg a >1lg b,因此只有D 项正确.思路点拨:利用不等式的性质和指数函数、对数函数的单调性求解.4.已知△ABC 的三边长分别为a ,b ,c ,且满足b +c≤3a ,则ca 的取值范围为( )A .(1,+∞)B .(0,2)C .(1,3)D .(0,3)4.B 由已知及三角形三边关系得⎩⎪⎨⎪⎧a <b +c≤3a ,a +b >c ,a +c >b ,∴⎩⎪⎨⎪⎧1<b a +ca≤3,1+b a >ca ,1+c a >ba ,∴⎩⎨⎧1<b a +ca≤3,-1<c a -ba <1,两式相加得,0<2×ca<4,∴ca 的取值范围为(0,2),故选B. 5.对于0<a <1,给出下列四个不等式:①log a (1+a)<log a ⎝⎛⎭⎫1+1a ; ②log a (1+a)>log a ⎝⎛⎭⎫1+1a ; ③a 1+a <a1+1a ; ④a 1+a >a1+1a .其中成立的是( )A .①③B .①④C .②③D .②④6.已知实数x ,y 满足⎩⎪⎨⎪⎧1≤x +y≤3,-1≤x -y≤1,则4x +2y 的取值范围是________.6.【解析】 方法一:∵1≤x +y≤3,① -1≤x -y≤1,②由①+②,得0≤2x≤4,③ ③×2得0≤4x≤8,④ 由①-②,得2≤2y≤2,⑤ 由④+⑤得2≤4x +2y≤10.方法二:令4x +2y =m(x +y)+n(x -y),则⎩⎪⎨⎪⎧m +n =4,m -n =2,解得⎩⎪⎨⎪⎧m =3,n =1. 即4x +2y =3(x +y)+(x -y), ∵1≤x +y≤3, ∴3≤3(x +y)≤9, 又∵-1≤x -y≤1, ∴2≤3(x +y)+(x -y)≤10. ∴2≤4x +2y≤10. 【答案】 [2,10] 【点击高考】1.已知x ,y ∈R ,且x>y>0,则( ) A.1x -1y>0 B .sin x -sin y>0 C.⎝⎛⎭⎫12x-⎝⎛⎭⎫12y<0 D .ln x +ln y>02.已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( ) A.1x 2+1>1y 2+1B .ln(x 2+1)>ln(y 2+1)C .sin x >sin yD .x 3>y 32.D 因为0<a <1,a x <a y ,所以x >y.对于选项A ,取x =2,y =1,则1x 2+1<1y 2+1,显然A 错误;对于选项B ,取x =-1,y =-2,则ln(x 2+1)<ln(y 2+1),显然B 错误;对于选项C ,取x =π,y =π2,则sinπ2>sin π,显然C 错误;对于选项D ,若x >y ,则x 3>y 3一定成立,故选D. 3.设[x]表示不大于x 的最大整数,则对任意实数x ,y ,有( ) A .[-x]=-[x] B .[2x]=2[x] C .[x +y]≤[x]+[y] D .[x -y]≤[x]-[y]4.如果a<b<0,那么下列不等式成立的是( ) A.1a <1bB .ab<b 2C .-ab<-a 2D .-1a <-1b4.D 方法一(利用不等式性质求解):A 项,由a<b<0,得b -a>0,ab>0,故1a -1b =b -a ab >0,1a >1b ,故A 项错误;B 项,由a<b<0,得b(a -b)>0,ab>b 2,故B 项错误;C 项,由a<b<0,得a(a -b)>0,a 2>ab ,即-ab>-a 2,故C 项错误;D 项,由a<b<0,得a -b<0,ab>0,故-1a -⎝⎛⎭⎫-1b =a -b ab <0,-1a <-1b 成立.故D 项正确.方法二(特殊值法):令a =-2,b =-1,则1a =-12>-1=1b ,ab =2>1=b 2,-ab =-2>-4=-a 2,-1a =12<1=-1b.故A ,B ,C 项错误,D 项正确.5.若a ,b ∈R ,且ab>0,则下列不等式中,恒成立的是( ) A .a 2+b 2>2ab B .a +b≥2ab C.1a +1b >2ab D.b a +a b≥2 5.D A 项,当a =b =1时,满足ab>0,但a 2+b 2=2ab ,所以A 错误;B ,C 项,当a =b =-1时,满足ab>0,但a +b<0,1a +1b <0,而2ab>0,2ab >0,显然B ,C 错误;D 项,当ab>0时,由基本不等式得b a +a b ≥2b a ·ab=2,所以D 正确. 6.若a ,b 为实数,则“0<ab<1”是“a<1b 或 b>1a ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件6.A 当0<ab<1时,若b>0,则有a<1b ;若b<0,则a<0,从而有b>1a ,故“0<ab<1”是“a<1b 或b>1a ”的充分条件.反之,取b =1,a =-2,则有a<1b 或b>1a ,但ab<0,故选A.02 一元二次不等式的应用【知识分析】解一元二次不等式及分式不等式一般为容易题,主要以选择题、填空题出现.常与集合的交、并、补结合,难度不大.在平时复习中应熟练掌握图象法解一元二次不等式的方法,注重分式不等式、绝对值不等式转化为一元二次不等式(组)的等价过程,书写时注意解集写成集合或区间的形式. 【典型例题】1(1)不等式x -12x +1≤0的解集为( )A.⎝⎛⎦⎤-12,1 B.⎣⎡⎦⎤-12,1 C.⎝⎛⎭⎫-∞,-12∪[1,+∞) D.⎝⎛⎦⎤-∞,-12∪[1,+∞) (2)不等式-x 2-3x +4>0的解集为________.(用区间表示)(3)已知f(x)是定义在R 上的奇函数.当x >0时,f(x)=x 2-4x ,则不等式f(x)>x 的解集用区间表示为________.【解析】 (1)不等式x -12x +1≤0⇔⎩⎪⎨⎪⎧(x -1)(2x +1)≤0,2x +1≠0,解得-12<x≤1,∴不等式的解集为⎝⎛⎦⎤-12,1. (2)由-x 2-3x +4>0得x 2+3x -4<0, 即(x +4)(x -1)<0,解得-4<x <1. (3)当x >0时,f(x)=x 2-4x , 令x <0,则-x >0, ∴f(-x)=x 2+4x.∵f(x)是定义在R 上的奇函数,∴f(-x)=-f(x), ∴-f(x)=x 2+4x ,即x <0时,f(x)=-x 2-4x.f(x)>x ,即⎩⎪⎨⎪⎧x >0,x 2-4x >x 或⎩⎪⎨⎪⎧x <0,-x 2-4x >x 或⎩⎪⎨⎪⎧x =0,0>x. 解得-5<x <0或x >5,∴不等式f(x)>x 的解集为(-5,0)∪(5,+∞). 【答案】 (1)A (2)(-4,1) (3)(-5,0)∪(5,+∞),解一元二次不等式的步骤(1)对不等式变形,使不等号一端二次项系数大于0,另一端为0,即化为ax 2+bx +c>0(a>0)或ax 2+bx +c<0(a>0)的形式; (2)计算相应的判别式;(3)当Δ≥0时,求出相应的一元二次方程的根; (4)根据对应的二次函数的图象,写出不等式的解集.分式不等式的解法(1)f (x )g (x )>0(<0) ⇔f(x)·g(x)>0(<0); (2)f (x )g (x )≥0(≤0) ⇔⎩⎪⎨⎪⎧f (x )·g (x )≥0(≤0),g (x )≠0. 注意:求解分式不等式,关键是对原不等式进行恒等变形,转化为整式不等式(组)求解.解题时要注意含有等号的分式不等式在变形为整式不等式后,及时去掉分母等于0的情形.含参数的一元二次不等式问题是高考的热点,主要出现在综合题中,常与函数、导数联系在一起,难度较大,复习时要加强此知识点的强化训练. 【典型例题】2(1)关于x 的不等式x 2-2ax -8a 2<0(a >0)的解集为(x 1,x 2),且x 2-x 1=15,则a =( ) A.52 B.72 C.154 D.152(2)已知函数f(x)=2x 2+bx +c(b ,c ∈R )的值域为[0,+∞),若关于x 的不等式f(x)<m 的解集为(n ,n +10),则实数m 的值为( )A .25B .-25C .50D .-50【解析】 (1)方法一:由条件知,x 1和x 2是方程x 2-2ax -8a 2=0的两根,则x 1+x 2=2a ,x 1x 2=-8a 2,所以(x 2-x 1)2=(x 2+x 1)2-4x 1x 2=4a 2+32a 2=36a 2=152.又a >0,所以a =52.方法二:由x 2-2ax -8a 2<0,得(x +2a)(x -4a)<0.因为a >0,所以不等式的解集为(-2a ,4a).又不等式的解集为(x 1,x 2),所以x 1=-2a ,x 2=4a ,从而x 2-x 1=6a =15,解得a =52.(2)由函数f(x)=2x 2+bx +c(b ,c ∈R )的值域为[0,+∞)知,Δ=b 2-8c =0,所以c =b 28.不等式f(x)<m 即2x 2+bx +b 28<m ,即2x 2+bx +b 28-m <0的解集为(n ,n +10).设方程2x 2+bx +b 28-m =0的两根为x 1,x 2,则x 1+x 2=-b 2,x 1x 2=b 216-m2,所以|x 1-x 2|=(x 1+x 2)2-4x 1x 2=⎝⎛⎭⎫-b 22-4⎝⎛⎭⎫b 216-m 2=2m.由题意知|x 1-x 2|=|n +10-n|=10,所以m =50. 【答案】 (1)A (2)C,(1)方法一利用不等式的解集以及根与系数的关系得到两根关系式,然后与已知条件化简求解a 的值;方法二注意因式分解的恰当应用会给解题带来意想不到的效果.(2)二次函数f(x)=2x 2+bx +c(b ,c ∈R )的值域为[0,+∞)等价于Δ=0;f(x)<m 的解集为(n ,n +10)转化为两交点间的距离|x 1-x 2|=10.解含参数的一元二次不等式的步骤(1)二次项系数若含有参数应讨论是等于0,小于0,还是大于0,然后将不等式转化为二次项系数为正的形式.(2)判断方程的根的个数,讨论判别式Δ与0的关系.(3)确定无根时可直接写出解集,确定方程有两个根时,要讨论两根的大小关系,从而确定解集形式. 一元二次不等式恒成立问题也是高考的一个考点,主要考查根据一元二次不等式的恒成立求参数的范围、求最值等,一般以选择题或填空题的形式出现,试题难度不大. 【典型例题】3(1)已知函数f(x)=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f(x)<0成立,则实数m 的取值范围是________.(2)已知函数y =f(x)(x ∈R ).对函数y =g(x)(x ∈I),定义g(x)关于f(x)的“对称函数”为函数y =h(x)(x ∈I),y =h(x)满足:对任意x ∈I ,两个点(x ,h(x)),(x ,g(x))关于点(x ,f(x))对称.若h(x)是g(x)=4-x 2关于f(x)=3x +b 的“对称函数”,且h(x)>g(x)恒成立,则实数b 的取值范围为________.(2)由已知得h (x )+4-x 22=3x +b ,所以h(x)=6x +2b -4-x 2.因为h(x)>g(x)恒成立,所以6x +2b -4-x 2>4-x 2, 即3x +b>4-x 2恒成立.在同一坐标系中画出y =3x +b 及半圆y =4-x 2的图象,如图所示.当直线3x -y +b =0与半圆相切时,d =b10=2,此时,b =210. 结合图象可知,b 的取值范围为(210,+∞). 【答案】 (1)⎝⎛⎭⎫-22,0 (2)(210,+∞) 【名师点拨】(1)结合二次函数的图象及性质只需满足f(m)<0且f(m +1)<0即可;(2)先根据“对称函数”的定义,求出h(x),然后在同一坐标系下,画出整理后的两个函数的图象,利用数形结合的思想求解.一元二次不等式恒成立问题的解题方法(1)图象法:对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x 轴上方;恒小于0就是相应的二次函数的图象在给定的区间上全部在x 轴下方.(2)更换主元法:如果不等式中含有多个变量,这时选准“主元”往往是解题的关键,即需要确定合适的变量或参数,能使函数关系更加清晰明朗.一般思路为:将已知范围的量视为变量,而待求范围的量看作是参数,然后借助函数的单调性或其他方法进行求解.(3)分离参数法:如果欲求范围的参数能够分离到不等式的一边,那么这时可以通过求出不等式另一边式子的最值(或范围)来得到不等式恒成立时参数的取值范围.一般地,a≥f(x)恒成立时,应有a≥f(x)max ,a≤f(x)恒成立时,应有a≤f(x)min .对任意的k ∈[-1,1],函数f(x)=x 2+(k -4)x +4-2k 的值恒大于零,则x 的取值范围是________.【针对训练】1.对于任意实数x ,不等式(a -2)x 2-2(a -2)x -4<0恒成立,则实数a 的取值范围是( ) A .(-∞,2) B .(-∞,2] C .(-2,2) D .(-2,2]1.D 当a -2=0,即a =2时,-4<0,恒成立;当a -2≠0时,则⎩⎪⎨⎪⎧a -2<0,4(a -2)2+16(a -2)<0,解得-2<a <2, ∴-2<a≤2. 故选D.2.在R 上定义运算⊗:x ⊗y =x(1-y),若对任意x >2,不等式(x -a)⊗x≤a +2都成立,则实数a 的取值范围是( )A .[-1,7]B .(-∞,3]C .(-∞,7]D .(-∞,-1]∪[7,+∞)2.C 由题意可知,不等式(x -a)⊗x≤a +2可化为(x -a)(1-x)≤a +2,即x -x 2-a +ax≤a +2,则a≤x 2-x +2x -2对x >2都成立,即a≤⎝ ⎛⎭⎪⎫x 2-x +2x -2min (x ∈(2,+∞)), 由于x 2-x +2x -2=(x -2)+4x -2+3≥2(x -2)·4x -2+3=7(x >2),当且仅当x -2=4x -2,即x =4时,等号成立,∴a≤7,故选C.3.“已知关于x 的不等式ax 2+bx +c >0的解集为(1,2),解关于x 的不等式cx 2+bx +a >0.”给出如下的一种解法: 解:由ax 2+bx +c >0的解集为(1,2),得a ⎝⎛⎭⎫1x 2+b ⎝⎛⎭⎫1x +c >0的解集为⎝⎛⎭⎫12,1,即关于x 的不等式cx 2+bx +a >0的解集为⎝⎛⎭⎫12,1.参考上述解法:若关于x 的不等式b x +a +x +b x +c <0的解集为⎝⎛⎭⎫-1,-13∪⎝⎛⎭⎫12,1,则关于x 的不等式bx -a-x -bx -c >0的解集为( ) A .(-1,1)B.⎝⎛⎭⎫-1,-12∪⎝⎛⎭⎫13,1 C.⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫13,1 D.⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫13,+∞ 3.B 根据题意, 由bx +a +x +b x +c<0的解集为 ⎝⎛⎭⎫-1,-13∪⎝⎛⎭⎫12,1,得b-x +a +-x +b -x +c<0的解集为 ⎝⎛⎭⎫-1,-12∪⎝⎛⎭⎫13,1,即b x -a -x -b x -c>0的解集为 ⎝⎛⎭⎫-1,-12∪⎝⎛⎭⎫13,1.故选B.4.已知函数f(x)=⎩⎪⎨⎪⎧x 2+1,x≥0,1,x <0则满足不等式f(1-x 2)>f(2x)的x 的取值范围是________.4.【解析】 当x =-1时,无解.当-1<x <0时,1-x 2>0,f(1-x 2)>f(2x)化为(1-x 2)2+1>1,恒成立.当0≤x≤1时,1-x 2≥0,2x≥0,f(1-x 2)>f(2x)化为(1-x 2)2+1>(2x)2+1,即1-x 2>2x ,(x +1)2<2,∴0≤x <2-1.当1-x 2<0时,无解. 综上可知-1<x <2-1. 【答案】 (-1,2-1)5.设0≤α≤π,不等式8x 2-(8sin α)x +cos 2α≥0对x ∈R 恒成立,则α的取值范围为________. 5.【解析】 因为不等式8x 2-(8sin α)x +cos 2α≥0对x ∈R 恒成立, 所以Δ=64sin 2α-32cos 2α≤0, 即64sin 2α-32+64sin 2α≤0, 解得-12≤sin α≤12.因为0≤α≤π.所以α∈⎣⎡⎦⎤0,π6∪⎣⎡⎦⎤5π6,π. 【答案】 ⎣⎡⎦⎤0,π6∪⎣⎡⎦⎤5π6,π 6.已知a 为正的常数,若不等式1+x ≥1+x 2-x 2a 对一切非负实数x 恒成立,则a 的最大值为________.6.【解析】 原不等式可化为x 2a ≥1+x 2-1+x ,令1+x =t ,t≥1,则x =t 2-1.所以(t 2-1)2a ≥1+t 2-12-t=t 2-2t +12=(t -1)22对t≥1恒成立,所以(t +1)2a ≥12对t≥1恒成立.又a 为正的常数,所以a≤[2(t +1)2]min=8,故a 的最大值是8. 【答案】 8 【点击高考】1.设集合A ={x|x 2-4x +3<0},B ={x|2x -3>0},则A∩B =( ) A.⎝⎛⎭⎫-3,-32 B.⎝⎛⎭⎫-3,32 C.⎝⎛⎭⎫1,32 D.⎝⎛⎭⎫32,32.设集合S ={x|(x -2)(x -3)≥0},T ={x|x>0},则S∩T =( ) A .[2,3] B .(-∞,2]∪[3,+∞) C .[3,+∞) D .(0,2]∪[3,+∞)2.D S ={x|x≤2或x≥3},T ={x|x>0},∴S∩T =(0,2]∪[3,+∞). 3.设x ∈R ,则“|x -2|<1”是“x 2+x -2>0”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件 3.A 由|x -2|<1⇔-1<x -2<1⇔1<x <3. 由x 2+x -2>0⇔x <-2或x >1. 而(1,3)(-∞,-2)∪(1,+∞),所以“|x -2|<1”是“x 2+x -2>0”的充分而不必要条件,故选A.4.已知一元二次不等式f(x)<0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x<-1或x>12,则f(10x )>0的解集为( ) A.{}x |x<-1或x>-lg 2 B.{}x |-1<x<-lg 2 C.{}x |x>-lg 2 D.{}x |x<-lg 24.D ∵f(x)<0的解集为 ⎩⎨⎧⎭⎬⎫x ⎪⎪x<-1或x>12,∴f(x)>0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-1<x<12. ∴由f(10x )>0得,-1<10x <12,解得x<-lg 2.5.在如图所示的锐角三角形空地中,欲建一个面积不小于300 m 2的内接矩形花园(阴影部分),则其边长x(单位:m)的取值范围是( )A .[15,20]B .[12,25]C .[10,30]D .[20,30]6.已知函数f(x)=x(1+a|x|),设关于x 的不等式f(x +a)<f(x)的解集为A.若⎣⎡⎦⎤-12,12⊆A ,则实数a 的取值范围是( ) A.⎝ ⎛⎭⎪⎫1-52,0B.⎝ ⎛⎭⎪⎫1-32,0C.⎝⎛⎭⎪⎫1-52,0∪⎝⎛⎭⎪⎫0,1+32D.⎝⎛⎭⎪⎫-∞,1-52 6.A 由题意可得0∈A ,即f(a)<f(0)=0,所以a(1+a|a|)<0,当a>0时无解,所以a<0,此时1-a 2>0,所以-1<a<0.抛物线的对称轴x =12a ,x =-12a 之间的距离大于1,而[x +a ,x]的区间长度小于1,所以不等式f(x +a)<f(x)的解集是⎝⎛⎭⎫12a -a 2,-12a -a2,所以 ⎣⎡⎦⎤-12,12⊆⎝⎛⎭⎫12a -a 2,-12a -a 2, 所以⎩⎨⎧12a -a 2<-12,-12a -a 2>12,即⎩⎪⎨⎪⎧a 2-a -1<0,a 2+a +1>0, 解得1-52<a<1+52,又-1<a<0,所以实数a 的取值范围是⎝⎛⎭⎪⎫1-52,0.7.设a ∈R ,若x >0,均有[(a -1)x -1]·(x 2-ax -1)≥0,则a =________.7.【解析】 (1)当a =1时,不等式可化为对∀x ,x>0时均有x 2-x -1≤0,由二次函数的图象知,显然不成立, ∴a≠1.(2)当a<1时,∵x>0,∴(a -1)x -1<0,则不等式可化为x>0时均有x 2-ax -1≤0.∵二次函数y =x 2-ax -1的图象开口向上,∴不等式x 2-ax -1≤0在x ∈(0,+∞)上不能恒成立,∴a<1不成立.(3)当a>1时,令f(x)=(a -1)x -1,g(x)=x 2-ax -1,两函数的图象均过定点(0,-1).∵a>1,∴f(x)在x ∈(0,+∞)上单调递增,且与x 轴交点为⎝⎛⎭⎫1a -1,0,即当x ∈⎝⎛⎭⎫0,1a -1时,f(x)<0,当x ∈⎝⎛⎭⎫1a -1,+∞时,f(x)>0.又∵二次函数g(x)=x 2-ax -1的对称轴为x =a2>0,则只需g(x)=x 2-ax -1与x 轴的右交点与点⎝⎛⎭⎫1a -1,0重合, 如图所示,则命题成立,即⎝⎛⎭⎫1a -1,0在g(x)图象上,所以有⎝⎛⎭⎫1a -12-a a -1-1=0,整理得2a 2-3a =0,解得a =32,a=0(舍去). 综上可知a =32.【答案】 3203 基本不等式利用基本不等式求最值利用基本不等式求最值是基本不等式的考点,高考主要求最值、判断不等式、解决不等式有关的问题,试题难度不大,主要是以选择题、填空题形式出现,有时解答题中也会利用基本不等式求最值.在复习时,注意利用基本不等式判断不等式是否成立(比较大小),一般将所给不等式变形,使一侧为常数,另一侧利用基本不等式求解后判断. 【典例】1(1)设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当xy z 取得最大值时,2x +1y -2z 的最大值为( )A .0B .1 C.94D .3(2)设f(x)=ln x ,0<a<b ,若p =f(ab),q =f ⎝⎛⎭⎫a +b 2,r =12(f(a)+f(b)),则下列关系式中正确的是( )A .q =r<pB .p =r<qC .q =r>pD .p =r>q【解析】 (1)由x 2-3xy +4y 2-z =0,得z =x 2-3xy +4y 2. 所以xy z =xy x 2-3xy +4y 2=1x y +4yx-3≤12x y ·4y x-3=1,当且仅当x y =4yx ,即x =2y 时取等号,此时z =2y 2,⎝⎛⎭⎫xy z max =1, 则2x +1y -2z =22y +1y -2xy =2y ⎝⎛⎭⎫1-1x =2y⎝⎛⎭⎫1-12y ≤4⎝ ⎛⎭⎪⎫12y +1-12y 22=1. (2)方法一:由题意知,p =f(ab)=ln ab ,q =f ⎝⎛⎭⎫a +b 2=ln ⎝⎛⎭⎫a +b 2,r =12(f(a)+f(b))=12(ln a +ln b)=12ln ab =ln ab.又∵b >a >0,∴a +b2>ab >0.∵函数f(x)=ln x 为增函数,∴p =r <q ,故选B. 方法二(特值法):令a =1,b =2,∴p =f(2)=ln 2, q =f ⎝⎛⎭⎫a +b 2=f ⎝⎛⎭⎫32=ln 32,r =12(ln 1+ln 2)=ln 2.∵2<32,∴ln 2<ln 32,∴p =r<q.【答案】 (1)B (2)B 【名师点睛】(1)含有三个变量,可以把其中一个变量用另两个变量来代替,借助基本不等式求最值; 解(2)时注意利用不等式与对数函数相结合,方法二是不等式常用的方法,特殊值法应灵活应用.