平行线的性质(二)

合集下载

平行线与相交线的关系知识点

平行线与相交线的关系知识点

平行线与相交线的关系知识点在几何学中,平行线和相交线是两个基本的几何概念,它们之间有着密切的关联。

本文将介绍平行线与相交线的性质以及它们之间的一些重要关系。

一、平行线的定义与性质平行线是指在同一个平面上永远不会相交的直线。

两条平行线之间的距离始终保持相等,且它们的斜率也相等。

平行线具有以下性质:1. 平行线的性质一:同一平面内两直线要么相交于一点,要么平行。

2. 平行线的性质二:如果一条直线与另外两条平行线相交,那么这两条平行线之间的对应角相等。

3. 平行线的性质三:平行线的倾斜角度相等。

4. 平行线的性质四:两条平行线与一条相交线所构成的内角和为180度。

二、相交线的定义与性质相交线是指在同一个平面上交于一点的两条直线。

相交线之间的夹角是它们各自的内角和,且夹角的大小和形状取决于直线的倾斜程度。

相交线具有以下性质:1. 相交线的性质一:相交线之间夹角的大小可以是锐角、直角或钝角。

2. 相交线的性质二:相交线之间夹角的大小等于其对应的对顶角。

3. 相交线的性质三:两条相交线若交于一点,则点的坐标满足这两条直线的方程。

三、平行线与相交线的关系平行线与相交线之间有以下重要的关系:1. 平行线切割相交线:如果一条直线与一对平行线相交,那么它将会把这对平行线切割成相似的线段。

2. 内错角与同旁内角:当一条直线与两条平行线相交时,所构成的对应角(内错角)相等,而相应于同旁外角(同旁内角)也相等。

3. 平行线的判定:如果两条直线与一条相交线所构成的内外角相等,那么这两条直线是平行的。

4. 平行线的传递性:如果直线a与直线b平行,直线b与直线c平行,那么直线a与直线c也平行。

通过对平行线和相交线的定义、性质以及它们之间的关系的认识,我们能够更好地理解几何学中的相关概念,并应用它们解决问题。

总结:平行线是在同一平面上永不相交的直线,其性质包括对应角相等、倾斜角相等以及内角和为180度等;相交线是在同一平面上交于一点的直线,其性质包括夹角等于内角和以及夹角的种类;平行线与相交线之间的关系包括平行线切割相交线、内错角与同旁内角相等、平行线的判定方法以及平行线的传递性。

初中数学《平行线的性质》第2课时课件

初中数学《平行线的性质》第2课时课件
4.如何过直线外一点画已知直线的垂线;
5.如何过直线外一点画已知直线的平行线。
看一看,想一想
楼梯的两边像两条 平行线,观察思考:楼 梯的宽度指的是哪些线 段的长?它们都相等吗? 这些线段与这两条平行 线有怎样的位置关系?
画一画,量一量
画两条平行线,过其中一条直线 上任意一点画另一条直线的垂线,测 量垂线段的长度,再过直线上的另一 点画平行线的垂线段,度量所画线段 的长度,你有什么发现?
例题分析
已知:直线AB//直线CD,△ACD的面积是8,CD=4, (1)求:这两条平行线之间的距离; (2)求:△BCD的面积 (3)通过计算你发现△BCD的面积与△ACD的面积有什么 关系? (4)请找出面积相等的三角形有哪几对?
【总结提升】
1.三种距离:两点之间的距离 点到直线的距离
ห้องสมุดไป่ตู้两条平行线之间的距离
2.平行线性质:两条平行线间的距离处处相等. 转化为符号语言:
∵直线m//直线n, AB ⊥直线n, CD⊥直线n,
∴AB=CD 3.应用找平行线间的等积三角形。
谢谢大家!祝同学们学习进步!
反思发现
平行线间的距离 两条平行线,其中一条直线上的任
意一点到另一条直线的距离叫做这两条平 行线间的距离.
如图:直线s//直线t,AB ⊥直线t, 则AB的长是直线s、t的距离
平行线性质 文字语言: 两条平行线间的距离处
处相等. 符号语言:∵直线m//直线n,
AB⊥直线n, CD⊥直线n, ∴AB=CD
两条平行线之间的距 离
明确目标
1.通过实际操作、观察、思考、总结两 条平行线之间的距离的定义和两条平行 线之间距离处处相等的性质。体会新知 识的形成过程。 2.会画图测量两条平行线之间的距离. 3.能运用平行线之间的距离这一概念及 平行线的性质进行简单的计算和说理。

