一元二次方程的应用PPT课件

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


知识拓展
定理有判定定理和性质定理。如: “两组对边分别相等的四边形是平 行四边形”是判定定理,而“平行 四边形的两组对边分别相等”是性 质定理。
如图:四边形ABCD是平行四边形,
试说明:AB=CD,AD=BC (提示:连结AC)
A 3
D
12
解:因为四边形ABCD是平行四边
4

BC
(
)
所以∠1=∠2,∠3=4 (
(4)过圆心的线段是直径 (5)若a<b,则a+c<b+c 解:真命题有(2)、(5) 假命题有(1)、(3)、(4)
命题
如果……
那么……
题设
结论
提示:这可 是假命题哟
若(x-2)(x-1)=0 则:x=1
把下列命题改写成“如果,那么”的形 式,并分别指出命题的题设与结论.
1、对顶角相等。
12
小考卷2
一、把下面的命题改写成“如果……那 么……”的形式。 1、两直线平行,同旁内角互补。 2、同圆的半径相等。 3、有两个角相等的两个三角形相似。 4、等角的补角相等。 5、圆是轴对称图形,又是中心对称图形。
小考卷3
判断下列命题的真假:
细心!
1、相等的两角是对顶角。 (假)
2、若XY=0,则X=0。

(假)
(4)3<2
(真)
(5)三角形的内角和等于180(0不是命题)
(6)x>2
1、错误的命题也Biblioteka Baidu命 题如。:“3〈 2”是一个命题
2、命题必须是对某种事情作 出判断,如问句,几何的作 法等就不是命题。
小考卷1(每 题指分出下)列命题哪些是真命题,哪些是假命题?
(1)同位角相等 (2)两直线平行,同旁内角互补 (3)在同圆或等圆中,圆心角的度数等于圆 周角的度数的一半。
一轮船以30km/h的速度由西向东航行在途中接到 台风警报,台风中心正以20km/h的速度由南向北移动, 已知距台风中心200km的区域(包括边界)都属于受台 风影响区,当轮船接到台风警报时,测得 BC=500km,BA=300km.
(1)图中C表示什么?B表
示什么?圆又表示什么?
(2) ABC是什么三角形?
解:设当轮船接到台风警报后,经过t小时, 则:令 (400-30t)2+(300-20t)2=2002
t1 8.35 t2 19.34
问:(1) 这方程解得的t1,t2的实际意义是什么?
(2) 从t1,t2的值中,还可得到什么结论?
(3) 如何才能避免轮船不进入台风影响区?
4.变式练习,体验成功
解:设高为xcm,可列方程为 (40-2x)(25 -2x)=450
解得x1=5, x2=27.5
2、练习反馈,巩固新知
若已知纸片长与宽之比为5:2,在四个角剪 去边长为5厘米的正方形,折成的无盖纸盒的容 积为200平方厘米(纸盒的厚度略去不计)问这 张纸片的长与宽分别为多少?
3、合作交流,师生互动

又AC=AC (

所以△ABC≌△CDA (

所以: AB=CD,AD=B 平(行四边形的)性质定理:平行四边形 的两组对边分别相等。
❖(1)定义、命题、公理、定理的概 念。
❖(2)命题的真假。
❖(3)命题的形式与命题的题设和结 论。
(4) 说明一个命题是假命题,只需举 一反例