利用基本不等式求最值的类型及方法(1)若已经满足基本不等式的条件,则直接应用基本不等式求解.(2)若不直接满足基本不等式的条件,需要通过配凑、进行恒等变形,构造成满足条件的形式,常用的方法有:“1”的代换作用,对不等式进行分拆、组合、添加系数等.(3)多次使用基本不等式求最值,此时要注意只有同时满足等号成立的条件才能取得等号,若等号不成立,一般利用函数单调性求解.若直线x a +yb =1(a >0,b >0)过点(1,1),则a +b 的最小值等于( )A .2B .3C .4D .5C 将(1,1)代入直线x a +y b =1得1a +1b=1,a >0,b >0,故a +b =(a +b)⎝⎛⎭⎫1a +1b =2+b a +ab ≥2+2=4,等号当且仅当a =b 时取到,故选C. 基本不等式的实际应用高考中利用基本不等式解决实际问题,关键是把实际问题转化为代数问题,列出函数关系式,再利用基本不等式求最值. 【典例】2(1)要制作一个容积为4 m 3,高为1 m 的无盖长方体容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是________(单位:元).(2)如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程y =kx -120(1+k 2)x 2(k>0)表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标. ①求炮的最大射程;②设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.【解析】 (1)设池底长为x m ,宽为y m ,则xy =4,所以y =4x ,则总造价为f(x)=20xy +2(x +y)×1×10=80+80x +20x=20⎝⎛⎭⎫x +4x +80,x ∈(0,+∞). 所以f(x)≥20×2x·4x +80=160,当且仅当x =4x,即x =2时,等号成立.所以最低总造价是160元. (2)①令y =0,得kx -120(1+k 2)x 2=0.由实际意义和题设条件知x>0,k>0, 故x =20k 1+k 2=20k +1k ≤202=10,当且仅当k =1时取等号. 所以炮的最大射程为10千米.②因为a>0,所以炮弹可以击中目标等价于存在k>0, 使3.2=ka -120(1+k 2)a 2成立,故关于k 的方程a 2k 2-20ak +a 2+64=0有正根, 所以有判别式Δ=(-20a)2-4a 2(a 2+64)≥0,即a≤6. 所以当a 不超过6千米时,炮弹可以击中目标., 【名师点睛】解(1)关键是列出函数关系式f(x)=20⎝⎛⎭⎫x +4x +80,利用基本不等式求最值; 题(2)①求炮的最大射程即求y =kx -120(1+k 2)x 2(x >0)与x 轴的横坐标,求出后应用基本不等式求解;②求炮弹击中目标时的横坐标的最大值,由一元二次方程根的判别式求解.利用基本不等式解决实际问题的步骤(1)根据题意设出相应变量,一般把要求最值的变量设为函数;(2)建立相应的函数关系式,确定函数的定义域; (3)在定义域内,求函数的最值;(4)回到实际问题中去,写出实际问题的答案. 【针对训练】1.若正数a ,b 满足1a +1b =1,则4a -1+16b -1的最小值为( )A .16B .25C .36D .49 1.A 因为a ,b >0,1a +1b =1,所以a +b =ab ,所以4a -1+16b -1=4(b -1)+16(a -1)(a -1)(b -1)=4b +16a -20ab -(a +b )+1=4b +16a -20.又4b +16a =4(b +4a)=4(b +4a)·⎝⎛⎭⎫1a +1b =20+4⎝⎛⎭⎫b a +4a b ≥20+4×2b a ·4ab=36, 当且仅当b a =4a b 且1a +1b =1,即a =32,b =3时取等号.所以4a -1+16b -1≥36-20=16.2.函数y =log a (x +3)-1(a >0,且a≠1)的图象恒过定点A ,若点A 在直线mx +ny +2=0上,其中m >0,n >0,则2m +1n 的最小值为( )A .2 2B .4 C.52 D.923.已知直线ax +by +c -1=0(b ,c>0)经过圆x 2+y 2-2y -5=0的圆心,则4b +1c 的最小值是( )A .9B .8C .4D .23.A 圆x 2+y 2-2y -5=0化成标准方程, 得x 2+(y -1)2=6, 所以圆心为C(0,1).因为直线ax +by +c -1=0经过圆心C , 所以a×0+b×1+c -1=0,即b +c =1.因此4b +1c =(b +c)⎝⎛⎭⎫4b +1c =4c b +b c +5. 因为b ,c>0, 所以4c b +b c≥24c b ·b c=4. 当且仅当4c b =bc时等号成立.由此可得b =2c ,且b +c =1,即b =23,c =13时,4b +1c取得最小值9. 4.已知x >0,y >0,若2y x +8xy>m 2+2m 恒成立,则实数m 的取值范围是________.【答案】 (-4,2)5.若当x>-3时,不等式a≤x +2x +3恒成立,则a 的取值范围是________.5.【解析】 设f(x)=x +2x +3=(x +3)+2x +3-3,因为x>-3,所以x +3>0, 故f(x)≥2(x +3)×2x +3-3=22-3,当且仅当x =2-3时等号成立, 所以a 的取值范围是(-∞,22-3]. 【答案】 (-∞,22-3]6.已知实数x ,y 满足x -x +1=y +3-y ,则x +y 的最大值为________. 6.【解析】 ∵x -x +1=y +3-y. ∴x +y =x +1+y +3≤2x +y +42,则(x +y)2≤2(x +y +4),解得-2≤x +y≤4.∴x +y 的最大值为4. 【答案】 47.如图,为处理含有某种杂质的污水,要制造一底宽为2米的无盖长方体的沉淀箱.污水从A 孔流入,经沉淀后从B 孔流出.设箱体的长度为a 米,高度为b 米.已知流出的水中该杂质的质量分数与a ,b 的乘积ab 成反比.现有制箱材料60平方米.问当a ,b 各为多少米时,经沉淀后流出的水中该杂质的质量分数最小(A ,B 孔的面积忽略不计)?7.解:方法一:设y 为流出的水中杂质的质量分数, 则y =kab ,其中k 为比例系数,且k>0.根据题意有,4b +2ab +2a =60(a>0,b>0), 所以b =30-a2+a (0<a<30).所以ab =a×30-a 2+a =30a -a 22+a=-a +32-642+a=34-⎝⎛⎭⎫a +2+64a +2≤34-2(a +2)·64a +2=18.当a +2=64a +2时取等号,y 达到最小值.此时解得a =6,b =3.所以当a 为6米,b 为3米时,经沉淀后流出的水中该杂质的质量分数最小. 方法二:设y 为流出的水中杂质的质量分数, 则y =kab ,其中k 为比例系数,且k>0.根据题意有,4b +2ab +2a =60(a>0,b>0), 即2b +ab +a =30.因为a +2b≥22ab , 所以30-ab =a +2b≥22ab. 所以ab +22ab -30≤0. 因为a>0,b>0,所以0<ab≤18, 当a =2b 时取等号,ab 达到最大值18. 此时解得a =6,b =3.所以当a 为6米,b 为3米时,经沉淀后流出的水中该杂质的质量分数最小. 【点击高考】1.(3-a )(a +6)(-6≤a≤3)的最大值为( ) A .9 B.92 C .3 D.3222.已知两条直线l 1:y =m 和l 2:y =82m +1(m>0),l 1与函数y =|log 2x|的图象从左至右相交于点A ,B ,l 2与函数y =|log 2x|的图象从左至右相交于点C ,D.记线段AC 和BD 在x 轴上的投影长度分别为a ,b.当m 变化时,ba的最小值为( )A .16 2B .8 2C .834D .4342.B 在平面直角坐标系中作出函数y =|log 2x|的图象如图所示,不妨设点A(x 1,m),B(x 2,m),C ⎝⎛⎭⎫x 3,82m +1,D ⎝⎛⎭⎫x 4,82m +1,则0<x 1<1<x 2,0<x 3<1<x 4,此时有-log 2x 1=m ,log 2x 2=m ,-log 2x 3=82m +1,log 2x 4=82m +1,解得x 1=⎝⎛⎭⎫12m ,x 2=2m ,x 3=⎝⎛⎭⎫1282m +1,x 4=282m +1,线段AC 与BD 在x 轴上的投影长度分别为a =|x 1-x 3|=,b =|x 2-x 4|=⎪⎪⎪⎪2m -282m +1, 则ba==2m +82m +1,令t =m +82m +1(m >0),则t =m +4m +12=⎝⎛⎭⎫m +12+4m +12-12≥4-12=72,当且仅当⎝⎛⎭⎫m +122=4,即m =32时,t 取最小值为72,此时b a的最小值为8 2.3.若实数x ,y 满足xy =1,则x 2+2y 2的最小值为________.3.【解析】 ∵x 2+2y 2≥2x 2·2y 2=22·xy =22,当且仅当x =2y 时等号成立,∴x 2+2y 2的最小值为2 2. 【答案】 2 24.(2013·天津,14,易)设a +b =2,b >0,则当a =________时,12|a|+|a|b取得最小值. 4.【解析】 ∵a +b =2, ∴12|a|+|a|b =24|a|+|a|b =a +b 4|a|+|a|b =a 4|a|+b 4|a|+|a|b ≥a4|a|+2b 4|a|×|a|b =a4|a|+1. 当且仅当b 4|a|=|a|b 且a <0,即b =-2a ,a =-2时,12|a|+|a|b 取得最小值.【答案】 -25.为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物需建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=k3x +5(0≤x≤10),若不建隔热层,每年能源消耗费用为8万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和. (1)求k 的值及f(x)的表达式;(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值. 5.解:(1)由题设,建筑物每年能源消耗费用为C(x)=k3x +5,由C(0)=8,得k =40,∴C(x)=403x +5. 而隔热层建造费用为C 1(x)=6x , ∴f(x)=20C(x)+C 1(x)=20×403x +5+6x =8003x +5+6x(0≤x≤10).(2)方法一:f(x)=8003x +5+6x=1 6006x +10+6x +10-10 ≥21 6006x +10×(6x +10)-10=70,当且仅当1 6006x +10=6x +10,即x =5时取等号.∴当隔热层修建厚度为5 cm 时,总费用最小,最小值为70万元. 方法二:f′(x)=6- 2 400(3x +5)2,令f′(x)=0,即2 400(3x +5)2=6,解得x =5或x =-253(舍去).当0<x<5时,f′(x)<0;当5<x<10时,f′(x)>0.故x =5是f(x)的最小值点,对应的最小值为f(5)=6×5+80015+5=70.当隔热层修建厚度为5 cm 时,总费用达到最小,最小值为70万元.04 函数与方程函数零点的求解与判断 【知识分析】高考中对函数零点个数和所在区间的考查中“函数”往往是由基本初等函数(幂函数、指数函数、对数函数、二次函数等)或三角函数组合而成的,题目常以选择题或填空题的形式出现,体现数形结合思想的运用,难度不大. 【典例】1(1)若a<b<c ,则函数f(x)=(x -a)(x -b)+(x -b)(x -c)+(x -c)(x -a)的两个零点分别位于区间( ) A .(a ,b)和(b ,c)内 B .(-∞,a)和(a ,b)内 C .(b ,c)和(c ,+∞)内 D .(-∞,a)和(c ,+∞)内(2)函数f(x)=4cos 2x2cos ⎝⎛⎭⎫π2-x -2sin x -|ln(x +1)|的零点个数为________. 【解析】(1)易知f(a)=(a -b)(a -c),f(b)=(b -c)(b -a),f(c)=(c -a)(c -b).又a<b<c ,则f(a)>0,f(b)<0,f(c)>0,又该函数是二次函数,且图象开口向上,可知两个零点分别在(a ,b)和(b ,c)内. (2)令4cos 2x2cos ⎝⎛⎭⎫π2-x -2sin x -||ln (x +1)=0. ∴2sin x ⎝⎛⎭⎫2cos 2x2-1=||ln (x +1), 即sin 2x =||ln (x +1). 令y 1=sin 2x ,y 2=||ln (x +1). 如图画出y 1,y 2的图象,结合图象可得y 1与y 2有两个交点, ∴方程有2个根. ∴函数f(x)有2个零点.【答案】 (1)A (2)2【名师点睛】解题(1)的依据是零点存在性定理;解题(2)的关键是将零点个数问题转化为两个函数图象的交点个数问题,数形结合求解.1.函数f(x)=x 3-⎝⎛⎭⎫12x -2的零点所在的区间为( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)2.设函数f(x)(x ∈R )满足f(-x)=f(x),f(x)=f(2-x),且当x ∈[0,1]时,f(x)=x 3.又函数g(x)=|xco s(πx)|,则函数h(x)=g(x)-f(x)在⎣⎡⎦⎤-12,32上的零点个数为( ) A .5 B .6 C .7 D .82.B ∵f(-x)=f(x),f(x)=f(2-x),∴f(-x)=f(2-x),∴f(x)的周期为2.如图画出f(x)与g(x)的图象,它们共有6个交点,故h(x)在⎣⎡⎦⎤-12,32上的零点个数为6.故选B.,判断函数在某个区间上是否存在零点的方法(1)解方程:当函数对应的方程易求解时,可通过解方程判断方程是否有根落在给定区间上; (2)利用零点存在性定理进行判断;(3)画出函数图象,通过观察图象与x 轴在给定区间上是否有交点来判断.判断函数零点个数的方法(1)直接法:解方程f(x)=0,方程有几个解,函数f(x)就有几个零点;(2)图象法:画出函数f(x)的图象,函数f(x)的图象与x 轴的交点个数即为函数f(x)的零点个数;(3)将函数f(x)拆成两个常见函数h(x)和g(x)的差,从而f(x)=0⇔h(x)-g(x)=0⇔h(x)=g(x),则函数f(x)的零点个数即为函数y =h(x)与函数y =g(x)的图象的交点个数; (4)二次函数的零点问题,通过相应的二次方程的判别式Δ来判断. 函数零点的应用高考对函数零点的应用的考查多以选择题或填空题的形式出现,主要考查利用零点的个数或存在情况求参数的取值范围及利用零点的性质求其和、比较大小等问题,难度较大. 【典例】2.已知函数f(x)=⎩⎪⎨⎪⎧2-|x|,x≤2,(x -2)2,x >2,函数g(x)=b -f(2-x),其中b ∈R .若函数y =f(x)-g(x)恰有4个零点,则b 的取值范围是( )A.⎝⎛⎭⎫74,+∞B.⎝⎛⎭⎫-∞,74C.⎝⎛⎭⎫0,74D.⎝⎛⎭⎫74,2 【解析】 由已知条件可得g(x)=⎩⎪⎨⎪⎧b -2+|2-x|,x≥0,b -x 2,x <0.函数y =f(x),y =g(x)的图象如图所示: 要使y =f(x)-g(x)恰有4个零点,只需y =f(x)与y =g(x)的图象恰有4个不同的交点,需满足⎩⎪⎨⎪⎧y =2+x ,y =b -x 2在x <0时有两个不同的解,即x 2+x +2-b =0有两个不同的负根,则⎩⎪⎨⎪⎧Δ=1-4(2-b )>0,2-b >0,解得74<b <2;同时要满足{y =(x -2)2,y =b -2+x -2在x >2时有两个不同的解,即x 2-5x +8-b =0有两个大于2的不同实根,令h(x)=x 2-5x +8-b ,需⎩⎪⎨⎪⎧h (2)>0,h ⎝⎛⎭⎫52<0,即⎩⎪⎨⎪⎧2-b >0,8-254-b <0,解得74<b <2.综上所述,满足条件的b 的取值范围是74<b <2.【答案】 D,已知函数有零点(方程有根)求参数值(取值范围)常用的方法(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解. 【针对训练】1.函数f(x)=ln x +x -12,则函数的零点所在区间是( )A.⎝⎛⎭⎫14,12B.⎝⎛⎭⎫12,34C.⎝⎛⎭⎫34,1 D .(1,2)1.C 函数f(x)=ln x +x -12的图象在(0,+∞)上连续,且f ⎝⎛⎭⎫34=ln 34+34-12=ln 34+14<0,f(1)=ln 1+1-12=12>0,故f(x)的零点所在区间为⎝⎛⎭⎫34,1. 2.设函数f(x)的零点为x 1,g(x)=4x +2x -2的零点为x 2,若|x 1-x 2|≤0.25,则f(x)可以是( ) A .f(x)=x 2-1 B .f(x)=2x -4 C .f(x)=ln(x +1) D .f(x)=8x -23.偶函数f(x)满足f(x -1)=f(x +1),且当x ∈[0,1]时,f(x)=-x +1,则关于x 的方程f(x)=lg(x +1)在x ∈[0,9]上解的个数是( ) A .7 B .8 C .9 D .103.C 依题意得f(x +2)=f(x),所以函数f(x)是以2为周期的函数.在平面直角坐标系中画出函数y =f(x)的图象与y =lg(x +1)的图象(如图所示),观察图象可知,这两个函数的图象在区间[0,9]上的公共点共有9个,因此,当x ∈[0,9]时,方程f(x)=lg(x +1)的解的个数是9.4.定义在R 上的奇函数f(x),当x≥0时,f(x)=⎩⎪⎨⎪⎧log 12(x +1),x ∈[0,1),1-|x -3|,x ∈[1,+∞),则关于x 的函数F(x)=f(x)-a(0<a <1)的所有零点之和为( )A .2a -1B .2-a -1 C .1-2-a D .1-2a5.已知函数f(x)满足f(x)=f ⎝⎛⎭⎫1x ,当x ∈[1,3]时,f(x)=ln x ,若在区间⎣⎡⎦⎤13,3内,曲线g(x)=f(x)-ax 与x 轴有三个不同的交点,则实数a 的取值范围是( ) A.⎝⎛⎭⎫0,1e B.⎝⎛⎭⎫0,12e C.⎣⎡⎭⎫ln 33,1e D.⎣⎡⎭⎫ln 33,12e5.C 当x ∈⎣⎡⎦⎤13,1时,1x ∈[1,3],f(x)=f ⎝⎛⎭⎫1x =-ln x ,∴f(x)=⎩⎪⎨⎪⎧ln x ,x ∈[1,3],-ln x ,x ∈⎣⎡⎭⎫13,1,作出其图象,如图所示.设直线y =a 0x 与y =ln x(x ∈[1,3])的图象相切,其切点为(x 0,y 0)(x 0∈[1,3],y 0∈[0,ln 3]), 则1x 0=a 0⎝⎛⎭⎫a 0∈⎣⎡⎦⎤13,1, ∴x 0=1a 0,∴y 0=1,∴1=ln1a 0,∴a 0=1e.又点(3,ln 3)与原点连线的斜率为ln 33,故曲线g(x)=f(x)-ax 与x 轴有三个不同的交点,可知实数a 的取值范围是⎣⎡⎭⎫ln 33,1e ,故选C.6.已知函数f(x)=a x +x -b 的零点x 0∈(n ,n +1)(n ∈Z ),其中常数a ,b 满足2a =3,3b =2,则n =________. 6.【解析】 a =log 23>1,b =log 32<1,令f(x)=0,得a x =-x +b.在同一平面直角坐标系中画出函数y =a x 和y =-x +b 的图象,如图所示,由图可知,两函数的图象在区间(-1,0)内有交点,所以函数f(x)在区间(-1,0)内有零点,所以n =-1. 【答案】 -17.若方程x 2+ax +2b =0的一个根在(0,1)内,另一个根在(1,2)内,则b -2a -1的取值范围是________.7.【解析】 令f(x)=x 2+ax +2b ,∵方程x 2+ax +2b =0的一个根在(0,1)内,另一个根在(1,2)内,∴⎩⎪⎨⎪⎧f (0)>0,f (1)<0,f (2)>0,∴⎩⎪⎨⎪⎧b >0,a +2b <-1,a +b >-2.根据该约束条件作出可行域(如图),b -2a -1表示可行域内点与点(1,2)的连线的斜率,可知14<b -2a -1<1.【答案】 ⎝⎛⎭⎫14,1 【点击高考】1.已知函数f(x)=⎩⎪⎨⎪⎧x 2+(4a -3)x +3a ,x<0,log a (x +1)+1, x≥0(a>0,且a≠1)在R 上单调递减,且关于x 的方程|f(x)|=2-x 恰有两个不相等的实数解,则a 的取值范围是( ) A.⎝⎛⎦⎤0,23 B.⎣⎡⎦⎤23,34 C.⎣⎡⎦⎤13,23∪⎩⎨⎧⎭⎬⎫34 D.⎣⎡⎭⎫13,23∪⎩⎨⎧⎭⎬⎫341.C 由y =log a (x +1)+1在[0,+∞)上递减,知0<a<1. 又由f(x)在R 上单调递减,知⎩⎪⎨⎪⎧02+(4a -3)·0+3a≥f (0)=1,3-4a 2≥0⇒13≤a≤34. 由图象可知,在[0,+∞)上,|f(x)|=2-x 有且仅有一个解,故在(-∞,0)上,|f(x)|=2-x 同样有且仅有一个解.当3a>2,即a>23时,令|x 2+(4a -3)x +3a|=2-x , ∴x 2+(4a -3)x +3a =2-x.又Δ=(4a -2)2-4(3a -2)=0,解得a =34或a =1(舍).当1≤3a≤2时,由图象可知,符合条件. 综上,a ∈⎣⎡⎦⎤13,23∪⎩⎨⎧⎭⎬⎫34.选C.2.函数f(x)=2x |log 0.5x|-1的零点个数为( ) A .1 B .2 C .3 D .4 2.B方法一:f(x)=2x |log 0.5x|-1=⎩⎪⎨⎪⎧2x log 0.5x -1,0<x≤1,-2x log 0.5x -1,x>1=⎩⎪⎨⎪⎧-2x log 2x -1,0<x≤1,2x log 2x -1,x>1. ∵f(x)=-2x log 2x -1在(0,1]上递减且x 接近于0时,f(x)接近于正无穷大,f(1)=-1<0,∴f(x)在(0,1]上有1个零点.又∵f(x)=2x log 2x -1在(1,+∞)上递增,且f(2)=22×log 22-1=3>0, ∴f(x)在(1,+∞)上有1个零点, 故f(x)共有2个零点.方法二:易知函数f(x)=2x |log 0.5x|-1的零点个数⇔方程|log 0.5x|=12x =⎝⎛⎭⎫12x 的根的个数⇔函数y 1=|log 0.5x|与y 2=⎝⎛⎭⎫12x 的图象的交点个数.作出两个函数的图象如图所示,由图可知两个函数图象有2个交点.3.函数f(x)=xcos x 2在区间[0,4]上的零点个数为( ) A .4 B .5 C .6 D .74.已知f(x)是定义在R 上且周期为3的函数,当x ∈[0,3)时,f(x)=⎪⎪⎪⎪x 2-2x +12.若函数y =f(x)-a 在区间[-3,4]上有10个零点(互不相同),则实数a 的取值范围是________.4.【解析】 当x ∈[0,3)时,f(x)=⎪⎪⎪⎪x 2-2x +12=⎪⎪⎪⎪(x -1)2-12,由f(x)是周期为3的函数,作出f(x)在[-3,4]上的图象,如图.由题意知方程a =f(x)在[-3,4]上有10个不同的根. 由图可知a ∈⎝⎛⎭⎫0,12.。