平行线的性质(二)

平行线的性质(二)

平行线的性质(二)教学目标1.经历观察、操作、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力.2.理解两条平行线的距离的含义,了解命题的含义,会区分命题的题设和结论.3.能够综合运用平行线性质和判定解题. 重点、难点重点:平行线性质和判定综合应用,两条平行的距离,命题等概念. 难点:平行线性质和判定灵活运用. 教学过程 一、复习引入1.平行线的判定方法有哪些?(注意:平行线的判定方法三种,另外还有平行公理的推论)2.平行线的性质有哪些.3.完成下面填空. 已知:如图,BE是AB的延长线,AD ∥BC,AB ∥CD,若∠D=100°,则∠C=_____,∠A=______,∠CBE=________.4.a ⊥b,c ⊥b,那么a 与c 的位置关系如何?为什么?cb二、进行新课1.例1 已知:如上图,a ∥c,a ⊥b,直线b 与c 垂直吗?为什么?(1)要说明b ⊥c,根据两条直线互相垂直的意义, 需要从它们所成的角中说明某个角是90°,是哪一个角?通过什么途径得来?(2)已知a ⊥b,这个“形”通过哪个“数”来说理,即哪个角是90°.(3)上述两角应该有某种直接关系,如同位角关系、内错角关系、同旁内角关系,你能确定它们吗? 2.实践与探究(1)下列各图中,已知AB ∥EF,点C 任意选取(在AB 、EF 之间,又在BF 的左侧).请测量各图中∠B 、∠C 、∠F 的度数并填入表格.通过上述实践,试猜想∠B 、∠F 、∠C 之间的关系,写出这种关系,试加以说明.FECBAFECBA(1) (2)EDCB A(像线段B 1C 1)同时垂直于两条平行线, 并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.④利用点到直线的距离来定义两条平行线的距离.F EDCBA画AB ∥CD,在CD 上任取一点E,作EF ⊥AB,垂足为F.思考:EF 是否垂直直线CD?垂线段EF 的长度d 是平行线AB 、CD 的距离吗? 归纳:两条平行线间的距离可以理解为:两条平行线中,一条直线上任意一点到另一条直线的距离. 两条平行线的距离处处相等,而不随垂线段的位置改变而改变. 3.了解命题和它的构成.(1)给出下列语句,学生分析语句的特点.①如果两条直线都与第三条直线平行,那么这条直线也互相平行; ②等式两边都加同一个数,结果仍是等式; ③对顶角相等;④如果两条直线不平行,那么同位角不相等.这些语句都是对某一件事情作出“是”或“不是”的判断. (2)给出命题的定义.判断一件事情的语句,叫做命题.教师指出上述四个语句都是命题,而语句“画AB ∥CD”没有判断成分,不是命题.教师让学生举例说明是命题和不是命题的语句. (3)命题的组成.①命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项. ②命题的形成.命题通常写成“如果……,那么……”的形式,“如果”后接的部分是题设,“那么”后接的部分是结论. 有的命题没有写成“如果……,那么……”的形式,题设与结论不明显,这时要分清命题判断了什么事情,有什么已知事项,再改写成“如果……,那么……”形式.师生共同分析上述四个命题的题设和结论,重点分析第②、③语句 三、巩固练习1.“等式两边乘同一个数,结果仍是等式”是命题吗?它们题设和结论分别是什么?2.命题“两条平行线被第三第直线所截,内错角相等”是正确的?命题“如果两个角互补,那么它们是邻补角”是正确吗?再举出一些命题的例子,判断它们是否正确.解答:1.是命题,题设是“等式两边乘同一个数”,结论是“结果仍是等式”.2.第一个命题正确,第二个命题错误。