2、在一个三角形中,等角对等边。
解:1、如果两个角是 对顶角,那么,这两个
角相等。题设是:结论 是2、:如果在一个三角 形中有两个角相等,
那么这两个角
A
B
C
添加“如果”、“那么”后,命题的 意义 不能改变,改写的句子要完整,语句
要通顺,使命题的题设和结论更明朗, 易于分辨,改写过程中,要适当增加 词语,切不可生搬硬套。
一元二次方程的应用2
1、教材的地位和作用
本节课为《一元二次方程的应用2》 ,是浙江版 八年级数学下册第二章 《一元二次方程》第三节内 容.是在学习了一元二次方程的概念解法之后安排的 本应用课,在此之前学生已经历了三次列方程解应 用题,它们在思想方法和解题步骤上有许多共同之 处,为学生学习本课提供了有益的经验,通过本课 的学习,让学生再次体验方程建模的实际应用价值.
2、教学目标
知识目标: 能用一元二次方程解决简单的几何 型应用问题。
能力目标: 进一步提高数学建模的能力,培养学 生动手操作、观察归纳能力,培养学 生问题意识能力。
情感目标: 帮助学生体验数学学习活动中的成功 与快乐,使他们认识到数学来源于生 活,在生活中学习数学,学好数学更 好地为生活服务。
3、重难点分析:
(假)
3、圆的切线垂直于圆的半径。 (假)
4、等腰三角形的底角必是锐角。 (真)
5、正数与负数的和仍是负数。
(假)
6、一个数的平方必是正数。
(假)
7、一个三角形的两个角、一边和另一三角形的两个
角、一边分别相等的三角形全等。
(假)
阅读理解
阅读教材P93第二段及以后的内 容并回答下列内容: ❖ 1、公理与定理有什么区别? ❖ 2、公理与定理有什么相同的? 有什么作用? 3、你能说出一个学过的定理吗?
(4) 船是否受到台风 影响与什么有关?
(5) 在这现象中 存在 哪些变量?
3、合作交流,师生互动
(6)若设经过t小时后,轮船和台风中心 位置分别在B1和C1的位置那么如何表示 B1C1? (7) 当船与台风影响 区接触时B1C1符合 什么条件?
(8)船会不会进入 台风影响区?如果你 认为会进入,那么从接 到警报开始,经过多少 间就进入影响区?
以自主探索,合作交流为主,引导学生立 足于自身已有的生活经验,通过操作、观 察、分析、抽象等途径进行共同探讨,体 会数学建模的思想,形成“用数学”的良好 习惯.
实验操作,以趣导学 练习反馈, 巩固新知 合作交流,师生互动 变式练习,体验成功 归纳小结,布置作业
1、实验操作,以趣导学
包装盒是同学们非常熟悉的,手工课上, 老师给同学发下一张长40厘米,宽25厘米 的长方形硬纸片,要求做一个无盖纸盒,请问 你该如何做?(可以有余料) 生1:可分别剪出五个适当的长方形,
再粘贴而成, 生2:在纸片四个角各裁去边长相等的正方形
然后折叠而成.
1、实验操作,以趣导学
1、实验操作,以趣导学
问题: 1、为什么同学做的纸盒大小不同?与什么 有关?
1、实验操作,以趣导学
2、若确定小正方形边长为5厘米,你还能 计算哪些量?
1、实验操作,以趣导学
X
3、若折成的无盖纸盒的底面积是450平方 厘米,那么纸盒的高是多少?
如果船速为10 km/h, 结果将怎样?
5. 归纳小结,布置作业
通过这节课的学习, 你有什么收获?
板书设计
2.3一元二次程的应用2
1.范例解答
2.合作学习问题解答
(上面是大投影幕)
学生板演区
本节课通过设置丰富的问题情境,激发学 生的学习兴趣. 让学生合作讨论,引导学生去 做去看,去想,把学生带入数学探索的过程中, 让学生去解决问题,再提出问题,再解决问题, 从而体现数学的实用价值,也培养学生的问 题意识.
华师大版九年级上24.3《命题与定理》
定义、命题与定理
试一试
观察下列图形,找出其中的平行 四边形、梯形


1) 2)
(3) (4)


(7) (8)
6)
是平行四边形的有: (2)、(3)、(5)
是梯形的有: (1)、(6)
一地,能明确指出概念含义或特征的句子,称 为定义.
请给它们下定义
直角三角形: 有一个角为直角的三角形叫直 角三角形.
锐 角:
大于00且小于900 的角叫锐角.
圆周角:
顶点在圆上,两边与圆相交 的角叫圆周角.
你能举出一些老师在教学上重点提 示的一些不确切的定义吗?
注意!
定义的严密性
看下面的句子: (1)对顶角相等 (2)内错角相等 (3)如果两直线被第三直线所截,那么同位角相等 (4)3<2 (5)三角形的内角和等于1800 (6)x>2 能判断真假吗?哪能是正确的?哪些是错误的?
解:(6)不能.(1)、(3)、(5)为正确, (2)、(4)是错误的。
正确的命题称为 真命题
错误的命题称为 假命题
这样可以 判断它是 正确的或 是错误的 句子叫做 命题.
看下面的句子,哪些是真命题,哪些是假命题?
(1)对顶角相等
(真)
(2)内错角相等
(假)
(3)如果两直线被第三直线所截,那么同位角相 (真)
能求出AC吗?
A C
(3)显然当轮船接到台风警报时,
没有受到台风影响,为什么?
B
3、合作交流,师生互动
一轮船以30km/h的速度由西向东航行在途中接到台风警报, 台风中心正以20km/h的速度由南向北移动,已知距台风中心 200km的区域(包括边界)都属于受台风影响区,当轮船接到台风 警报时,测得BC=500km,BA=300km.
重点:继续探索一元二次方程的应用。 难点: “合作学习”的问题较为复杂,
计算量较大。
我采用引导点拨式,讨论式相结合的方法来完 成这节课的教学,努力为学生创设自主探索、合 作学习的氛围,老师只是课堂的组织者、引导者。 教学中让学生尝试提出问题,解决问题,注意问 题解决后的再思考,达到培养学生“问题意识” 的目的。
相关文档
最新文档