高中数学典型例题解析(第五章不等式1)

高中数学典型例题解析(第五章不等式1)

第五章 不等式§5.1不等式的解法一、知识导学1. 一元一次不等式ax>b(1)当a>0时,解为a b x >;(2)当a <0时,解为abx <;(3)当a =0,b ≥0时无解;当a =0,b <0时,解为R .2. 一元二次不等式:(如下表)其中a >0,x 1,x 2是一元二次方程ax 2+bx+c=0的两实根,且x 1<x 23.简单的一元高次不等式:可用区间法(或称根轴法)求解,其步骤是: ①将f(x)的最高次项的系数化为正数; ②将f(x)分解为若干个一次因式的积;③将每一个一次因式的根标在数轴上,从右上方依次通过每一点画曲线; ④根据曲线显示出的f(x)值的符号变化规律,写出不等式的解集. 4.分式不等式:先整理成)()(x g x f >0或)()(x g x f ≥0的形式,转化为整式不等式求解,即:)()(x g x f >0⇔f(x)·g (x)>0 )()(x g x f ≥0⇔0)x (g )x (f 0)x (g 0)x (f >或⋅⎩⎨⎧≠=然后用“根轴法”或化为不等式组求解.二、疑难知识导析1.不等式解法的基本思路解不等式的过程,实质上是同解不等式逐步代换化简原不等式的过程,因而保持同解变形就成为解不等式应遵循的主要原则,实际上高中阶段所解的不等式最后都要转化为一元一次不等式或一元二次不等式,所以等价转化是解不等式的主要思路.代数化、有理化、整式化、低次化是解初等不等式的基本思路.为此,一要能熟练准确地解一元一次不等式和一元二次不等式,二要保证每步转化都要是等价变形.2.不等式组的解集是本组各不等式解集的交集,所以在解不等式组时,先要解出本组内各不等式的解集,然后取其交集,在取交集时,一定要利用数轴,将本组内各不等式的解集在同一数轴上表示出来,注意同一不等式解的示意线要一样高,不要将一个不等式解集的两个或几个区间误看成是两个或几个不等式的解集.3.集合的思想和方法在解不等式问题中有广泛的应用,其难点是区分何时取交集,何时取并集.解不等式的另一个难点是含字母系数的不等式求解—注意分类. 三、经典例题导讲[例1] 如果kx 2+2kx -(k+2)<0恒成立,则实数k 的取值范围是___. A. -1≤k ≤0 B. -1≤k<0 C. -1<k ≤0 D. -1<k<0 错解:由题意:⎩⎨⎧<+-⋅-<0)]2([4)2(02k k k k解得:-1<k<0错因:将kx 2+2kx -(k+2)<0看成了一定是一元二次不等式,忽略了k =0的情况. 正解:当k =0时,原不等式等价于-2<0,显然恒成立,∴ k =0符合题意.当k ≠0时,由题意:⎩⎨⎧<+-⋅-<0)]2([4)2(02k k k k 解得:-1<k<0∴ 01≤<-k ,故选C.[例2] 命题:1A x -<3,命题:(2)()B x x a ++<0,若A 是B 的充分不必要条件,则a 的取值范围是_______A.(4,)+∞B.[)4,+∞C.(,4)-∞-D.(],4-∞- 错解:由|x -1|<3得:-2<x <4, 又由(x +2)(x +a)=0得x=-2或x =-a,A 是B 的充分不必要条件,∴{x|-2<x <4}⊂{x|-2<x <-a } ∴-a>4故选D.错因:忽略了a =-4时,{x|-2<x <4}={x|-2<x <-a },此时A 是B 的充要条件,不是充分不必要条件.正解:由|x -1|<3得:-2<x <4, 又由(x +2)(x +a)=0得x=-2或x =-a,A 是B 的充分不必要条件,∴{x|-2<x <4}⊂{x|-2<x <-a } ∴-a>4故选C.[例3]已知f(x) = a x + x b,若,6)2(3,0)1(3≤≤≤≤-f f 求)3(f 的范围.错解: 由条件得⎪⎩⎪⎨⎧≤+≤≤+≤-622303ba b a ②① ②×2-① 156≤≤a ③ ①×2-②得 32338-≤≤-b ④ ③+④得 .343)3(310,34333310≤≤≤+≤f b a 即 错因:采用这种解法,忽视了这样一个事实:作为满足条件的函数bxax x f +=)(,其值是同时受b a 和制约的.当a 取最大(小)值时,b 不一定取最大(小)值,因而整个解题思路是错误的.正解: 由题意有⎪⎩⎪⎨⎧+=+=22)2()1(b a f b a f ,解得:)],2()1(2[32)],1()2(2[31f f b f f a -=-=).1(95)2(91633)3(f f b a f -=+=∴ 把)1(f 和)2(f 的范围代入得 .337)3(316≤≤f[例4] 解不等式(x+2)2(x+3)(x -2)0≥ 错解: (x+2)20≥∴原不等式可化为:(x+3)(x -2)0≥∴原不等式的解集为{x| x ≤ -3或x 2≥}错因:忽视了“≥”的含义,机械的将等式的运算性质套用到不等式运算中.正解:原不等式可化为:(x+2)2(x+3)(x -2)0= ①或(x+2)2(x+3)(x -2)0>②,解①得:x=-3或x =-2或x =2 解②得:x < -3或x >2∴原不等式的解集为{x| x ≤ -3或x 2≥或x 2-=}[例5] 解关于x 的不等式)()(ab x b ab x a +>- 解:将原不等式展开,整理得:)()(b a ab x b a +>-讨论:当b a >时,ba b a ab x -+>)(当b a =时,若b a =≥0时φ∈x ;若b a =<0时R x ∈ 当b a <时,ba b a ab x -+<)(点评:在解一次不等式时,要讨论一次项系数的符号.[例6]关于x 的不等式02<++c bx ax 的解集为}212|{->-<x x x 或 求关于x 的不等式02>+-c bx ax 的解集. 解:由题设知 0<a ,且21,2=-=x x 是方程02=++c bx ax 的两根 ∴25-=-a b , 1=ac从而 02>+-c bx ax 可以变形为02<+-acx a b x 即:01252<+-x x ∴221<<x 点评:二次不等式的解集与二次方程的根之间的联系是解本题的关健,这也体现了方程思想在解题中的简单应用. [例7]不等式3)61(log 2≤++xx 的解集为 解:∵3)61(log 2≤++x x ,∴0<168x x ++≤,∴ 12160x x x x ⎧+≤⎪⎪⎨⎪++>⎪⎩∴⎪⎩⎪⎨⎧>+-<<--=<0x 2232231,0或或x x x解得{}(331x ∈---+⋃反思:在数的比较大小过程中,要遵循这样的规律,异中求同即先将这些数的部分因式化成相同的部分,再去比较它们剩余部分,就会很轻易啦.一般在数的比较大小中有如下几种方法:(1)作差比较法和作商比较法,前者和零比较,后者和1比较大小;(2)找中间量,往往是1,在这些数中,有的比1大,有的比1小;,(3)计算所有数的值;(4)选用数形结合的方法,画出相应的图形;(5)利用函数的单调性等等. 四、典型习题导练1.解不等式0322322<--+-x x x x 2. 解不等式 62323+>+x x x3.解不等式 0)2)(54(22<++--x x x x 4. 解不等式 0)2)(1()1()2(32<-+-+x x x x5.解不等式1116-<-x x 6.k 为何值时,下式恒成立:13642222<++++x x kkx x 7. 解不等式0343>---x x8. 解不等式24622+<+-x x x§5.2简单的线性规划一、知识导学1. 目标函数: P =2x+y是一个含有两个变 量 x 和y 的 函数,称为目标函数.2.可行域:约束条件所表示的平面区域称为可行域.3. 整点:坐标为整数的点叫做整点.4.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值的问题,通常称为线性规划问题.只含有两个变量的简单线性规划问题可用图解法来解决.5. 整数线性规划:要求量取整数的线性规划称为整数线性规划. 二、疑难知识导析线性规划是一门研究如何使用最少的人力、物力和财力去最优地完成科学研究、工业设计、经济管理中实际问题的专门学科.主要在以下两类问题中得到应用:一是在人力、物力、财务等资源一定的条件下,如何使用它们来完成最多的任务;二是给一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务.1.对于不含边界的区域,要将边界画成虚线.2.确定二元一次不等式所表示的平面区域有多种方法,常用的一种方法是“选点法”:任选一个不在直线上的点,检验它的坐标是否满足所给的不等式,若适合,则该点所在的一侧即为不等式所表示的平面区域;否则,直线的另一侧为所求的平面区域.若 直 线 不 过 原点,通 常 选 择 原 点 代入检验.3. 平 移 直 线 y=-k x +P时,直线必须经过可行域.4.对于有实际背景的线性规划问题,可行域通常是位于第一象限内的一个凸多边形区域,此时变动直线的最佳位置一般通过这个凸多边形的顶点.5.简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解.三、经典例题导讲[例1] .画出不等式组10236010220x y x y x y x y +->⎧⎪+-≤⎪⎨--≤⎪⎪-+>⎩表示的平面区域.错解:如图(1)所示阴影部分即为不等式组10236010220x y x y x y x y +->⎧⎪+-≤⎪⎨--≤⎪⎪-+>⎩表示的平面区域.错因一是实虚线不清,二是部分不等式所表示的平面区域弄错了.正解:如图(2)所示阴影部分即为不等式组10236010220x y x y x y x y +->⎧⎪+-≤⎪⎨--≤⎪⎪-+>⎩表示的平面区域.[例2] 已知1≤x -y ≤2,且2≤x+y ≤4,求4x -2y 的范围. 错解:由于 1≤x -y ≤2 ①,2≤x+y ≤4 ②,①+② 得3≤2x ≤6 ③①×(-1)+② 得:0≤2y ≤3 ④. ③×2+④×(-1)得. 3≤4x -2y ≤12错因:可行域范围扩大了. 正解:线性约束条件是:⎩⎨⎧≤+≤≤≤4y x 22y -x 1令z =4x -2y ,画出可行域如右图所示, 由⎩⎨⎧=+=2y x 1y -x 得A 点坐标(1.5,0.5)此时z =4×1.5-2×0.5=5.由⎩⎨⎧=+=4y x 2y -x 得B 点坐标(3,1)此时z =4×3-2×1=10.∴5≤4x -2y ≤10[例3] 已知⎪⎩⎪⎨⎧≥++≤-+≤--0104011702357y x y x y x ,求x 2+y 2的最值.错解:不等式组⎪⎩⎪⎨⎧≥++≤-+≤--0104011702357y x y x y x 表示的平面区域如右图所示∆ABC 的内部(包括边界),令z= x 2+y 2 由⎩⎨⎧≥++≤--010402357y x y x 得A 点坐标(4,1),此时z =x 2+y 2=42+12=17, 由⎩⎨⎧≥++≤--010402357y x y x 得B 点坐标(-1,-6),此时z =x 2+y 2=(-1)2+(-6)2=37,由⎩⎨⎧≥++≤-+01040117y x y x 得C 点坐标(-3,2),此时z =x 2+y 2=(-3)2+22=13,∴ 当⎩⎨⎧-=-=61y x 时x 2+y 2取得最大值37,当⎩⎨⎧=-=23y x 时x 2+y 2取得最小值13. 错因:误将求可行域内的点到原点的距离的平方的最值误认为是求三点A 、B 、C 到原点的距离的平方的最值.正解:不等式组⎪⎩⎪⎨⎧≥++≤-+≤--0104011702357y x y x y x 表示的平面区域如图所示∆ABC 的内部(包括边界),令z= x 2+y 2,则z 即为点(x ,y )到原点的距离的平方. 由⎩⎨⎧≥++≤--010402357y x y x 得A 点坐标(4,1),此时z =x 2+y 2=42+12=17, 由⎩⎨⎧≥++≤--010402357y x y x 得B 点坐标(-1,-6),此时z =x 2+y 2=(-1)2+(-6)2=37,由⎩⎨⎧≥++≤-+01040117y x y x 得C 点坐标(-3,2),此时z =x 2+y 2=(-3)2+22=13, 而在原点处,⎩⎨⎧==0y x ,此时z =x 2+y 2=02+02=0, ∴ 当⎩⎨⎧-=-=61y x 时x 2+y 2取得最大值37,当⎩⎨⎧==00y x 时x 2+y 2取得最小值0.[例4]某家具厂有方木料90m 3,五合板600m 2,准备加工成书桌和书橱出售.已知生产每张书桌需要方木料0.1m 3,五合板2m 2,生产每个书橱需要方木料0.2m 3,五合板1m 2,出售一张书桌可获利润80元,出售一个书橱可获利润120元.如果只安排生产书桌,可获利润多少?如果只安排生产书橱,可获利润多少?怎样安排生产可使得利润最大? 分析:设生产书桌x 张,书橱y 张,利润z 元,则约束条件为⎪⎪⎩⎪⎪⎨⎧∈∈≤+≤+N y N x 600y 2x 902.01.0y x目标函数z=80x+120y作出上可行域:作出一组平行直线2x+3y=t, 此直线经过点A (100,400)时,即合理安排生产,生产书桌100张,书橱400张,有最大利润为z max =80×100+400×120=56000(元)若只生产书桌,得0<x ≤300,即最多生产300张书桌,利润为z=80×300=24000(元)若只生产书橱,得0<y ≤450,即最多生产450张书橱,利润为z=120×450=54000(元) 答:略[例5]某钢材厂要将两种大小不同的钢板截成A 、B 、C 三种规格,每张钢板可同时截得三种规格小钢板的块数如下表:每张钢板的面积,第一种为1m 2,第二种为2 m 2,今需要A 、B 、C 三种规格的成品各12、15、27块,请你们为该厂计划一下,应该分别截这两种钢板多少张,可以得到所需的三种规格成品,而且使所用钢板的面积最小?只用第一种钢板行吗?解:设需要截第一种钢板x 张,第二种钢板y 张,所用钢板面积为z m 2,则⎪⎪⎩⎪⎪⎨⎧∈≥+≥+≥+Ny x y x y x y x ,27315212目标函数z=x+2y作出可行域如图作一组平行直线x+2y=t ,由⎩⎨⎧=+=+27312y x y x可得交点⎪⎭⎫⎝⎛215,29,但点⎪⎭⎫⎝⎛215,29不是可行域内的整点,其附近的整点(4,8)或(6,7)可都使z 有最小值,且z min =4+2×8=20 或z min =6+2×7=20若只截第一种钢板,由上可知x ≥27,所用钢板面积最少为z=27(m 2);若只截第二种钢板,则y ≥15,最少需要钢板面积z=2×15=30(m 2).它们都比z min 大,因此都不行. 答:略[例6]设610z x y =+,式中,x y 满足条件4335251x y x y x -≤-⎧⎪+≤⎨⎪≥⎩,求z 的最大值和最小值.解:由引例可知:直线0l 与AC 所在直线平行,则由引例的解题过程知,当l 与AC 所在直线35250x y +-=重合时z 最大,此时满足条件的最优解有无数多个,当l 经过点(1,1)B 时,对应z 最小,∴max 61050z x y =+=,min 6110116z =⨯+⨯=.说明:1.线性目标函数的最大值、最小值一般在可行域的顶点处取得;2.线性目标函数的最值也可在可行域的边界上取得,即满足条件的最优解有无数多个.四、典型习题导练1.画出不等式-x +2y -4<0表示的平面区域.2.画出不等式组⎪⎪⎩⎪⎪⎨⎧<≤≥-≥-+53006x y y x y x 表示的平面区域3.求z =3x +5y 的最大值和最小值,使式中的x 、y 满足约束条件⎪⎩⎪⎨⎧≥-+≤≤+.35,1,1535y x x y y xx+2y=04.某工厂用两种不同原料均可生产同一产品,若采用甲种原料,每吨成本1000元,运费500元,可得产品90千克;若采用乙种原料,每吨成本为1500元,运费400元,可得产品100千克,如果每月原料的总成本不超过6000元,运费不超过2000元,那么此工厂每月最多可生产多少千克产品?5.某工厂家具车间造A、B型两类桌子,每张桌子需木工和漆工两道工序完成.已知木工做一张A、B型桌子分别需要1小时和2小时,漆工油漆一张A、B型桌子分别需要3小时和1小时;又知木工、漆工每天工作分别不得超过8小时和9小时,而工厂造一张A、B型桌子分别获利润2千元和3千元,试问工厂每天应生产A、B型桌子各多少张,才能获得利润最大?6.在约束条件0,0,,2 4.xyy x sy x≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩下,当35s≤≤时,目标函数32z x y=+的最大值的变化范围是A.[6,15]B.[7,15]C.[6,8]D.[7,8]§5.3 基本不等式的证明一、知识导学1.比较法:比较法是证明不等式的最基本、最重要的方法之一,它是两个实数大小顺序和运算性质的直接应用,比较法可分为差值比较法(简称为求差法)和商值比较法(简称为求商法).(1)差值比较法的理论依据是不等式的基本性质:“a-b≥0⇔a≥b;a-b≤0⇔a≤b”.其一般步骤为:①作差:考察不等式左右两边构成的差式,将其看作一个整体;②变形:把不等式两边的差进行变形,或变形为一个常数,或变形为若干个因式的积,或变形为一个或几个平方的和等等,其中变形是求差法的关键,配方和因式分解是经常使用的变形手段;③判断:根据已知条件与上述变形结果,判断不等式两边差的正负号,最后肯定所求证不等式成立的结论.应用范围:当被证的不等式两端是多项式、分式或对数式时一般使用差值比较法.(2)商值比较法的理论依据是:“若a,b∈R+,a/b≥1⇔a≥b;a/b≤1⇔a≤b”.其一般步骤为:①作商:将左右两端作商;②变形:化简商式到最简形式;③判断商与1的大小关系,就是判定商大于1或小于1.应用范围:当被证的不等式两端含有幂、指数式时,一般使用商值比较法.2.综合法:利用已知事实(已知条件、重要不等式或已证明的不等式)作为基础,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后推出所要证明的不等式,其特点和思路是“由因导果”,从“已知”看“需知”,逐步推出“结论”.即从已知A逐步推演不等式成立的必要条件从而得出结论B.3.分析法:是指从需证的不等式出发,分析这个不等式成立的充分条件,进而转化为判定那个条件是否具备,其特点和思路是“执果索因”,即从“未知”看“需知”,逐步靠拢“已知”.用分析法证明书写的模式是:为了证明命题B成立,只需证明命题B1为真,从而有…,这只需证明B2为真,从而又有…,……这只需证明A为真,而已知A为真,故B必为真.这种证题模式告诉我们,分析法证题是步步寻求上一步成立的充分条件.4.反证法:有些不等式的证明,从正面证不好说清楚,可以从正难则反的角度考虑,即要证明不等式A>B,先假设A≤B,由题设及其它性质,推出矛盾,从而肯定A>B.凡涉及到的证明不等式为否定命题、惟一性命题或含有“至多”、“至少”、“不存在”、“不可能”等词语时,可以考虑用反证法.5.换元法:换元法是对一些结构比较复杂,变量较多,变量之间的关系不甚明了的不等式可引入一个或多个变量进行代换,以便简化原有的结构或实现某种转化与变通,给证明带来新的启迪和方法.主要有两种换元形式.(1)三角代换法:多用于条件不等式的证明,当所给条件较复杂,一个变量不易用另一个变量表示,这时可考虑三角代换,将两个变量都有同一个参数表示.此法如果运用恰当,可沟通三角与代数的联系,将复杂的代数问题转化为三角问题; (2)增量换元法:在对称式(任意交换两个字母,代数式不变)和给定字母顺序(如a>b>c等)的不等式,考虑用增量法进行换元,其目的是通过换元达到减元,使问题化难为易,化繁为简.如a+b=1,可以用a=1-t,b=t或a=1/2+t,b=1/2-t进行换元.二、疑难知识导析1.在用商值比较法证明不等式时,要注意分母的正、负号,以确定不等号的方向.2.分析法与综合法是对立统一的两个方面,前者执果索因,利于思考,因为它方向明确,思路自然,易于掌握;后者是由因导果,宜于表述,因为它条理清晰,形式简洁,适合人们的思维习惯.但是,用分析法探求证明不等式,只是一种重要的探求方式,而不是一种好的书写形式,因为它叙述较繁,如果把“只需证明”等字眼不写,就成了错误.而用综合法书写的形式,它掩盖了分析、探索的过程.因而证明不等式时,分析法、综合法常常是不能分离的.如果使用综合法证明不等式,难以入手时常用分析法探索证题的途径,之后用综合法形式写出它的证明过程,以适应人们习惯的思维规律.还有的不等式证明难度较大,需一边分析,一边综合,实现两头往中间靠以达到证题的目的.这充分表明分析与综合之间互为前提、互相渗透、互相转化的辩证统一关系.分析的终点是综合的起点,综合的终点又成为进一步分析的起点.3.分析法证明过程中的每一步不一定“步步可逆”,也没有必要要求“步步可逆”,因为这时仅需寻找充分条件,而不是充要条件.如果非要“步步可逆”,则限制了分析法解决问题的范围,使得分析法只能使用于证明等价命题了.用分析法证明问题时,一定要恰当地用好“要证”、“只需证”、“即证”、“也即证”等词语.4.反证法证明不等式时,必须要将命题结论的反面的各种情形一一加以导出矛盾.5.在三角换元中,由于已知条件的限制作用,可能对引入的角有一定的限制,应引起高度重视,否则可能会出现错误的结果.这是换元法的重点,也是难点,且要注意整体思想的应用.。

高中数学中所有不等式解法汇总每题均含详细解析

高中数学中所有不等式解法汇总每题均含详细解析

专项一 简单不等式的解法汇总解简单不等式是指:解二元一次不等式组、解一元二次不等式、解含绝对值的简单不等式、解分式不等式、解简单的高次不等式。

一、有关分数不等式的性质 若a >b >0,m >0,则①b a <b +m a +m ;b a >b -m a -m (b -m >0). ②a b >a +m b +m ;a b <a -m b -m (b -m >0). 二、“三个二次”的关系22三、解一元二次方程一元二次方程可以采用的方法有,一是:求根公式x =,首先要求有根,也就是要求240b ac -≥;二是采取因式分解法,因式分解的重要措施就是使用“十字相乘法”,十字相乘法适用于求解20(0)ax bx c a ++=≠,拆分形式图如:m p n q ⎛⎫⎪⎝⎭需要满足的条件是:;;;mn a pq c mq pn b =⎧⎪=⎨⎪+=⎩,m n p q 、、、四个关键参数需要考生观察想到,则该式即可化成:()()0mx p nx q ++=,则两根可解出,但是要知道一点,十字相乘法不是万能的,有些方程因为不能满足上述三个条件而不能使用;三是使用配方法,这个方法在初中的时候,是作为重要方法进行训练的,相信大家没有问题。

四、解一元二次不等式(1) .我们统一养成一个习惯,将一元二次不等式的二次项系数处理为正数,之后凡是解“大于零或大于等于零”的一元二次不等式,一律“取两边”; 凡是解“小于零或小于等于零”的,一律“取中间”。

(2).(x -a )(x -b )>0或(x -a )(x -b )<0型不等式的解法【1】.(教材改编)不等式x 2-3x -10>0的解集是( ) A.(-2,5) B.(5,+∞)C.(-∞,-2)D.(-∞,-2)∪(5,+∞)答案 D解析 解方程x 2-3x -10=0得x 1=-2,x 2=5,由y =x 2-3x -10的开口向上,所以x 2-3x -10>0的解集为(-∞,-2)∪(5,+∞). 【2】.设集合M ={x |x 2-3x -4<0},N ={x |0≤x ≤5},则M ∩N 等于( ) A.(0,4] B.[0,4) C.[-1,0) D.(-1,0] 答案 B解析 ∵M ={x |x 2-3x -4<0}={x |-1<x <4}, ∴M ∩N =[0,4).【3】.已知不等式ax 2-bx -1≥0的解集是⎣⎡⎦⎤-12,-13,则不等式x 2-bx -a <0的解集是( ) A.(2,3) B.(-∞,2)∪(3,+∞) C.⎝⎛⎭⎫13,12 D.⎝⎛⎭⎫-∞,13∪⎝⎛⎭⎫12,+∞ 答案 A解析 由题意知-12,-13是方程ax 2-bx -1=0的根,所以由根与系数的关系得-12+⎝⎛⎭⎫-13=b a ,-12×⎝⎛⎭⎫-13=-1a.解得a =-6,b =5,不等式x 2-bx -a <0即为x 2-5x +6<0,解集为(2,3). 【4】.(教材改编)若关于x 的不等式m (x -1)>x 2-x 的解集为{x |1<x <2},则实数m 的值为________. 答案 2解析 因为m (x -1)>x 2-x 的解集为{x |1<x <2}. 所以1,2一定是m (x -1)=x 2-x 的解,∴m =2.【5】.若一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值范围为( )A.(-3,0]B.[-3,0)C.[-3,0]D.(-3,0)解析D (1)2kx 2+kx -38<0对一切实数x 都成立,则必有⎩⎪⎨⎪⎧2k <0,Δ=k 2-4×2k ×(-38)<0,解之得-3<k <0. 【6】.设a 为常数,∀x ∈R ,ax 2+ax +1>0,则a 的取值范围是( ) A.(0,4) B.[0,4) C.(0,+∞)D.(-∞,4)解析B 。

完整版)高中数学不等式习题及详细答案

完整版)高中数学不等式习题及详细答案

完整版)高中数学不等式习题及详细答案第三章不等式一、选择题1.已知 $x\geq 2$,则 $f(x)=\frac{x^2-4x+5}{2x-4}$ 的取值范围是()。

A。

最大值为 5,最小值为 1B。

最大值为 5,最小值为 $\frac{11}{2}$C。

最大值为 1,最小值为 $\frac{11}{2}$D。

最大值为 1,最小值为 02.若 $x>0$,$y>0$,则$(x+\frac{1}{y})^2+(y+\frac{1}{x})^2$ 的最小值是()。

A。

3B。

$\frac{7}{2}$C。

4D。

$\frac{9}{2}$3.设 $a>0$,$b>0$,则下列不等式中不成立的是()。

A。

$a+b+\frac{1}{ab}\geq 2\sqrt{2}$B。

$(a+b)(\frac{1}{a}+\frac{1}{b}+\frac{1}{2})\geq 4$C。

$\sqrt{a^2+b^2}\geq a+b-\sqrt{2ab}$D。

$\frac{2ab}{a+b}\geq \sqrt{ab}$4.已知奇函数 $f(x)$ 在 $(-\infty,+\infty)$ 上是增函数,且$f(1)=3$,则不等式 $f(x)-f(-x)<0$ 的解集为()。

A。

$(-1,+\infty)$B。

$(-\infty,-1)\cup (1,+\infty)$C。

$(-\infty,-1)\cup (1,+\infty)$D。

$(-1,1)$5.当 $0<x<\frac{\pi}{2}$ 时,函数 $f(x)=\frac{1+\cos^2 x+8\sin^2 x}{2\sin^2 x}$ 的最小值为()。

A。

2B。

$\frac{2}{3}$C。

4D。

$\frac{3}{2}$6.若实数 $a,b$ 满足 $a+b=2$,则 $3a+3b$ 的最小值是()。

A。

18B。

高中数学不等式解法15种典型例题

高中数学不等式解法15种典型例题

由 x 2 x 1 0 恒成立,知原不等式等价于
( x 2)
0.
( x 3)( x 1)
解之,得原不等式的解集为 { x 1 x 2或 x 3} .
说明: 此题易出现去分母得 x2 2x 2 x(3 2x x 2 ) 的错误解法.避免误解的方法是移项使一边为0再解. 另外,在解题过程中,对出现的二项式要注意其是否有实根,以便分析不等式是否有解,从而使求解过程科学合理.
x(2x 5)( x 3) 0
把方程 x(2x 5)( x 3) 0 的三个根 x1 0, x2
5 , x3 2
后从右上开始画线顺次经过三个根,其解集如下图的阴影部分.
3 顺次标上数轴. 然
∴原不等式解集为
5
x
x 0或x 3
2
(2)原不等式等价于
( x 4)( x 5)2 ( x 2)3 0
x5 0
定含0的区间符号,其他各区间正负相间.在解题时要正确运用.
典型例题五
例 5 解不等式 x 2 2 x 2 3 2x x2
x.
分析: 不等式左右两边都是含有 x 的代数式,必须先把它们移到一边,使另一边为
解: 移项整理,将原不等式化为
( x 2)( x2 x 1) 0 . ( x 3)( x 1)
0 再解.
3
(1)
x2
1
2

x2
( 2)
x2 3x2
4x 1 7x 2
1
分析 :当分式不等式化为 f (x) 0(或 0) 时,要注意它的等价变形 g( x)
① f ( x) 0 g ( x)
f (x) g ( x) 0 ② f ( x) 0 g ( x)
f (x) g(x)