平行线的性质与应用

平行线的性质与应用

平行线的性质与应用平行线是几何学中的重要概念,它们相互之间永远不会相交,具有一些独特的性质和应用。

在本文中,我们将探讨平行线的性质以及它们在几何学和实际生活中的应用。

一、平行线的定义和性质平行线是在同一平面内且方向相同的两条直线,它们之间的距离始终相等,永不相交。

具体而言,我们可以通过以下几个性质来定义和描述平行线的特征:1. 平行线定义:如果两条直线在同一平面内,且它们之间的距离始终相等,那么这两条直线就是平行线。

2. 平行线性质一:平行线上的任意两点与一个点连线所得的角都是等于180度的。

这说明平行线之间不存在交叉角。

3. 平行线性质二:过直线外一点,可以且只能有一条与这条直线平行的直线。

这表明平行线只能有一条通过给定点的平行线。

4. 平行线性质三:如果一条直线与一组平行线相交,那么它与这组平行线的其他直线的交角都相等。

通过以上这些性质,我们可以准确地判断和应用平行线的特性。

二、平行线的应用1. 平行线在几何学中的应用平行线以其独特的性质在几何学中得到广泛应用。

以下是几个例子:a. 四边形性质:在四边形中,如果对角线两两平行,那么这个四边形是平行四边形。

平行四边形具有一些重要的性质,例如对角线等长、内角和等于180度等。

通过判断对角线是否平行,我们可以在解决相关问题时应用这些性质。

b. 平行线分割三角形:如果一条直线与两边另一边平行地相交,那么它所分割的三角形与原始三角形的比例相同。

这个性质在解决图形比例和相似性的问题时非常有用。

c. 平行线的证明:平行线的性质可以用来证明其他几何性质。

例如,通过证明两条线相交形成的内角和为180度,我们可以推断这两条线是平行线。

2. 平行线在实际生活中的应用平行线的概念和性质不仅存在于几何学中,也有着广泛的实际应用。

以下是一些实际生活中使用平行线的例子:a. 道路设计:在道路设计中,平行线被广泛用于规划车道之间的距离和方向。

相互平行的车道可以有效地管理交通流量,并提高道路的通行效率。

平行线的概念定义性质

平行线的概念定义性质

平行线的概念定义性质平行线是指在同一个平面上,永远不相交的线段。

平行线的概念在几何学中具有重要的地位,它有着以下的定义和性质。

一、平行线的定义:定义一:如果两条直线在同一个平面上,且它们没有公共点,并且在平面内没有任何一条直线与这两条直线同时相交,那么这两条直线就是平行线。

定义二:如果两条直线在同一个平面内,它们互相垂直于第三条直线,那么这两条直线是平行线。

二、平行线的性质:性质一:平行线上的任意一对直线之间的所有夹角都相等。

也就是说,如果有两条直线与一条平行线相交,它们的夹角都相等。

性质二:如果一条直线与平行线相交,那么与这条直线垂直的平行线也与平行线相交,并且它们的交点在同一直线上。

性质三:如果一条直线与两条平行线相交,那么与这条直线垂直的直线也与这两条平行线相交,并且它们的交点分别在同一直线上。

性质四:如果两条直线分别与平行线相交,那么它们的交点所在的两条直线互相平行。

性质五:平行线的外一侧的点到直线的距离等于平行线上的任意一点到直线的距离。

三、平行线的判定方法:方法一:任意两条互相平行线上,都只需取其中的一对夹角,如果夹角相等,则这两条直线是平行线。

方法二:如果两条直线上的任意一对相应的内角或外角互相相等,那么这两条直线是平行线。

方法三:如果两条直线与第三条直线的对应角互相相等,那么这两条直线是平行线。

方法四:如果直线与平行线的任意一条直线垂直,并且与平行线的另一条直线不垂直,则这两条直线是平行线。

以上是关于平行线的定义和性质,平行线作为几何学中非常基础且重要的概念,广泛应用于证明和解决直线和平面的几何问题中。

在实际生活和工程中,平行线的概念也有着广泛的应用,如在设计建筑和道路时,平行线的概念能够保证结构的牢固和施工的准确性。

同时,在数学和物理学等学科中,平行线的概念也是处理问题的基础,对于理解和应用其他几何学知识起到了重要的作用。

因此,理解和掌握平行线的定义和性质对于学习和应用几何学具有重要的意义。

(2019版)1.3平行线的性质2

(2019版)1.3平行线的性质2

吗? ∠3与∠4的和是多少度?
F
建议从以下几方面思考:
E
3
1B
2
D
(1)回顾我们已知道的平行线的性质,由此能 得出图中哪一对相等。
(2)∠3与∠1有什么关系? ∠4与∠2呢?
你发现平行线还有哪些性质?
;微信红包群 微信红包群 ;
影视形象 被秦朝军队吊打的六国贵族们怂了 历代评价 以协符 吴懿 李 佩戴殷通的官印 目不瞑 盖世英雄力拔山 此时看到大势已去 ?八月 56.蠲宿耻 既葬 出生地 无负而来 济阴太守杨起文弃城而逃 杨健 安城县公郭徽之子 遂趋常阳以守 ?马有千里之程 名将暮年 可以战 指言盖降 必将以实利以回其心 调任中书令 ?孙杨要求公开听证 亦非遽数之所周也 你们赶快把它弄来给我祭祀天神!海叔说春秋 [101] 日本作家田中芳树小说《奔流》中 诛杀为首作乱的王元振等几十人 汉还定三秦 恒大5-0富力 诸君若疑惑 乃命为帅长 去之而亡 图像凌 孤何赖哉 故垒西 边 当是时 而且田单也因此战而成为历代著名战将 孙膑主张重视 儿子 还诏令义兴郡发500人为其会丧 郭子仪侄孙墓志现身 带甲十余万 五月下旬 赐以龙环御刀 慎重地对待战争 [32] 韦正之子 第十五回》 《汉刘邦》 自奔速毙 汉因之 田野空虚 职太傅 隐若敌国 班超命十个人拿 着鼓藏在敌人驻地的后方 获租车七千八百辆 缺字处由□代替 为人刻印 10. 带兵有方 《太史公自序》:秦失其道 且不说其他 驴 张子枫抱狗姿势 军威更振 都朝歌 11.三次投戎 ?周瑜城位于安徽舒城县城西南10公里处的干汊河镇瑜城村 …寻迁太常卿 子仪以大军续进 历经七朝而不倒 建安十年(205年)正月 且不可损陷忠臣 太子少傅等 脸上现出淡淡的红晕 望之不敢逼 入则佳人捧觞 虫二 其心固欲建霸王之业耳 张俊要把飞 派往饶州 岳飞墓 史思明再次攻陷洛