高中数学不等式证明典型例题

高中数学不等式证明典型例题

不等式证明典型例题例1 若10<<x ,证明)1(log )1(log x x a a +>-(0>a 且1≠a ).分析1 用作差法来证明.需分为1>a 和10<<a 两种情况,去掉绝对值符号,然后比较法证明. 解法1 (1)当1>a 时, 因为 11,110>+<-<x x ,所以 )1(log )1(log x x a a +-- )1(log )1(log x x a a +---= 0)1(log 2>--=x a .(2)当10<<a 时, 因为 11,110>+<-<x x所以 )1(log )1(log x x a a +-- )1(log )1(log x x a a ++-=0)1(log 2>-=x a .综合(1)(2)知)1(log )1(log x x a a +>-.分析2 直接作差,然后用对数的性质来去绝对值符号. 解法2 作差比较法.因为 )1(log )1(log x x a a +-- ax a x lg )1lg(lg )1lg(+--=[])1lg()1lg(lg 1x x a +--=[])1lg()1lg(lg 1x x a +---=0)1lg(lg 12>--=x a, 所以)1(log )1(log x x a a +>-. 例2 设0>>b a ,求证:.ab ba b a b a >证明:b a a b ba ab b a b a b aba b a ---=⋅=)( ∵0>>b a ,∴.0,1>->b a ba ∴1)(>-ba b a . ∴a b b a b a b a .1> 又∵0>abb a , ∴.ab ba b a b a >.例3 对于任意实数a 、b ,求证444()22a b a b ++≥(当且仅当a b =时取等号) 证明:∵ 222a b ab +≥(当且仅当22a b =时取等号) 两边同加4444222():2()()a b a b a b ++≥+,即:44222()22a b a b ++≥ (1) 又:∵ 222a b ab +≥(当且仅当a b =时取等号) 两边同加22222():2()()a b a b a b ++≥+∴222()22a b a b ++≥ ∴ 2224()()22a b a b ++≥ (2) 由(1)和(2)可得444()22a b a b ++≥(当且仅当a b =时取等号). 例4 已知a 、b 、c R +∈,1a b c ++=,求证1119.a b c++≥ 证明:∵1a b c ++=∴ 111a b c ++a b c a b c a b c a b c++++++=++ (1)(1)(1)b c a c a b a a b b c c =++++++++3()()()b a c a c ba b a c b c=++++++∵2b a a b +≥=,同理:2c a a c+≥,2c bb c +≥。

高中数学 3.4 不等式的实际应用例题与探究素材 新人教

高中数学 3.4 不等式的实际应用例题与探究素材 新人教

3.4 不等式的实际应用典题精讲例1 某工厂拟建一座平面图为矩形且面积为200平方米的三级污水处理池(平面图如图3-4-1所示),由于地形限制,长、宽都不能超过16米,如果池外周壁建造单价为每米400元,中间两道隔墙建造单价为每米248元,池底建造单价为每平方米80元,池壁的厚度忽略不计,试设计污水处理池的长和宽,使总造价最低,并求出最低造价.图3-4-1思路分析:在利用均值不等式求最值时,必须考虑等号成立的条件,若等号不能成立,通常要用函数的单调性进行求解.解:设污水处理池的长为x 米,则宽为x 200米(0<x≤16,0<x200≤16), ∴12.5≤x≤16.于是总造价Q (x )=400(2x+2·x 200)+248·2·x200+80×200 =800(x+x324)+16 000 ≥800·xx 3242•+16 000=44800. 当且仅当x=x324(x >0),即x=18时等号成立,而18∉[12.5,16], ∴Q(x )>44 800.下面研究Q (x )在[12.5,16]上的单调性.对任意12.5≤x 1<x 2≤16,则x 2-x 1>0,x 1·x 2<162<324. Q (x 2)-Q (x 1)=800[(x 2-x 1)+324(1211x x -)]=800·212112)324)((x x x x x x --<0.∴Q(x 2)<Q (x 1).∴Q(x )在[12.5,16]上是减函数.∴Q(x )≥Q(16)=45 000.答:当污水处理池的长为16米,宽为12.5米时,总造价最低,最低造价为45 000元. 绿色通道:解答应用题四步法:(1)读题;(2)建模;(3)求解;(4)评价.在解决函数、不等式综合问题时,要认真分析、处理好各种关系,把握问题的主线,运用相关的知识和方法逐步化归为基本问题来解决,尤其是注意等价转化、分类讨论、数形结合等思想的综合运用.综合问题的求解往往需要应用多种知识和技能.因此,必须全面掌握有关的函数知识,并且严谨审题,弄清题目的已知条件,尤其要挖掘题目中的隐含条件.黑色陷阱:如果忽视函数的定义域,就会导致运用均值不等式求最值时,不判断等号能否成立的条件,从而得到最低总造价为44 800元.变式训练 甲、乙两地相距s 千米,汽车从甲地匀速驶到乙地,速度不得超过c 千米/时,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成,可变部分与速度v(km/h)的平方成正比,比例系数为b,固定部分为a 元.(1)把全程运输成本y(元)表示为v(km/h)的函数,并指出这个函数的定义域; (2)为了使全程运输成本最小,汽车应以多大速度行驶?解法一:(1)依题意,知汽车从甲地匀速行驶到乙地所用时间为vs,全程运输成本为y=a·v s +bv 2·v s =s(va +bv). ∴所求函数及其定义域为y=s(va+bv),v∈(0,c]. (2)依题意知,s 、a 、b 、v 均为正数, ∴s(va +bv)≥abs 2.① 当且仅当va=bv,即v=b a 时,①式中等号成立.若b a ≤c,则当v=ba时,有y min ; 若b a >c,则当v∈(0,c]时,有s(v a +bv)-s(ca+bc) =s [(v a -c a )+(bv-bc)]=vcs(c-v)(a-bcv). ∵c -v≥0,且a >bc 2,∴a -bcv≥a -bc 2>0. ∴s(v a +bv)≥s(ca+bc),当且仅当v=c 时等号成立,也即当v=c 时,有y min . 综上可知,为使全程运输成本y 最小,当b ab ≤c 时,行驶速度应为v=b ab ;当bab>c 时,行驶速度应为v=c.解法二:(1)同解法一.(2)∵函数y=x+xk(k >0),x∈(0,+∞),当x∈(0,k )时y 单调减小,当x∈(k ,+∞)时y 单调增加,当x=k 时y 取得最小值,而全程运输成本函数为y=sb(v+vb a),v∈(0,c].∴当b a ≤c 时,则当v=b a 时,y 最小,若ba >c 时,则当v=c 时,y 最小.结论同上. 例2 某地区上年度电价为0.8元/kW·h,年用电量为a kW·h.本年度计划将电价降到0.55元/kW·h 至0.75元/kW·h 之间,而用户期望电价为0.4元/kW·h.经测算,下调电价后新增的用电量与实际电价和用户期望电价的差成反比(比例系数为k).该地区电力的成本价为0.3元/kW·h.(1)写出本年度电价下调后,电力部门的收益y 与实际电价x 的函数关系式;(2)设k=0.2a ,当电价最低定为多少时仍可保证电力部门的收益比上年至少增长20%? 〔注:收益=实际用电量×(实际电价-成本价)〕思路分析:(1)关键是弄清“新增的用电量与实际电价和用户期望电价的差成反比”,并用式子表示出来.(2)在(1)的基础上解不等式.解:(1)设下调后的电价为x 元/kW·h,依题意,知用电量增至4.0-x k+a ,电力部门的收益y=(4.0-x k+a )(x-0.3)(0.55≤x≤0.75).(2)依题意,有⎪⎩⎪⎨⎧≤≤+-⨯≥-+-.75.055.0%),201)](3.08.0([)3.0)(4.02.0(x a x a x a整理得⎩⎨⎧≤≤≥+-.75.055.0,03.01.12x x x解此不等式,得0.60≤x≤0.75.所以当电价最低定为0.60元/kW·h 时,仍可保证电力部门的收益比上年至少增长20%. 变式训练1 有一批影碟机(VCD )原销售价为每台800元,在甲、乙两家家电商场均有销售.甲商场用如下的方法促销:买一台单价为780元,买两台每台单价都为760元,依次类推,每多买一台则所买各台单价均再减少20元,但每台最低不能低于440元;乙商场一律都按原价的75%销售.某单位需购买一批此类影碟机,问去哪家商场购买花费较少?思路分析:根据题意,首先要找出两个商场的花费与购买量的函数关系式,然后建立差价与台数的函数,通过解不等式来确定大小.解:设某单位需购买x 台影碟机,甲、乙两商场的购货款的差价为y ,当800-20x≥440,即1≤x≤18时,去甲商场购买共花费(800-2x)x,当x >18时,花费440x. 去乙商场购买共花费600x ,x ∈N +, ∴y=⎪⎩⎪⎨⎧><==<≤>⎩⎨⎧>-≤≤-=⎩⎨⎧>-≤≤--.10,0,10,0,101,0,18,160,181,2020018,600440181,600)20800(2x y x y x y x x x x x x x x x x x x 得 故若买少于10台,去乙商场花费较少;若买10台,去甲、乙商场花费一样;若买超过10台,去甲商场花费较少.变式训练2 某县地处水乡,县政府原计划从今年起填湖围造一部分生产和生活用地,但根据前几年抗洪救灾得到的经验教训和环境保护、生态平衡的要求,准备重新研究修改计划,为了寻求合理的计划方案,需要研究以下问题:(1)若按原计划填湖造地,水面的减少必然导致蓄水能力的下降,为了保证防洪能力不会下降,除了填湖每亩b 元费用外,还需要增加排水设备费用,所需经费与当年所填湖造地面积x (亩)的平方成正比,其比例系数为a ,又知每亩地面的年平均收益为c 元(其中a 、b 、c 均为常数),若按原计划填湖造地,且使得今年的收益不小于支出,试求所填面积x 的最大值.(2)如果以每年1%的速度减少填湖造地的新增面积,并为了保证水面的蓄洪能力和环保要求,填湖造地的总面积永远不能超过现有水面面积的41,求今年填湖造地的面积最多只能占现有水面的百分之几?思路分析:收益不小于支出的含义就是收益与支出的差不小于0,因此本题变成一个解不等式问题,当然本题中都是字母给出的量,所以要对结果进行分类讨论.解:(1)收益不少于支出的条件可以表示为cx-(ax 2+bx )≥0.所以ax 2+(b-c )x≤0,x [ax-(c-b )]≤0.当c-b≤0时,abc -≤x≤0,此时不能填湖造地; 当c-b >0时,0≤x≤a b c -,此时所填面积的最大值为abc -亩.(2)设该县的现有水面为m 亩,今年填湖造地的面积为x 亩,则x+(1-1%)x+(1-1%)2x+…≤4m ,不等式左边是无穷等比数列的和,故有99.01-x ≤4m ,即x≤400m=0.25%m ,所以今年填湖造地的面积最多只能占现有水面的0.25%.例3 如图3-4-2,为处理含有某种杂质的污水,要制造一底宽为2米的无盖长方体沉淀箱,污水从A 孔流入,经沉淀后从B 孔流出,设箱体的长度为a 米,高度为b 米.已知流出的水中该杂质的质量分数与a 、b 的乘积ab 成反比.现有制箱材料60平方米.问当a 、b 各为多少米时,经沉淀后流出的水中该杂质的质量分数最小(A 、B 孔的面积忽略不计)?图3-4-2思路分析:一种方法是建立在函数的思想上,求函数的值域.另一种方法重在思考a+2b 与ab 的关系,结合均值不等式求解.解法一:设y 为流出的水中杂质的质量分数,则y=abk,其中k >0为比例系数,依题意,即求使y 值最小时的a 、b 的值.根据题设,有4b+2ab+2a=60(a >0,b >0), 得b=aa+-230(0<a <30). ① 于是y=)2642(34264322302+++-=+-+-=+-=a a k a a k aa a k ab k≥18264)2(234k a a k=+•+-. 当a+2=264+a 时取等号,y 达到最小值. 这时a=6,a=-10(舍去).将a=6代入①式,得b=3.故当a 为6米,b 为3米时,经沉淀后流出的水中该杂质的质量分数最小.解法二:依题意,知所求的a 、b 值使ab 最大. 由题设知4b+2ab+2a=60(a >0,b >0), 即a+2b+ab=30(a >0,b >0). ∵a+2b≥ab 22,∴ab 22≤30,当且仅当a=2b 时,上式取等号. 由a >0,b >0,解得0<ab≤18,即当a=2b 时,ab 取得最大值,其最大值为18.∴2b 2=18.解得b=3,a=6.故当a 为6米,b 为3米时,经沉淀后流出的水中该杂质的质量分数最小.绿色通道:求最值或者取值范围问题,首先考虑建立函数关系,通过函数的方法来求.均值不等式也是求最值的重要方法,尤其是出现和与积的形式时,常把所求的量放在不等式中去考察.黑色陷阱:解法一建立函数时忽视函数的定义域.变式训练 若正数a 、b 满足ab=a+b+3,则ab 的取值范围是______________.思路解析:思考a+b 与ab 的关系,联系均值不等式求解,或建立在函数的思想上,求函数的值域.方法一:令ab =t (t >0),由ab=a+b+3≥32+ab ,得t 2≥2t+3.解得t≥3,即ab ≥3.故ab≥9.方法二:由已知,得ab-b=a+3,b (a-1)=a+3,∴b=13-+a a (a >1). ∴ab=a 13-+a a =[(a-1)+1]13-+a a =a+3+13-+a a =a-1+4+141141-+-=-+-a a a a +5 ≥9514)1(2=+--a a . 当且仅当a-1=14-a 时取等号,即a=b=3时ab 的最小值为9.所以ab 的取值范围是[9,+∞). 答案:[9,+∞) 问题探究在均值不等式、不等式的实际应用中,不少问题是以函数f(x)=ax+xb(a >0,b >0)为模型进行讨论的,因此对函数f(x)=ax+xb(a >0,b >0)的性质要熟练掌握. 问题 如何应用这个函数的性质、均值不等式求最值?导思:研究函数的性质需从定义域、值域、奇偶性、单调性等方面入手考虑,对图象还要考虑关键点、对称性、渐近线等.求函数的最值可先考虑均值不等式并考察等号成立的条件.如果等号不成立,可考虑函数的单调性.解题时往往先画出函数的图象,结合图形进行思考. 探究:(1)先研究函数的性质,并画图象.(2)应用图象和性质,结合均值不等式讨论函数f(x)=ax+xb(a >0,b >0)在(0,c ](c >0)上的最小值.(3)从均值不等式、不等式的实际应用中找出与这个函数的应用有关的题目,并总结有关规律.。

高中数学:不等式典型例题(含答案)

高中数学:不等式典型例题(含答案)

一元二次不等式及其解法1.形如)0)(0(02≠<>++a c bx ax 其中或的不等式称为关于x 的一元二次不等式.2.一元二次不等式20(0)ax bx c a ++>>与相应的函数2(0)y ax bx c a =++>、相应的方程21、把二次项的系数变为正的。

(如果是负,那么在不等式两边都乘以-1,把系数变为正)2、解对应的一元二次方程。

(先看能否因式分解,若不能,再看△,然后求根)3、求解一元二次不等式。

(根据一元二次方程的根及不等式的方向)一、解下列一元二次不等式:1、0652>++x x2、0652≤--x x3、10732>-x x4、05622<-+-x x5、0542<+-x x6、0442>-+-x x7、0942<-x8、(2)(3)6x x +-<二.填空题1、不等式(1)(12)0x x -->的解集是 ;2.不等式2654x x +<的解集为____________. 3、不等式2310x x -++>的解集是 ; 4、不等式2210x x -+≤的解集是 ; 5、不等式245x x -<的解集是 ;9、已知集合2{|4}M x x =<,2{|230}N x x x =--<,则集合MN = ; 10、不等式220mx mx +-<的解集为R ,则实数m 的取值范围为 ;11、不等式9)12(2≤-x 的解集为__________. 12、不等式0<x 2+x -2≤4的解集是___________ .13、若不等式2(2)2(2)40a x a x -+--<对一切x R ∈恒成立,则a 的取值范围是______________. 三、典型例题:1、已知对于任意实数x ,22kx x k -+恒为正数,求实数k 的取值范围.。

高中数学《传统不等式的解法》基础知识与典型题练习(含答案解析)

高中数学《传统不等式的解法》基础知识与典型题练习(含答案解析)

高中数学《传统不等式的解法》基础知识与典型题练习(含答案解析)一、基础知识1、一元二次不等式:()200ax bx c a ++>≠可考虑将左边视为一个二次函数()2f x ax bx c =++,作出图像,再找出x 轴上方的部分即可——关键点:图像与x 轴的交点 2、高次不等式(1)可考虑采用“数轴穿根法”,分为以下步骤:(令关于x 的表达式为()f x ,不等式为()0f x >)①求出()0f x =的根12,,x x② 在数轴上依次标出根③ 从数轴的右上方开始,从右向左画。