平行线的性质与判定方法

平行线的性质与判定方法

平行线的性质与判定方法平行线是几何学中的重要概念,它们具有一些独特的性质和判定方法。

本文将详细介绍平行线的性质和判定方法。

1. 性质一:不相交的平行线在任意平面上不会相交。

两条平行线永远保持相同的距离,无论它们延长到多远。

2. 性质二:平行线具有相同的斜率。

两条平行线的斜率都相等,这是判定平行线的一个重要性质。

3. 性质三:互补角相等。

如果两条平行线被一条横截线切割,那么同位角是互补角,即它们的和等于180度。

4. 性质四:内错角相等。

当两条平行线被一条横截线所穿过时,内错角是相等的。

根据以上性质,我们可以推导出一些平行线的判定方法。

下面我们将重点介绍三种常见的判定方法。

1. 通过线段的平行判定:如果两个线段的对应边平行且长度相等,那么这两个线段所在直线就是平行线。

这个方法利用了平行线的性质一。

2. 通过角的平行判定:如果两个角的对应边平行且对应角相等,那么这两个角所在的直线就是平行线。

这个方法利用了平行线的性质二和性质三。

3. 通过垂直判定:如果两条线段互相垂直,并且其中一条线段与第三条线段平行,那么第三条线段也与另一条垂直线段平行。

这个方法利用了平行线的性质二和性质四。

除了这些常见的判定方法,还有其他一些特殊情况下的判定方法。

例如,当两条直线被一条平行于它们的直线所切割时,如果同位角相等,那么这两条直线就是平行线。

在实际应用中,平行线的性质和判定方法在解决几何问题和证明几何定理时起着重要的作用。

它们帮助我们确定直线的相对位置,并应用于建筑、工程、地理测量等领域。

总结起来,平行线具有不相交、斜率相同、互补角相等和内错角相等等性质。

通过线段的平行判定、角的平行判定和垂直判定等方法可以确定平行线的存在。

这些性质和判定方法在几何学中具有重要的应用价值。

平行线的性质(二)[上学期]--浙教版-

平行线的性质(二)[上学期]--浙教版-
澳洲海外人士房贷https:///brighten-home-loan/
澳洲海外人士房贷 [单选]下列正常肾上腺声像图,哪一项描述正确A.正常肾上腺超声显示率左侧低于右侧B.新生儿肾上腺约为肾的1/3大小C.成人肾上腺约为肾的1/13大小D.新生儿肾上腺部位表浅,周围缺乏脂肪,其检出率高于成人E.以上描述均正确 澳洲海外人士房贷 [单选,A2型题,A1/A2型题]据《素问·四气调神大论》,“闭藏”描述的是哪一季节的物候规律()A.春B.夏C.秋D.冬E.长夏 澳洲海外人士房贷 [问答题,简答题]矿井提升机制动装置有何作用? 澳洲海外人士房贷 [单选]布卢姆把教育目标分为三个领域:认知领域、情感领域、技能领域。他进一步把认知领域的目标分为六类,这六类目标构成了由低到高的一个阶梯。其中能力培养的最低层次是()。A.知识B.理解C.应用D.分析 澳洲海外人士房贷 [填空题]按工作介质的不同,流体机械可分为()、()和()。 澳洲海外人士房贷 [单选]下列()情况不需要套专用信封间接打码。A、支票等直接打码的票据因打码错误或打码字符缺损、模糊、重叠、漏打码域等须修改的情况B、折叠痕迹严重的打码票据C、利息凭证D、代收(付)款项报数单 澳洲海外人士房贷 [单选]Colles骨折发生在()A.桡骨的远端B.桡骨干C.桡骨的任何部位D.尺骨的远端E.桡骨近端 澳洲海外人士房贷 [单选]十二指肠闭锁最多发生的部位为A.任何部位B.壶腹部附近C.球部D.升部E.水平部 澳洲海外人士房贷 [单选,B型题]噪声聋指()。A.短时间暴露于强噪声,使听阈上升10~15dB,脱离噪声接触后数分钟内即可恢复正常B.较长时间暴露于强噪声,致使听阈上升超过15~30dB,脱离后需数小时至几十小时才能恢复C.已长期在强噪声环境中导致听力曲线在3000~6000Hz范围内出现 澳洲海外人士房贷 [填空题]氨合成反应的特点(

初中数学平行线知识点归纳总结(两篇)2024

初中数学平行线知识点归纳总结(两篇)2024

初中数学平行线知识点归纳总结(二)引言:平行线是初中数学中重要的基础概念之一,它们在几何图形的性质和运算中有着广泛的应用。

对平行线的理解及运用不仅能够帮助学生建立几何思维,还能够培养学生的逻辑推理和证明能力。

本文将系统地总结初中数学中关于平行线的知识点,并从几何性质、证明方法、运算应用等方面进行详细阐述。

概述:平行线是指在同一平面内,没有交点的两条直线。

平行线具有一些重要的性质,如平行线上的任意两点与另一条直线交点处的对应角相等等。

通过学习平行线的知识,学生可以解决课本中的平行线定理题目,提高几何思维能力和数学运算水平。

正文内容:1. 平行线的性质1.1 平行线的定义平行线是指在同一平面内,永远不会相交的两条直线。

1.2 平行线的判定定理(1)直线与直线判定两条直线在同一平面内,如果它们的斜率相等,则它们是平行线。

(2)线段与直线判定如果一条直线与另一直线上两点连线的线段都平行,则这两条直线是平行线。

(3)角与直线判定两条直线被一条截线分成两组相互对应的内角或外角,如果这些对应的角相等,则这两条直线是平行线。

1.3 平行线的性质(1)平行线上的任意两点与另一条直线交点处的对应角相等。

(2)平行线上的任意两条线段的比例相等。

(3)平行线与平行线之间的距离是恒定的。

2. 平行线的证明方法2.1 数学归纳法利用数学归纳法可以证明一些平行线的性质。

首先证明性质对于一个特殊情况成立,然后假设性质对于前n个情况成立,再证明对于第n+1个情况也成立。

2.2 等腰三角形法利用等腰三角形的特性,可以辅助进行平行线的证明。

当两个角相等时,可以通过证明边对应相等来推导出线段平行。

2.3 反证法利用反证法可以证明平行线的性质。

先假设平行线上的一些性质不成立,然后推导出矛盾,从而得出结论。

2.4 使用辅助线通过添加一些辅助线,可以改变原有构图,使问题更容易解决。

通过巧妙选择辅助线,可以推导出平行线的性质。

2.5 利用平行线的性质已知一些条件,可以利用平行线的性质进行推导。

初中数学知识归纳平行线的性质与判定

初中数学知识归纳平行线的性质与判定

初中数学知识归纳平行线的性质与判定平行线是数学中最基础的概念之一,在初中数学中也占据了重要的地位。

平行线的性质和判定方法具有一定的规律性和逻辑性,掌握了这些知识,对于解题和推理都有很大的帮助。

本文将对初中数学中与平行线相关的性质和判定进行归纳和总结。

一、平行线的性质1. 平行线性质一:同位角性质同位角是指两条平行线被一条第三条线(称为横线)所切割所形成的内角和外角。

同位角性质可以概括为:当直线与两条平行线相交时,同位角相等。

例如,图1中的直线l与平行线m、n相交,角A和角B、C都是同位角。

根据同位角性质,可知∠A = ∠B = ∠C。

2. 平行线性质二:内错角性质内错角是指两条平行线被一条第三条线所切割所形成的内角。

内错角性质可以概括为:当直线与两条平行线相交时,内错角相等。

例如,图2中的直线l与平行线m、n相交,角A和角B是内错角。

根据内错角性质,可知∠A = ∠B。

3. 平行线性质三:同旁内角性质同旁内角是指两条直线与两条平行线相交所形成的内角。

同旁内角性质可以概括为:当两条直线与两条平行线相交时,同旁内角互补。

例如,图3中的直线a、b与平行线m、n相交,角A和角B、C是同旁内角。

根据同旁内角性质,可知∠A + ∠B = 180°和∠A + ∠C = 180°。

二、平行线的判定方法1. 直线平行判定法一:同位角相等法如果一条直线与另外两条直线相交时,同位角相等,则这两条直线平行。

例如,图4中的直线l与线段AB、CD相交,∠1 = ∠2,则可判定线段AB与线段CD是平行的。

2. 直线平行判定法二:内错角相等法如果一条直线与两条平行线相交时,内错角相等,则这条直线与这两条平行线平行。

例如,图5中的直线l与平行线m、n相交,∠A = ∠B,则可判定直线l与平行线m、n是平行的。

3. 直线平行判定法三:同旁内角互补法如果一条直线与两条平行线相交时,同旁内角互补,则这条直线与这两条平行线平行。

2.3平行线的性质(二)

2.3平行线的性质(二)

3.如图,选择合适的内容填空。 (1)因为AB//CD 所以∠1=∠2( 两直线平行,内错角相等 ) (2)因为∠3=∠1 CD 所以 AB//___(同位角相等,两直线平行) (3)因为∠1+∠ 4 =180 , 所以AB//CD(同旁内角互补,两直线平行)
拓展提高
1.如图,平行直线AB,CD被直线EF所截,分别 交直线AB,CD于点G,M。GH和MN分别是∠EGB 和∠EMD的角平分线。 问:GH和MN平行吗?请说明理由。
温故知新
平行线的判定有哪些?
(1)∵∠3 = ∠7 (已知) ∴a∥b( 同位角相等,两直线平行 ) (2)∵∠3 = ∠6 (已知) ∴a∥b(内错角相等,两直线平行 ) (3)∵∠3 + ∠5 =180°(已知) ∴a∥b( 同旁内角互补,两直线平行 )
两直线平行
性质
请注意:
判定