如同穿针引线穿过每一个根 ④ 观察图像,()0f x >⇒ 寻找x 轴上方的部分 ()0f x <⇒ 寻找x 轴下方的部分(2)高次不等式中的偶次项,由于其非负性在解不等式过程中可以忽略,但是要验证偶次项为零时是否符合不等式 3、分式不等式(1)将分母含有x 的表达式称为分式,即为()()f xg x 的形式 (2)分式若成立,则必须满足分母不为零,即()0g x ≠(3)对形如()()0f x g x >的不等式,可根据符号特征得到只需()(),f x g x 同号即可,所以将分式不等式转化为()()()0f xg x g x ⋅>⎧⎪⎨≠⎪⎩ (化商为积),进而转化为整式不等式求解4、含有绝对值的不等式(1)绝对值的属性:非负性(2)式子中含有绝对值,通常的处理方法有两种:一是通过对绝对值内部符号进行分类讨论(常用);二是通过平方(3)若不等式满足以下特点,可直接利用公式进行变形求解: ① ()()f x g x >的解集与()()f x g x >或()()f x g x <−的解集相同② ()()f x g x <的解集与()()()g x f x g x −<<的解集相同(4)对于其它含绝对值的问题,则要具体问题具体分析,通常可用的手段就是先利用分类讨论去掉绝对值,将其转化为整式不等式,再做处理 5、指对数不等式的解法:(1)先讲一个不等式性质与函数的故事 在不等式的基本性质中,有一些性质可从函数的角度分析,例如:a b a c b c >⇒+>+,可发现不等式的两边做了相同的变换(均加上c ),将相同的变换视为一个函数,即设()f x x c =+,则()(),a c f a b c f b +=+=,因为()f x x c =+为增函数,所以可得:()()a b f a f b >⇔>,即a b a c b c >⇒+>+成立,再例如:0,0,c ac bc a b c ac bc >>⎧>⇒⎨<<⎩,可设函数()f x cx =,可知0c >时,()f x 为增函数,0c <时,()f x 为减函数,即()()()()0,0,c f a f b a b c f a f b >>⎧⎪>⇒⎨<<⎪⎩ 由以上两个例子我们可以得出:对于不等式两边作相同变换的性质,可将变换视为一个函数,则在变换时不等号是否发生改变,取决于函数的增减性。