1.同位角相等 2.内错角相等 3.同旁内角互补
解:(1)∵∠1=∠2(已知)
∴BF∥CE(内错角相等,两直线平行)
例题讲解
例1 如图:(1)若∠1=∠2,可以判定哪两条直 线平行?根据是什么? (2)若∠2=∠M,可以判定哪两条直线平行?根 据是什么? (3)若∠2 +∠3=180°,可以判定哪两条直线 平行?根据是什么?源自解:(2)∵∠2=∠M(已知)
∴∠2=∠1=107°( 内错角相等,)
两直线平行

c∥d (已知)
∴∠1+∠3=180°( 两直线平行,同旁内角互补) ∴∠3=180°-∠1=180°-107°= 73°
随堂练习
1.如图,∠1=105°,∠2=75°,
你能判断a∥b吗?
2.如图,AE∥CD,∠1 = 37°, ∠D=54°,求∠2 和∠BAE 的度数。

人教版七年级下册数学第五章平行线的性质(二)课件

人教版七年级下册数学第五章平行线的性质(二)课件

引例
例、如图, AB∥EF, CD∥EF ,试说明 ∠B、∠D、∠BED的大小关系。
A
B
E
C D
F
范例 例2、如图,AB∥CD,试说明∠B、 ∠D 、∠BED之间的大小关系。 A B
E
C D 辅助线:为帮助解题而添加的线
F
辅助线一般画成虚线
巩固 3、如图,AB∥CD,试说明∠B、 ∠D 、∠BED之间的大小关系。 A B E C D
B
C
需要辅助线吗?怎样添加?
小结 1、本节课你学了什么新知识?
2、你还学了什么新的解题方法? 为帮助解题而添加的辅助线
作业 1、如图,AB∥CD,试说明∠B、 ∠D 、∠BED之间的大小关系。 A B
C E
D
作业 2、如图,AB∥CD,试说明∠ABE、 ∠D 、∠E之间的大小关系。 E
A
B C
D
作业 3、如图,已知三角形ABC,试说 明∠BAC+∠B +∠C=180°。 A
平行线的性质(二)
复习
1、如图,BE是AB的延长线, AD∥BC,AB∥CD,若∠ D=100°, 则∠C= , ∠ A= ,
E
范例 例1、如图,a∥c, a⊥b,直线c与b 垂直吗?为什么? 转化思想 垂直 b 90° a
90°
垂直
c
巩固 2、 a 、b、 c 为同一平面内的三条 直线,下列判断不正确的是( ) A 若a⊥c , b⊥c ,则a∥b B 若a∥c , b∥c ,则a∥b C 若a∥b , b⊥c ,则a⊥c D 若a⊥b , b⊥c ,则a⊥c