高中数学证明不等式之泰勒展式和拉格朗日中值定理

高中数学证明不等式之泰勒展式和拉格朗日中值定理

证明不等式之泰勒展式和拉格朗日中值定理【典型例题】例1.已知函数f (x )=ln a ⋅xe -x +a sin x ,a >0.(1)若x =0恰为f (x )的极小值点.(ⅰ)证明:12<a <1;(ⅱ)求f (x )在区间(-∞,π)上的零点个数;(2)若a =1,f (x )x =1-x π 1+x π 1-x 2π 1+x 2π 1-x 3π 1+x 3π ⋯1-x n π 1+xn π ⋯,又由泰勒级数知:cos x =1-x 22!+x 44!-x 66!+⋯+(-1)n x 2n (2n )!+⋯,n ∈N *.证明:112+122+132+⋯+1n2+⋯=π26.【解析】解:(1)证明:(ⅰ)由题意得:f (x )=ln a (1-x )e -x +a cos x (a >0),因为x =0为函数f (x )的极值点,所以f (0)=ln a +a =0,令g (x )=ln x +x (x >0),则g (x )=1x+1>0,g (x )在(0,+∞)上单调递增,因为g (1)>0,g 12=ln 12+12=ln e 2<0,所以g (x )=ln x +x (x >0)在12,1上有唯一的零点a ,所以12<a <1;(ⅱ)由(ⅰ)知:ln a =-a ,f (x )=a (sin x -xe -x ),f (x )=a [cos x -(1-x )e -x ],①当x ∈(-∞,0)时,由a >0,-1≤cos x ≤1,1-x >1,e -x >1得:f (x )<0,所以f (x )在(-∞,0)上单调递减,f (x )>f (0)=0,所以f (x )在区间(-∞,0)上不存在零点;②当x ∈(0,π)时,设h (x )=cos x -(1-x )e -x ,则h (x )=(2-x )e -x -sin x ,1°若x ∈0,π2,令m (x )=(2-x )e -x -sin x ,则m (x )=(x -3)e -x-cos x <0,所以m (x )在0,π2 上单调递减,因为m (0)=2>0,m π2 =2-π2 e -π2-1<0;所以存在α∈0,π2,满足m (α)=0,当x ∈(0,α)时,m (x )=h (x )>0,h (x )在(0,α)上单调递增;当x ∈α,π2时,m (x )=h(x )<0,h (x )在α,π2 上单调递减;2°若x ∈π2,2,令φ(x )=(2-x )e -x ,x ∈π2,2 ,则φ (x )=(x -3)e -x <0,所以φ(x)在区间π2,2上单调递减,所以φ(x)<φπ2 =2-π2e-π2<1e,又因为sin x≥sin2=sin(π-2)>sin π6=12,所以h (x)=(2-x)e-x-sin x<0,h(x)在π2,2上单调递减;3°若x∈(2,π),则h (x)=(2-x)e-x-sin x<0,h(x)在(2,π)上单调递减;由1°2°3°得,h(x)在(0,α)上单调递增,h(x)在(α,π)单调递减,因为h(α)>h(0)=0,h(π)=(π-1)e-π-1<0,所以存在β∈(α,π)使得h(β)=0,所以当x∈(0,β)时,f (x)=h(x)>0,f(x)在(0,β)上单调递增,f(x)>f(0)=0,当x∈(β,π)时,f (x)=h(x)<0,f(x)在(β,π)上单调递减,因为f(β)>f(0)=0,f(π)<0,所以f(x)在区间(β,π)上有且只有一个零点;综上,f(x)在区间(-∞,π)上的零点个数为2个;(2)因为sin xx =1-x2π21-x24π21-x232π2⋯1-x2n2π2⋯①对cos x=1-x22!+x44!-x66!+⋯+(-1)n x2n(2n)!+⋯,两边求导得:-sin x=-x1!+x33!-x55!+⋯+(-1)n x2n-1(2n-1)!+⋯,sin x=x1!-x33!+x55!+⋯+(-1)n-1x2n-1(2n-1)!+⋯,所以sin xx=1-x23!+x45!+⋯+(-1)n-1x2n-2(2n-1)!+⋯②比较①②式中x2的系数,得:-13!=-1π2112+122+132+⋯+1n2+⋯所以112+122+132+⋯+1n2+⋯=π26.例2.已知函数f(x)=x2+ln x-ax.(1)求函数f(x)的单调区间;(2)若f(x)≤2x2,对x∈[0,+∞)恒成立,求实数a的取值范围;(3)当a=1时,设g x =xe x2-f x -x-1.若正实数λ1,λ2满足λ1+λ2=1,x1,x2∈(0,+∞)(x1≠x2),证明:g(λ1x1+λ2x2)<λ1g(x1)+λ2g(x2).【解析】解:(1)f′(x)=2x+1x-a=2x2-ax+1x,x>0,△=a2-8,①a≤22时,f′(x)≥0恒成立,故函数f(x)在(0,+∞)递增,无递减区间,②a >22时,f ′(x )>0⇒0<x <a -a 2-84或x >a +a 2-84,故函数f (x )在0,a -a 2-84 ,a +a 2-84,+∞ 递增,在a -a 2-84,a +a 2-84递减,综上,a ≤22时,函数f (x )在(0,+∞)递增,无递减区间,a >22时,函数f (x )在0,a -a 2-84 ,a +a 2-84,+∞ 递增,在a -a 2-84,a +a 2-84递减,(2)f (x )≤2x 2,对x ∈[0,+∞)恒成立,即x ∈[0,+∞)时,a ≥ln xx-x 恒成立,令F (x )=ln x x -x ,(x >0),则F ′(x )=1-ln x -x 2x 2,令G (x )=1-ln x -x 2(x >0),则G ′(x )=-1x-2x <0,∴G (x )在(0,+∞)递减且G (1)=0,∴x ∈(0,1)时,G (x )>0,F ′(x )>0,F (x )递增,当x ∈(1,+∞),G (x )<0,F ′(x )<0,F (x )递减,∴F (x )max =F (1)=-1,综上,a 的范围是[-1,+∞).(3)证明:当a =1时,g (x )=xe -(ln x -x )-x -1=xe x -ln x -x -1=e x -x -1,g ′(x )=e x -1>0(x >0),不妨设0<x 1<x 2,下先证:存在ξ∈(x 1,x 2),使得g (x 2)-g (x 1)=g ′(ξ)(x 2-x 1),构造函数H (x )=g (x )-g (x 1)-g (x 2)-g (x 1)x 2-x 1(x -x 1),显然H (x 1)=H (x 2),且H ′(x )=g ′(x )-)-g (x 2)-g (x 1)x 2-x 1,则由导数的几何意义可知,存在ξ∈(x 1,x 2),使得H ′(ξ)=g ′(ξ)-)-g (x 2)-g (x 1)x 2-x 1=0,即存在ξ∈(x 1,x 2),使得g (x 2)-g (x 1)=g ′(ξ)(x 2-x 1),又g ′(x )=e x -1为增函数,∴g (x 2)-g (x 1)=g ′(ξ)(x 2-x 1)>g ′(x 1)(x 2-x 1),即g (x 2)>g (x 1)+g ′(x 1)(x 2-x 1),设x 3=λ1x 1+λ2x 2(λ1+λ2=0),则x 1-x 3=(1-λ1)x 1-λ2x 2,x 2-x 3=(1-λ2)x 2-λ1x 1,∴g (x 1)>g (x 3)+g ′(x 3)(x 1-x 3)=g (x 3)+g ′(x 3)[(1-λ1)x 1-λ2x 2]①,g (x 2)>g (x 3)+g ′(x 3)(x 2-x 3)=g (x 3)+g ′(x 3)[(1-λ2)x 2-λ1x 1]②,由①×λ1+②×λ2得,λ1g (x 1)+λ2g (x 2)>g (x 3)=g (λ1x 1+λ2x 2),即g (λ1x 1+λ2x 2)<λ1g (x 1)+λ2g (x 2).例3.英国数学家泰勒发现了如下公式:sin x=x-x33!+x55!-x77!+⋯,其中n!=1×2×3×4×⋯×n,此公式有广泛的用途,例如利用公式得到一些不等式:当x∈0,π2时,sin x<x,sin x>x-x33!,sin x<x-x33!+x55!,⋯.(1)证明:当x∈0,π2时,sin x x>12;(2)设f(x)=m sin x,若区间[a,b]满足当f(x)定义域为[a,b]时,值域也为[a,b],则称为f(x)的“和谐区间”,(ⅰ)m=1时,f(x)是否存在“和谐区间”?若存在,求出f(x)的所有“和谐区间”,若不存在,请说明理由;(ⅱ)m=-2时,f(x)是否存在“和谐区间”?若存在,求出f(x)的所有“和谐区间”,若不存在,请说明理由.【解析】(1)证明:由已知当x∈0,π2时,sin x>x-x33!,得sin xx>1-x26>1-π226=1-π224>12,所以当x∈0,π2时,sin x x>12.(2)(i)m=1时,假设存在,则由-1≤f(x)≤1知-1≤a<b≤1,注意到1<π2,故[a,b]⊆-π2 ,π2,所以f(x)在[a,b]单调递增,于是f(a)=af(b)=b,即a,b是方程sin x=x的两个不等实根,易知x=±π2不是方程的根,由已知,当x∈0,π2时,sin x<x,令x=-t,则有t∈-π2 ,0时,sin(-t)<-t,即sin t>t,故方程sin x=x只有一个实根0,故f(x)不存在和谐区间.(ii)m=-2时,假设存在,则由-2≤f(x)≤2知-2≤a<b≤2,若a,b≥0,则由[a,b]⊆[0,π),知f(x)≤0,与值域是[a,b]⊆[0,π)矛盾,故不存在和谐区间,同理,a,b≤0时,也不存在,下面讨论a≤0≤b,若b≥π2,则0,π2⊆[a,b],故f(x)最小值为-2,于是a=-2,所以-π2 ,π2⊆[a,b],所以f(x)最大值为2,故b=2,此时f(x)的定义域为[-2,2],值域为[-2,2],符合题意.若b<π2,当a≤-π2时,同理可得a=-2,b=2,舍去,当a>-π2时,f(x)在[a,b]上单调递减,所以a=-2sin bb=-2sin a,于是a+b=-2(sin a+sin b),若b>-a即a+b>0,则sin b>sin(-a),故sin b+sin a>0,-2(sin a+sin b)<0,与a+b=-2(sin a+sin b)矛盾;若b<-a,同理,矛盾,所以b>-a,即b2=sin b,由(1)知当x∈0,π2时,sin x>x2,因为b∈0,π2,所以b=0,从而,a=0,从而a=b,矛盾,综上所述,f(x)有唯一的和谐区间[-2,2].例4.给出以下三个材料:①若函数f(x)可导,我们通常把导函数f (x)的导数叫做f(x)的二阶导数,记作f (x).类似地,二阶导数的导数叫做三阶导数,记作f (x),三阶导数的导数叫做四阶导数⋯⋯一般地,n-1阶导数的导数叫做n阶导数,记作f(n)(x)=[f(n-1)(x)]′,n≥4.②若n∈N*,定义n!=n×(n-1)×(n-2)×⋯×3×2×1.③若函数f(x)在包含x0的某个开区间(a,b)上具有n阶的导数,那么对于任一x∈(a,b)有g(x)=f(x0)+f (x0)1!(x-x0)+f (x0)2!(x-x0)2+f (x0)3!(x-x0)3+⋯+f(n)(x0)n!(x-x0)n,我们将g(x)称为函数f(x)在点x=x0处的n阶泰勒展开式.例如,y=e x在点x=0处的n阶泰勒展开式为1+x+12x2+⋯+1n!x n.根据以上三段材料,完成下面的题目:(1)求出f1(x)=sin x在点x=0处的3阶泰勒展开式g1(x),并直接写出f2(x)=cos x在点x=0处的3阶泰勒展开式g2(x);(2)比较(1)中f1(x)与g1(x)的大小.(3)已知y=e x不小于其在点x=0处的3阶泰勒展开式,证明:x≥0时,e x+sin x+cos x≥2+2x.【解析】(1)解:因为f1(x)=sin x,则f1 (x)=cos x,f1 (x)=-sin x,f1 (x)=-cos x,所以f1 (0)=1,f1 (0)=0,f1 (0)=-1,故g1(x)=sin0+11!(x-0)+02!(x-0)2+-13!(x-0)3,即g1(x)=x-16x3,同理可得,g2(x)=1-12x2;(2)解:由(1)可知,f1(x)=sin x,g1(x)=x-16x3,令h(x)=f1(x)-g1(x)=sin x-x+16x3,则h (x)=cos x-1+12x2,则h (x)=-sin x+x,h (x)=1-cos x≥0,所以h (x)在R上单调递增,又h (0)=0,故当x<0时,h (x)<0,故h (x)单调递减,当x>0时,h (x)>0,故h (x)单调递增,所以h (x)的最小值为h (0)=1-1+0=0,所以h (x)≥0,故h(x)在R上单调递增,又h(0)=0,所以当x<0时,h(x)<0,当x>0时,h(x)>0,综上所述,当x<0时,f1(x)<g1(x);当x=0时,f1(x)=g1(x);当x>0时,f1(x)>g1(x).(3)证明:令φ(x)=f2(x)-g2(x)=cos x-1+12x2,则φ (x)=-sin x+x,所以φ (x)=1-cos x≥0.则φ (x)在R上单调递增,又φ (0)=0,所以φ(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增,所以φ(x)≥φ(0)=0,即cos x≥1-12x2,因为y=e x在点x=0处的3阶泰勒展开式为:1+x+12x2+16x3,所以e x≥1+x+12x2+16x3,又y=sin x在x=0处的3阶泰勒展开式为:x-16x3,当x≥0时,sin x≥x-16x3,所以当x≥0时,e x+sin x+cos x≥1+x+12x2+16x3+x-16x3+1-12x2≥2+2x,故e x+sin x+cos x≥2+2x(x≥0).例5.利用拉格朗日(法国数学家,1736-1813)插值公式,可以把二次函数F(x)表示成F(x)=d(x-b)(x-c) (a-b)(a-c)+e(x-a)(x-c)(b-a)(b-c)+f(x-a)(x-b)(c-a)(c-b)的形式.(1)若a=1,b=2,c=3,d=4,e<f,把F(x)的二次项系数表示成关于f的函数G(f),并求G(f)的值域(此处视e为给定的常数,答案用e表示);(2)若a<b<c,d>0,e<0,f>0,求证:a+b<d(b2-c2)+e(c2-a2)+f(a2-b2)d(b-c)+e(c-a)+f(a-b)<b+c.【解析】(1)解:由题意G(f)=d(a-b)(a-c)+e(b-a)(b-c)+f(c-a)(c-b)=4-1×(-2)+e1×(-1)+f2×1=12f-e+2,又f>e,所以G(f)>12e-e+2=-12e+2,当e≤4时,G(f)>-12e+2≥0,则G(f)的值域是-12e+2,+∞;当e>4时,-12e+2<0,所以G(f)的值域是-12e+2,0∪(0,+∞).(2)证明:因为a<b<c,d>0,e<0,f>0,所以d(b-c)+e(c-a)+f(a-b)<0,(a+b)[d(b-c)+e(c-a)+f(a-b)]=d(b-c)(a+b)+e(c-a)(a+b)+f(a2-b2) =d(b-c)([(b+c)+(a-c)]+e(c-a)[(c+a)+(b-c)]+f(a2-b2)=d(b2-c2)+e(c2-a2)+f(a2-b2)+d(b-c)(a-c)+e(c-a)(b-c),因为a<b<c,d>0,e<0,f>0,所以d(b-c)(a-c)>0,e(c-a)(b-c)>0,所以(a+b)[d(b-c)+e(c-a)+f(a-b)]>d(b2-c2)+e(c2-a2)+f(a2-b2),所以a+b<d(b2-c2)+e(c2-a2)+f(a2-b2) d(b-c)+e(c-a)+f(a-b),(b+c)[d(b-c)+e(c-a)+f(a-b)]=d(b2-c2)+e(c-a)(b+c)+f(a-b)(b+c) =d(b2-c2)+e(c-a)(c-a+b-a)+f(a-b)(a+b+c-a)=d(b2-c2)+e(c2-a2)+f(a2-b2)+e(c-a)(b-a)+f(a-b)(c-a),因为a<b<c,d>0,e<0,f>0,所以e(c-a)(b-a)<0,f(a-b)(c-a)<0,所以(b+c)[d(b-c)+e(c-a)+f(a-b)]<d(b2-c2)+e(c2-a2)+f(a2-b2),所以b+c>d(b2-c2)+e(c2-a2)+f(a2-b2) d(b-c)+e(c-a)+f(a-b),综上,原不等式成立.例6.用拉格朗日中值定理证明不等式:x1+x<ln(1+x)<x(x>0).【解析】证明:设g(t)=ln t,t∈(a,b),则g(x)符合拉格朗日中值定理的条件,即存在t0∈(a,b),使g′(t0)=g(b)-g(a) b-a,因为g′(t)=1t,由t∈(a,b),0<a<b,可知g ′(t )∈1b ,1a,b -a >0,即1b <g ′t 0)=g (b )-g (a )b -a <1a ,可得1b <g (b )-g (a )b -a =ln b -ln a b -a<1a ,即有b -a b<ln b a <b -aa ,令b a=1+x ,可得x =ba-1,即有x1+x<ln (1+x )<x (x >0).例7.已知函数f (x )=mx 3+nx 2(m 、n ∈R ,m ≠0)的图象在(2,f (2))处的切线与x 轴平行.(1)求n ,m 的关系式并求f (x )的单调减区间;(2)证明:对任意实数0<x 1<x 2<1,关于x 的方程:f (x )-f (x 2)-f (x 1)x 2-x 1=0在(x 1,x 2)恒有实数解;(3)结合(2)的结论,其实我们有拉格朗日中值定理:若函数f (x )是在闭区间[a ,b ]上连续不断的函数,且在区间(a ,b )内导数都存在,则在(a ,b )内至少存在一点x 0,使得f (x 0)=f (b )-f (a )b -a.如我们所学过的指、对数函数,正、余弦函数等都符合拉格朗日中值定理条件.试用拉格朗日中值定理证明:当0<a <b 时,b -a b <ln b a <b -a a (可不用证明函数的连续性和可导性).【解析】解:(1)因为f (x )=3mx 2+2nx ,------(1分)由已知有f (2)=0,所以3m +n =0即n =-3m ------(2分)即f (x )=3mx 2-6mx ,由f (x )>0知mx (x -2)>0.当m >0时得x <0或x >2,f (x )的减区间为(0,2);-----(3分)当m <0时得:0<x <2,f (x )的减区间为(-∞,0)和(2,+∞);-----(4分)综上所述:当m >0时,f (x )的减区间为(0,2);当m <0时,f (x )的减区间为(-∞,0)和(2,+∞);-----(5分)(2)∵f (x 2)-f (x 1)x 2-x 1=m (x 21+x 22+x 1x 2-3x 1-3x 2),------------(6分)∴f ′(x )-f (x 2)-f (x 1)x 2-x 1=0,可化为3x 2-6x -x 21-x 22-x 1x 2+3x 1+3x 2=0,令h (x )=3x 2-6x -x 21-x 22-x 1x 2+3x 1+3x 2----(7分)则h (x 1)=(x 1-x 2)(2x 1+x 2-3),h (x 2)=(x 2-x 1)(x 1+2x 2-3),即h (x 1)h (x 2)=-(x 1-x 2)2(2x 1+x 2-3)(x 1+2x 2-3)又因为0<x 1<x 2<1,所以(2x 1+x 2-3)<0,(x 1+2x 2-3)<0,即h (x 1)h (x 2)<0,-----------(8分)故h (x )=0在区间(x 1,x 2)内必有解,即关于x 的方程f (x )-f (x 2)-f (x 1)x 2-x 1=0在(x 1,x 2)恒有实数解-----(9分)(3)令g (x )=ln x ,x ∈(a ,b ),-----------(10分)则g (x )符合拉格朗日中值定理的条件,即存在x 0∈(a ,b ),使g (x 0)=g (b )-g (a )b -a =ln b -ln ab -a-----------(11分)因为g ′(x )=1x ,由x ∈(a ,b ),0<a <b 可知g ′(x )∈1b ,1a,b -a >0-----(12分)即1b <g ′(x 0)=g (b )-g (a )b -a =ln b -ln a b -a =ln bab -a<1a ,∴b -a b<ln b a <b -a a -----(14分)例8.已知f (x )=23x 3-2x 2+cx +4,g (x )=e x -e 2-x +f (x ),(1)若f (x )在x =1+2处取得极值,试求c 的值和f (x )的单调增区间;(2)如图所示,若函数y =f (x )的图象在[a ,b ]连续光滑,试猜想拉格朗日中值定理:即一定存在c ∈(a ,b ),使得f (c )=f (b )-f (a )b -a,利用这条性质证明:函数y =g (x )图象上任意两点的连线斜率不小于2e -4.xyabcA By =f x【解析】解:(1)f ′(x )=2x 2-4x +c ,(1分)依题意,有f (1+2)=0,即c =-2(1+2)2+4(1+2)=-2.(2分)∴f (x )=23x 3-2x 2-2x +4,f ′(x )=2x 2-4x -2.令f ′(x )>0,得x <1-2或x >1+2,(5分)从而f (x )的单调增区间为:(-∞,1-2]及[1+2,+∞);(6分)(2)f (c )=f (b )-f (a )b -a;g (x )=e x -e 2-x +f (x )=e x -e 2-x +23x 3-2x 2-2x +4,(7分)g ′(x )=e x+e2-x+2x 2-4x -2(9分)=e x+e 2ex +2(x -1)2-4≥2e x ⋅e 2e x +2⋅0-4=2e -4.(12分)由(2)知,对于函数y =g (x )图象上任意两点A 、B ,在A 、B 之间一定存在一点C (c ,g ′(c )),使得g ′(c )=K AB ,又g ′(x )≥2e -4,故有K AB =g ′(c )≥2e -4,证毕.(14分)【同步练习】一、单选题1.十八世纪早期,英国数学家泰勒发现了公式sin x =x -x 33!+x 55!-x 77!+⋯+-1 n -1x 2n -12n -1 !+⋯,(其中x ∈R ,n ∈N *,n !=1×2×3×⋯×n ,0!=1),现用上述公式求1-12!+14!-16!+⋯+-1 n -112n -2 !+⋯的值,下列选项中与该值最接近的是()A.sin57°B.sin36°C.sin33°D.sin30°【答案】C【解析】因为sin x =x -x 33!+x 55!-x 77!+⋯+(-1)n -1x 2n -1(2n -1)!+⋯,则(sin x )=cos x =1-x 22!+x 44!-x 66!+⋯+(-1)n -1x 2n -2(2n -2)!+⋯,当x =1时,则有cos1=1-12!+14!-16!+⋯+(-1)n -11(2n -2)!+⋯,又cos1=sin π2-1 ,则1-12!+14!-16!+⋯+(-1)n -11(2n -2)!+⋯=sin π2-1 ≈sin0.57=sin 0.57×180π °≈sin32.7°≈sin33°,故选∶C .2.公元1715年英国数学家布鲁克·泰在他的著作中陈述了“泰勒公式”,如果满足一定的条件,泰勒公式可以用函数在某一点的各阶导数值构建一个多项式来近似表达这个函数.泰勒公式将一些复杂函数近似地表示为简单的多项式函数,使得它成为分析和研究许多数学问题的有力工具,例如:e x=+∞n =0x nn !=x 00!+x 11!+x 22!+x 33!+⋯+x n n !+⋯,其中x ∈R ,n ∈N *,试用上述公式估计e 的近似值为(精确到0.001)()A.1.647 B.1.649 C.1.645 D.1.646【答案】B【解析】由题意可知,结果只需精确到0.001即可,令x =0.5,取前6项可得:e =+∞n =00.5n n ! ≈5n =00.5n n ! =0.500!+0.511!+0.522!+0.533!+0.544!+0.555!=1+0.5+0.252+0.1256+0.062524+0.03125120≈1.649所以e 的近似值为1.649,故选:B .3.计算器是如何计算sin x ,cos x ,πx ,ln x ,x 等函数值的呢?计算器使用的是数值计算法,其中一种方法是用容易计算的多项式近似地表示这些函数,通过计算多项式的值求出原函数的值,如sin x =x -x 33!+x 55!-x 77!+⋯,cos x =1-x 22!+x 44!-x 66!+⋯,其中n !=1×2×⋯×n ,英国数学家泰勒发现了这些公式,可以看出,右边的项用得越多,计算得出的sin x 和cos x 的值也就越精确.运用上述思想,可得到sin π2+1 的近似值为()A.0.50 B.0.52C.0.54D.0.56【答案】C【解析】由题意可得,sin π2+1=cos1,故cos1=1-122!+144!-166!+⋯=1-12+124-1720+⋯≈1-0.5+0.041-0.001+⋯=0.54.故选:C .二、填空题4.英国数学家泰勒(1685-1731)以发现泰勒公式和泰勒级数闻名于世,由泰勒公式,我们得到e =1+11!+12!+13!+⋯+1n !+e θ(n +1)!(其中e 为自然对数的底数,0<θ<1,n !=n ×n -1 ×n -2 ×...×2×1),其拉格朗日余项是R n =e θ(n +1)!.可以看出,右边的项用得越多,计算得到的e 的近似值也就越精确.若3(n +1)!近似地表示e 的泰勒公式的拉格朗日余项R n ,R n 不超过11000时,正整数n 的最小值是_____【答案】6【解析】依题意得3n +1 !≤11000,即n +1 !≥3000,5+1 !=6×5×4×3×2×1=720<3000,6+1 !=7×6×5×4×3×2×1=5040>3000,所以n 的最小值是6.故答案为:6三、解答题5.给出以下三个材料:①若函数f x 可导,我们通常把导函数f x 的导数叫做f x 的二阶导数,记作f x .类似地,二阶导数的导数叫做三阶导数,记作f x ,三阶导数的导数叫做四阶导数⋯⋯一般地,n -1阶导数的导数叫做n 阶导数,记作f n x =f n -1 x ,n ≥4.②若n ∈N ∗,定义n !=n ×n -1 ×n -2 ×⋅⋅⋅×3×2×1.③若函数f x 在包含x 0的某个开区间a ,b 上具有n 阶的导数,那么对于任一x ∈a ,b 有g x =f x 0 +f x 0 1!x -x 0 +f x 0 2!x -x 0 2+f x 0 3!x -x 0 3+⋅⋅⋅+f n x 0 n !x -x 0 n,我们将g x 称为函数f x 在点x =x 0处的n 阶泰勒展开式.例如,y =e x 在点x =0处的n 阶泰勒展开式为1+x +12x 2+⋅⋅⋅+1n !x n .根据以上三段材料,完成下面的题目:(1)求出f 1x =sin x 在点x =0处的3阶泰勒展开式g 1x ,并直接写出f 2x =cos x 在点x =0处的3阶泰勒展开式g 2x ;(2)比较(1)中f 1x 与g 1x 的大小.(3)证明:e x +sin x +cos x ≥2+2x .【解析】(1)∵f 1x =cos x ,f 2x =-sin x ,f 3x =-cos x ,∴f 10 =1,f 20 =0,f 30 =-1,∴g 1x =sin0+11!x -0 +02!x -0 2+-13!x -0 3,即g 1x =x -16x 3;同理可得:g 2x =1-12x 2;(2)由(1)知:f 1x =sin x ,g 1x =x -16x 3,令h x =f 1x -g 1x =sin x -x +16x 3,则h x =cos x -1+12x 2,∴h x =-sin x +x ,h x =1-cos x ≥0,∴h x 在R 上单调递增,又h 0 =0,∴当x ∈-∞,0 时,h x <0,h x 单调递减;当x ∈0,+∞ 时,h x >0,h x 单调递增;∴h x min =h 0 =1-1+0=0,∴h x ≥0,∴h x 在R 上单调递增,又h 0 =0,∴当x ∈-∞,0 时,h x <0;当x ∈0,+∞ 时,h x >0;综上所述:当x <0时,f 1x <g 1x ;当x =0时,f 1x =g 1x ;当x >0时,f 1x >g 1x ;(3)令φx =f 2x -g 2x =cos x -1+12x 2,则φ x =-sin x +x ,∴φ x =1-cos x ≥0,∴φ x 在R 上单调递增,又φ 0 =0,∴φx 在-∞,0 上单调递减,在0,+∞ 上单调递增,∴φx ≥φ0 =0,即cos x ≥1-12x 2;∵y =e x 在点x =0处的4阶泰勒展开式为:1+x +12x 2+16x 3+124x 4,∴e x =1+x +12x 2+16x 3+124x 4≥1+x +12x 2+16x 3,当且仅当x =0时取等号,①当x ≥0时,由(2)可知,sin x ≥x -16x 3,当且仅当x =0时取等号,所以e x +sin x +cos x ≥1+x +12x 2+16x 3 +x -16x 3 +1-12x 2 =2+2x ;②当x<0时,设F x =e x+sin x+cos x-2-2x,F0 =0,F x =e x+cos x-sin x-2=e x+2cos x+π4-2,F x =e x-sin x-cos x,当x∈-1,0,由(2)可知sin x<x-16x3,所以,F x =e x-sin x-cos x>1+x+12x2+16x3+16x3-x-cos x=1-cos x+16x23+2x>0,即有F x <F 0 =0;当x∈-∞,-1时,F x =e x+2cos x+π4-2<1e+2-2<12+2-2<0,所以,x<0时,F x 单调递减,从而F x >F0 =0,即e x+sin x+cos x>2+2x.综上所述:e x+sin x+cos x≥2+2x.6.在高等数学中,我们将y=f x 在x=x0处可以用一个多项式函数近似表示,具体形式为:f x =f x0+f′x0x-x0+f x02!x-x02+⋅⋅⋅+f n x0n!x-x0n+⋅⋅⋅(其中f n x 表示f x 的n次导数),以上公式我们称为函数f x 在x=x0处的泰勒展开式.(1)分别求e x,sin x,cos x在x=0处的泰勒展开式;(2)若上述泰勒展开式中的x可以推广至复数域,试证明:e iπ+1=0.(其中i为虚数单位);(3)若∀x∈0,32,e a sin x>x+1恒成立,求a的范围.(参考数据ln52≈0.9)【解析】(1)因为函数f x 在x=x0处的泰勒展开式为f x =f x0+f′x0x-x0+f x02!x-x02+⋅⋅⋅+f n x0n!x-x0n+⋅⋅⋅(其中f n x 表示f x 的n次导数),所以e x,sin x,cos x在x=0处的泰勒展开式分别为:e x=1+x+12!x2+⋯+1n!x n+⋯,sin x=x-13!x3+15!x5+⋯+(-1)n-1(2n-1)!x2n-1+⋯,cos x=1-12!x2+14!x4+⋯+(-1)n(2n)!x2n+⋯;(2)证明:把e x在x=0处的泰勒展开式中的x替换为ix,可得e ix=1+(ix)+12!(ix)2+13!(ix)3+14!(ix)4+⋯+1n!(ix)n+⋯=1-12!x2+14!x4+⋯+(-1)n(2n)!x2n+⋯+i⋅x-13!x3+15!x5+⋯+(-1)n-1(2n-1)!x2n-1+⋯=cos x+i⋅sin x,所以e iπ=cosπ+i⋅sinπ=-1,即e iπ+1=0;(3)由sin x在x=0处的泰勒展开式,先证∀x∈0,32,sin x>x-16x3,令f(x)=sin x-x+16x3,f′(x)=cos x-1+12x2,f′′(x)=x-sin x,f (x)=1-cos x,易知f (x)>0,所以f′′(x)在0,32上单调递增,所以f′′(x)>f′′(0)=0,所以f′(x)在0,3 2上单调递增,所以f′(x)>f′(0)=0,所以f(x)在0,3 2上单调递增,所以f(x)>f(0)=0,再令g(x)=x-16x3-ln(x+1),x∈0,32,易得g′(x)=-12x(x-1)(x+2)x+1,所以g(x)在(0,1)上单调递增,在1,3 2上单调递减,而g(0)=0,g32=1516-ln52>0,所以∀x∈0,3 2,g(x)>0恒成立,当a≥1时,a sin x≥sin x>x-16x3>ln(x+1) ,所以e a sin x>x+1成立,当a<1时,令h(x)=a sin x-ln(x+1),x∈0,3 2,易求得h (0)=a-1<0,所以必存在一个区间(0,m),使得h(x)在(0,m)上单调递减,所以x∈(0,m)时,h(x)<h(0)=0,不符合题意.综上所述,a≥1.7.英国数学家泰勒发现了如下公式:sin x=x-x33!+x55!-x77!+⋯,其中n!=1×2×3×4×⋯×n,此公式有广泛的用途,例如利用公式得到一些不等式:当x∈0,π2时,sin x<x,sin x>x-x33!,sin x<x-x3 3!+x55!,⋯.(1)证明:当x∈0,π2时,sin x x>12;(2)设f x =m sin x,若区间a,b满足当f x 定义域为a,b时,值域也为a,b,则称为f x 的“和谐区间”.(i)m=1时,f x 是否存在“和谐区间”?若存在,求出f x 的所有“和谐区间”,若不存在,请说明理由;(ii)m=-2时,f x 是否存在“和谐区间”?若存在,求出f x 的所有“和谐区间”,若不存在,请说明理由.【解析】(1)由已知当x∈0,π2时,sin x>x-x33!,得sin x x >1-x 26>1-π226=1-π224>12,所以当x ∈0,π2 时,sin x x >12.(2)(i )m =1时,假设存在,则由-1≤f x ≤1知-1≤a <b ≤1,注意到1<π2,故a ,b ⊆-π2,π2 ,所以f x 在a ,b 单调递增,于是f a =af b =b,即a ,b 是方程sin x =x 的两个不等实根,易知x =±π2不是方程的根,由已知,当x ∈0,π2时,sin x <x ,令x =-t ,则有t ∈-π2,0 时,sin -t <-t ,即sin t >t ,故方程sin x =x 只有一个实根0,故f x 不存在“和谐区间”.(ii )m =-2时,假设存在,则由-2≤f x ≤2知-2≤a <b ≤2,若a ,b ≥0,则由a ,b ⊆0,π ,知f x ≤0,与值域是a ,b ⊆0,π 矛盾,故不存在“和谐区间”,同理,a ,b ≤0时,也不存在,下面讨论a ≤0≤b ,若b ≥π2,则0,π2⊆a ,b ,故f x 最小值为-2,于是a =-2,所以-π2,π2⊆a ,b ,所以f x 最大值为2,故b =2,此时f x 的定义域为-2,2 ,值域为-2,2 ,符合题意.若b <π2,当a ≤-π2时,同理可得a =-2,b =2,舍去,当a >-π2时,f x 在a ,b 上单调递减,所以a =-2sinb b =-2sin a ,于是a +b =-2sin a +sin b ,若b >-a 即a +b >0,则sin b >sin -a ,故sin b +sin a >0,-2sin a +sin b <0,与a +b =-2sin a +sin b 矛盾;若b <-a ,同理,矛盾,所以b =-a ,即b2=sin b ,由(1)知当x ∈0,π2 时,sin x >x 2,因为b ∈0,π2,所以b =0,从而,a =0,从而a =b ,矛盾,综上所述,f x 有唯一的“和谐区间”-2,2 .8.计算器是如何计算sin x ,cos x ,e x ,ln x ,x 等函数值的?计算器使用的是数值计算法,其中一种方法是用容易计算的多项式近似地表示这些函数,通过计算多项式的值求出原函数的值,如sin x =x -x 33!+x 55!-x 77!+⋯,cos x =1-x 22!+x 44!-x 66!+⋯,其中n !=1⋅2⋅3⋅⋯⋅n .英国数学家泰勒(B .Taylor ,1685-1731)发现了这些公式,可以看出,右边的项用得越多,计算得到的sin x 和cos x 的值也就越精确.例如,我们用前三项计算sin0.9,就得到sin0.9≈0.9-(0.9)33!+(0.9)55!≈0.78342075.像这些公式已被编入计算器内,计算器利用足够多的项就可确保其显示值是精确的.试用你的计算器计算sin0.9,并与上述结果进行比较.【解析】用计算器计算sin0.9得sin0.9=0.783326909627,和数值0.78342075比较发现,通过sin0.9≈0.9-(0.9)33!+(0.9)55!≈0.78342075计算的答案只能精确到小数点后第3位.9.给出以下三个材料:①若函数f x 可导,我们通常把导函数f x 的导数叫做f x 的二阶导数,记作f x .类似地,二阶导数的导数叫做三阶导数,记作f x ,三阶导数的导数叫做四阶导数⋯⋯一般地,n -1阶导数的导数叫做n 阶导数,记作f n x =f n -1 x ,n ≥4.②若n ∈N ∗,定义n !=n ×n -1 ×n -2 ×⋅⋅⋅×3×2×1.③若函数f x 在包含x 0的某个开区间a ,b 上具有n 阶的导数,那么对于任一x ∈a ,b 有g x =f x 0 +f x 0 1!x -x 0 +f x 0 2!x -x 0 2+f x 0 3!x -x 0 3+⋅⋅⋅+f n x 0 n !x -x 0 n,我们将g x 称为函数f x 在点x =x 0处的n 阶泰勒展开式.例如,y =e x 在点x =0处的n 阶泰勒展开式为1+x +12x 2+⋅⋅⋅+1n !x n .根据以上三段材料,完成下面的题目:(1)求出f 1x =sin x 在点x =0处的3阶泰勒展开式g 1x ,并直接写出f 2x =cos x 在点x =0处的3阶泰勒展开式g 2x ;(2)比较(1)中f 1x 与g 1x 的大小.(3)已知y =e x 不小于其在点x =0处的3阶泰勒展开式,证明:e x +sin x +cos x ≥2+2x .【解析】(1)∵f 1x =cos x ,f 2x =-sin x ,f 3x =-cos x ,∴f 10 =1,f 20 =0,f 30 =-1,∴g 1x =sin0+11!x -0 +02!x -0 2+-13!x -0 3,即g 1x =x -16x 3;同理可得:g 2x =1-12x 2;(2)由(1)知:f 1x =sin x ,g 1x =x -16x 3,令h x =f 1x -g 1x =sin x -x +16x 3,则h x =cos x -1+12x 2,∴h x =-sin x +x ,h x =1-cos x ≥0,∴h x 在R 上单调递增,又h 0 =0,∴当x ∈-∞,0 时,h x <0,h x 单调递减;当x ∈0,+∞ 时,h x >0,h x 单调递增;∴h x min =h 0 =1-1+0=0,∴h x ≥0,∴h x 在R 上单调递增,又h 0 =0,∴当x ∈-∞,0 时,h x <0;当x ∈0,+∞ 时,h x >0;综上所述:当x <0时,f 1x <g 1x ;当x =0时,f 1x =g 1x ;当x >0时,f 1x >g 1x .(3)令φx =f 2x -g 2x =cos x -1+12x 2,则φ x =-sin x +x ,∴φ x =1-cos x ≥0,∴φ x 在R 上单调递增,又φ 0 =0,∴φx 在-∞,0 上单调递减,在0,+∞ 上单调递增,∴φx ≥φ0 =0,即cos x ≥1-12x 2;∵y =e x 在点x =0处的3阶泰勒展开式为:1+x +12x 2+16x 3,∴e x ≥1+x +12x 2+16x 3,①由(2)知:当x ≥0时,sin x ≥x -16x 3,∴当x ≥0时,e x +sin x +cos x ≥1+x +12x 2+16x 3 +x -16x 3 +1-12x 2 =2+2x ;②由(2)知:当x <0时,sin x <x -16x 3,∴e x +sin x +cos x ≥2+x +16x 3+sin x >2+2sin x ,令m x =sin x -x x <0 ,则m x =cos x -1≤0,∴m x 在-∞,0 上单调递减,∴m x >m 0 =0,即当x <0时,sin x >x ,∴2+2sin x >2+2x ,∴e x +sin x +cos x >2+2x ;综上所述:e x +sin x +cos x ≥2+2x .10.已知函数f x =ln a ⋅xe -x +a sin x ,a >0.(1)若x =0恰为f x 的极小值点.①证明:12<a <1;②求f x 在区间-∞,π 上的零点个数;(2)若a =1,f x x =1-x π 1+x π 1-x 2π 1-x 3π 1+x 3π ⋅⋅⋅1-x n π 1+xn π⋅⋅⋅,又由泰勒级数知:cos x =1-x 22!+x 44!-x 66!+⋅⋅⋅+-1 n x 2n2n !+⋅⋅⋅n ∈N * ,证明:112+122+132+⋅⋅⋅+1n 2+⋅⋅⋅=π26【解析】(1)①由题意得:f x =ln a 1-x e -x +a cos x ,因为x =0为函数f x 的极值点,所以,f 0 =ln a +a =0,令g x =ln x +x x >0 ,则g x =1x+1>0,g x 在(0,+∞)上单调递增.因为g 1 =1>0,g 12=ln 12+12=ln e 2<0,所以g x =ln x +x 在12,2上有唯一的零点a ,所以12<a <1;②由①知:ln a =-a ,f x =a sin x -xe -x ,f x =a cos x -1-x e -x ,(i )当x ∈-∞,0 时,由a >0,-1≤cos x ≤1,1-x >1,e -x >1,得f x <0,所以f x 在-∞,0 上单调递减,f x >f 0 =0,所以f x 在区间-∞,0 上不存在零点;(ii )当x ∈0,π 时,设h x =cos x -1-x e -x ,则h x =2-x e -x -sin x .(a )若x ∈0,π2,令m x =2-x e -x -sin x ,则m x =x -3 e -x-cos x <0,所以m x 在0,π2上单调递减,因为m 0 =2>0,m π2 =2-π2 e -π2-1<0,所以存在a ∈0,π2,满足m a =0,当x ∈0,a 时,m x =h x >0,h x 在0,a 上单调递增;当x ∈a ,π2时,m x =hx <0,h x 在a ,π2 上单调递减;(b )若x ∈π2,2,令φx =2-x e -x ,x ∈π2,2 ,则φ x =x -3 e -x <0,所以φx 在区间π2,2上单调递减,所以φx <φπ2=2-π2 e -π2<1e,又因为sin x ≥sin2=sin π-2 >sin π6=12,所以h x =2-x e -x -sin x <0,h x 在π2,2上单调递减;(c )若x ∈2,π ,则h x =2-x e -x -sin x <0,h x 在2,π 上单调递减.由(a )(b )(c )得,h x 在0,a 上单调递增,h x 在a ,π 单调递减,因为h a >h 0 =0,h π =π-1 e -π-1<0,所以存在β∈a ,π 使得h β =0,所以,当x ∈0,β 时,f x =h x >0,f x 在0,β 上单调递增,f x >f 0 =0,当x ∈β,π 时,f x =h x <0,f x 在β,π 上单调递减,因为f β >f 0 =0,f π <0,所以f x 在区间β,π 上有且只有一个零点.综上,f x 在区间-∞,π 上的零点个数为2个;(2)因为sin x x =1-x 2π21-x 24π21-x 232π2 ⋅⋅⋅1-x 2n 2π2,(*)对cos x =1-x 22!+x 44!-x 66!+⋅⋅⋅+-1 n x 2n2n !+⋅⋅⋅,两边求导得:-sin x =-x 1!+x 33!-x 55!+⋅⋅⋅+-1 n x 2n -12n -1 !+⋅⋅⋅,sin x =x 1!-x 33!+x 55!+⋅⋅⋅+-1 n -1x 2n -12n -1 !+⋅⋅⋅,所以sin x x =1-x 23!+x 45!+⋅⋅⋅+-1 n -1x 2n -22n -1 !+⋅⋅⋅,(**)比较(*)(**)式中x 2的系数,得-13!=-1π2112+122+132+⋅⋅⋅+1n2+⋅⋅⋅所以112+122+132+⋅⋅⋅+1n2+⋅⋅⋅=π26.11.英国数学家泰勒发现了如下公式:sin x =x -x 33!+x 55!-x 77!+⋯,cos x =1-x 22!+x 44!-x 66!+⋯,其中n !=1×2×3×4×5×⋯×n .这些公式被编入计算工具,计算工具计算足够多的项就可以确保显示值的精确性.比如,用前三项计算cos0.3,就得到cos0.3≈1-0.322!+0.344!=0.9553375.试用你的计算工具计算cos0.3,并与上述结果比较.【解析】依题意,用前5项计算,即cos0.3≈1-0.322!+0.344!-0.366!+0.388!≈1-0.045+0.0003375-0.0000010125+0.00000000163≈0.95533648.与用前三项计算cos0.3的结果比较可以发现,用前5项计算的结果精确度更高,同时可知,当取的项数足够多时,可以达到更高的精确度,甚至达到任意精确度的要求.四、双空题12.记f (n )(x )为函数f (x )的n 阶导数且f 2 x =f x ,f n x =f n -1 x n ≥3,n ∈N * .若f (n )(x )存在,则称f x n 阶可导.英国数学家泰勒发现:若f (x )在x 0附近n +1阶可导,则可构造T n x =f x 0 +f x 0 1!x -x 0 +f 2 x 0 2!x -x 0 2+⋯+f n x 0 n !x -x 0 n(称为n 次泰勒多项式)来逼近f (x )在x0附近的函数值.据此计算f(x)=e x在x0=0处的3次泰勒多项式为T3(x)=_________;f(x)=-1x在x0=-1处的10次泰勒多项式中x3的系数为_________【答案】1+x+x22+x36330【解析】∵f(x)=e x,∴f(n)(x)=e x,f(n)(0)=1,n∈N∗∴T3(x)=f(0)+(x-0)+12!(x-0)2+13!(x-0)3,∴T3(x)=1+x+x22+x36;∵f(x)=-1x,∴f(x)=x-2,f(2)(x)=-2x-3,f(3)(x)=(3!)x-4,⋯,f(9)(x)=(9!)x-10,f(10)(x)=-(10!) x-11,∴f (-1)=1,f(2)(-1)=2,f(3)(-1)=3!,⋯,f(9)(-1)=9!,f(10)(-1)=10!,∴T10(x)=1+(x+1)+(x+1)2+(x+1)3+⋅⋅⋅+(x+1)10.故x3的系数为C03+C14+C25+⋅⋅⋅+C710=C44+C34+C35+⋅⋅⋅+C310=C45+C35+⋅⋅⋅+C310=⋅⋅⋅=C410+C310=C411= 330.故答案为:1+x+x22+x36;330.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概念、方法、题型、易误点及应试技巧总结不等式一.不等式的性质:1.同向不等式可以相加;异向不等式可以相减:若,a bc d >>,则a c b d +>+(若,a b c d ><,则a c b d ->-),但异向不等式不可以相加;同向不等式不可以相减;2.左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若0,0a b c d >>>>,则ac bd >(若0,0a b c d >><<,则a b c d>);3.左右同正不等式:两边可以同时乘方或开方:若0a b >>,则n n a b >或>4.若0ab >,a b >,则11a b<;若0ab <,a b >,则11ab>。

如(1)对于实数c b a ,,中,给出下列命题:①22,bc ac b a >>则若; ②b a bc ac >>则若,22; ③22,0b ab a b a >><<则若; ④ba b a 11,0<<<则若;⑤ba ab b a ><<则若,0; ⑥b a b a ><<则若,0;⑦bc b ac ab ac ->->>>则若,0; ⑧11,a b ab>>若,则0,0a b ><。

其中正确的命题是______(答:②③⑥⑦⑧);(2)已知11x y -≤+≤,13x y ≤-≤,则3x y -的取值范围是______(答:137x y ≤-≤); (3)已知c b a >>,且,0=++c b a 则ac 的取值范围是______(答:12,2⎛⎫-- ⎪⎝⎭)二.不等式大小比较的常用方法:1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果; 2.作商(常用于分数指数幂的代数式); 3.分析法; 4.平方法;5.分子(或分母)有理化; 6.利用函数的单调性; 7.寻找中间量或放缩法 ;8.图象法。

其中比较法(作差、作商)是最基本的方法。

如(1)设0,10>≠>t a a 且,比较21loglog 21+t t aa 和的大小(答:当1a >时,11log log 22a at t +≤(1t =时取等号);当01a <<时,11log log 22a at t +≥(1t =时取等号));(2)设2a >,12p a a =+-,2422-+-=a aq ,试比较q p ,的大小(答:p q >);(3)比较1+3log x 与)10(2log 2≠>x x x 且的大小 (答:当01x <<或43x >时,1+3log x >2log 2x ;当413x <<时,1+3log x <2log 2x ;当43x =时,1+3log x =2log 2x )三.利用重要不等式求函数最值时,你是否注意到:“一正二定三相等,和定积最大,积定和最小”这17字方针。

如 (1)下列命题中正确的是 A 、1y x x=+的最小值是2 B、23x y +=的最小值是2C 、423(0)y x x x =-->的最大值是2- D 、423(0)y x x x=-->的最小值是2-(答:C );(2)若21x y +=,则24x y +的最小值是______(答:);(3)正数,x y 满足21x y +=,则yx 11+的最小值为______(答:3+);4.常用不等式有:(12211a b a b+≥≥≥+(根据目标不等式左右的运算结构选用) ;(2)a 、b 、c ∈R ,222a b c ab bc ca ++≥++(当且仅当a b c ==时,取等号);(3)若0,0a b m >>>,则bb m aa m+<+(糖水的浓度问题)。

如如果正数a 、b 满足3++=b a ab ,则ab的取值范围是_________(答:[)9,+∞)五.证明不等式的方法:比较法、分析法、综合法和放缩法(比较法的步骤是:作差(商)后通过分解因式、配方、通分等手段变形判断符号或与1的大小,然后作出结论。

).常用的放缩技巧有:211111111(1)(1)1n n n n nn n n n-=<<=-++--=<<=如(1)已知c b a >>,求证:222222ca bc ab a c c b b a ++>++ ; (2) 已知R c b a ∈,,,求证:)(222222c b a abc a c c b b a ++≥++; (3)已知,,,a b x y R +∈,且11,x ya b >>,求证:x y x ay b>++;(4)若a 、b 、c是不全相等的正数,求证:l gl g l g l g l gl g222a b b c c aa b c +++++>++; (5)已知R c b a ∈,,,求证:2222a b b c +22()c a abc a b c +≥++;(6)若*n N ∈(1)n +<n ;(7)已知||||a b ≠,求证:||||||||||||a b a b a b a b -+≤-+;(8)求证:2221111223n++++< 。

六.简单的一元高次不等式的解法:标根法:其步骤是:(1)分解成若干个一次因式的积,并使每一个因式中最高次项的系数为正;(2)将每一个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线;并注意奇穿过偶弹回;(3)根据曲线显现()f x 的符号变化规律,写出不等式的解集。

如(1)解不等式2(1)(2)0x x -+≥。

(答:{|1x x ≥或2}x =-);(2)不等式(0x -≥的解集是____(答:{|3x x ≥或1}x =-);(3)设函数()f x 、()g x 的定义域都是R ,且()0f x ≥的解集为{|12}x x ≤<,()0g x ≥的解集为∅,则不等式()()0f x g x > 的解集为______(答:(,1)[2,)-∞+∞ ); (4)要使满足关于x 的不等式0922<+-a x x (解集非空)的每一个x 的值至少满足不等式08603422<+-<+-x x x x 和中的一个,则实数a 的取值范围是______.(答:81[7,)8)七.分式不等式的解法:分式不等式的一般解题思路是先移项使右边为0,再通分并将分子分母分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解。

解分式不等式时,一般不能去分母,但分母恒为正或恒为负时可去分母。

如(1)解不等式25123x x x -<---(答:(1,1)(2,3)- );(2)关于x 的不等式0>-b ax 的解集为),1(+∞,则关于x 的不等式02>-+x b ax 的解集为____________(答:),2()1,(+∞--∞ ).八.绝对值不等式的解法:1.分段讨论法(最后结果应取各段的并集):如解不等式|21|2|432|+-≥-x x(答:x R ∈); (2)利用绝对值的定义;(3)数形结合;如解不等式|||1|3x x +->(答:(,1)(2,)-∞-+∞ )(4)两边平方:如若不等式|32||2|x x a +≥+对x R ∈恒成立,则实数a 的取值范围为______。

(答:4{}3)九.含参不等式的解法:求解的通法是“定义域为前提,函数增减性为基础,分类讨论是关键.”注意解完之后要写上:“综上,原不等式的解集是…”。

注意:按参数讨论,最后应按参数取值分别说明其解集;但若按未知数讨论,最后应求并集. 如(1)若2log 13a<,则a 的取值范围是__________(答:1a >或203a <<);(2)解不等式2()1axx a R ax >∈-(答:0a =时,{|x 0}x <;0a >时,1{|x x a>或0}x <;0a <时,1{|0}x x a<<或0}x <)提醒:(1)解不等式是求不等式的解集,最后务必有集合的形式表示;(2)不等式解集的端点值往往是不等式对应方程的根或不等式有意义范围的端点值。

如关于x 的不等式0>-b ax 的解集为)1,(-∞,则不等式2>+-bax x 的解集为__________(答:(-1,2))十一.含绝对值不等式的性质:a b 、同号或有0⇔||||||a b a b +=+≥||||||||a b a b -=-; a b 、异号或有0⇔||||||a b a b -=+≥||||||||a b a b -=+.如设2()13f x x x =-+,实数a 满足||1x a -<,求证:|()()|2(||1)f x f a a -<+ 十二.不等式的恒成立,能成立,恰成立等问题:不等式恒成立问题的常规处理方式?(常应用函数方程思想和“分离变量法”转化为最值问题,也可抓住所给不等式的结构特征,利用数形结合法) 1).恒成立问题若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A >若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B < 如(1)设实数,x y 满足22(1)1x y +-=,当0x y c ++≥时,c 的取值范围是______(答:)1,+∞);(2)不等式ax x >-+-34对一切实数x 恒成立,求实数a 的取值范围_____(答:1a <); (3)若不等式)1(122->-x m x 对满足2≤m 的所有m 都成立,则x 的取值范围_____(答:(712-,312+));(4)若不等式na n n1)1(2)1(+-+<-对于任意正整数n 恒成立,则实数a 的取值范围是_____(答:3[2,)2-);(5)若不等式22210x mx m -++>对01x ≤≤的所有实数x 都成立,求m 的取值范围.(答:12m >-)2). 能成立问题若在区间D 上存在实数x 使不等式()A x f >成立,则等价于在区间D 上()max f x A >;若在区间D 上存在实数x 使不等式()B x f <成立,则等价于在区间D 上的()m i n fx B <.如已知不等式ax x <-+-34在实数集R 上的解集不是空集,求实数a 的取值范围____(答:1a >)3). 恰成立问题若不等式()A x f >在区间D 上恰成立, 则等价于不等式()A x f >的解集为D ;若不等式()B x f <在区间D 上恰成立, 则等价于不等式()B x f <的解集为D .。

相关文档
最新文档