初中数学 平行线有哪些性质

初中数学  平行线有哪些性质

初中数学平行线有哪些性质平行线是初中数学中的一个重要概念,具有许多性质。

在本文中,我将为您详细介绍平行线的各种性质。

1. 平行线的定义性质:-平行线是在同一平面上永远不相交的两条直线。

这意味着它们没有共同的交点。

-平行线具有相同的斜率。

斜率是用来描述直线的倾斜程度的数值。

如果两条直线有相同的斜率,那么它们是平行线。

-平行线之间的距离是恒定的。

对于任意两条平行线,它们之间的距离在整个线段上是相等的。

2. 平行线的角度性质:-平行线之间的所有内角相等。

如果一条直线与两条平行线相交,那么所形成的内角是相等的。

-平行线之间的所有外角相等。

如果一条直线与两条平行线相交,那么所形成的外角是相等的。

-平行线之间的同位角相等。

如果两条平行线被一条直线割分,那么所形成的同位角是相等的。

3. 平行线的传递性:-平行线的传递性定理:如果直线L1与直线L2平行,直线L2与直线L3平行,那么直线L1与直线L3也平行。

-这个定理的意思是,如果有三条直线,其中任意两条平行,那么第三条直线也与这两条直线平行。

4. 平行线的副交角性质:-平行线的副交角定理:如果两条直线被一对平行线割分,那么所形成的副交角是相等的。

这意味着在两条平行线之间,对应的副交角是相等的。

5. 平行线的交角性质:-线与平行线的交角定理:如果一条直线与两条平行线相交,那么所形成的内角、外角和同位角之间的关系是具有特定的等式。

-内角和同位角之和等于180度:如果一条直线与两条平行线相交,那么所形成的内角和同位角之和等于180度。

-外角等于内角的补角:如果一条直线与两条平行线相交,那么所形成的外角等于内角的补角。

以上是平行线的一些重要性质。

这些性质可以帮助我们解决各种几何问题,如计算角度、线段长度等。

此外,平行线的概念在实际生活中也有广泛的应用,如城市规划中的道路设计、光线的传播路径等。

希望以上内容能够帮助您更好地理解平行线的性质。

七年级数学平行线的判定和性质(二)(北师版)(含答案)

七年级数学平行线的判定和性质(二)(北师版)(含答案)

学生做题前请先回答以下问题问题1:在同一平面内,__________的两条直线叫做平行线.问题2:平行线的判定定理:①____________________,两直线平行;②____________________,两直线平行;③____________________,两直线平行.问题3:平行线的性质定理:①两直线平行,____________________;②两直线平行,____________________;③两直线平行,____________________.问题4:平行线的判定定理是用来判定两条直线平行的定理,即已知角的关系证明平行,用平行线的判定定理.平行线的性质定理是由直线平行,可以得到的结论,即已知平行求角的关系,用平行线的性质定理.请根据下面推理,填写推理的依据.①已知:如图,直线a和直线b被直线c所截,∠1=∠2.求证:a∥b.证明:∵∠1=∠2(已知)∴a∥b(_______________________________)①已知:如图,直线a和直线b被直线c所截,a∥b.求证:∠1=∠2.证明:∵a∥b(已知)∴∠1=∠2(_______________________________)平行线的判定和性质(二)(北师版)一、单选题(共10道,每道10分)1.如图,直线DE经过点A,若∠B=∠DAB,则DE∥BC,其依据是( )A.两直线平行,内错角相等B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.内错角相等答案:B解题思路:条件是∠B=∠DAB,结论是DE∥BC,且∠B和∠DAB是直线DE和直线BC被直线AB所截得到的内错角,由内错角相等得到两直线平行,依据是内错角相等,两直线平行,故选B.试题难度:三颗星知识点:平行线的判定2.如图,已知D,E在△ABC的边上,DE∥BC,可得∠ADE=∠B,依据是( )A.两直线平行,同位角相等B.两直线平行,内错角相等C.同位角相等D.同位角相等,两直线平行答案:A解题思路:条件是DE∥BC,结论是∠ADE=∠B.∠ADE和∠B是直线DE和直线BC被直线AB所截得到的同位角,由两直线平行得到同位角相等,依据是两直线平行,同位角相等,故选A.试题难度:三颗星知识点:平行线的性质3.如图,直线,分别与直线,相交,若∥,则∠1=_________,依据是_____________.( )A.∠2;两直线平行,内错角相等B.∠3;两直线平行,内错角相等C.∠2;内错角相等,两直线平行D.∠3;内错角相等,两直线平行答案:B解题思路:由平行得角的关系,先找截线,观察图形,与∠1有关的截线是直线,∠1和∠3是由直线和直线被直线所截得到的内错角,由∥,可以得到∠1=∠3,依据是两直线平行,内错角相等,故选B.试题难度:三颗星知识点:平行线的性质4.如图,若AB∥EF,则∠ADE=_________,依据是_____________.( )A.∠B;两直线平行,同位角相等B.∠DEF;内错角相等,两直线平行C.∠DEF;两直线平行,内错角相等D.∠CEF;两直线平行,同位角相等答案:C解题思路:由平行得角的关系,先找截线,观察图形,与∠ADE有关的截线是直线DE,∠ADE和∠DEF是由直线AB和EF被直线DE所截得到的内错角,若AB∥EF,则∠ADE=∠DEF,理由是两直线平行,内错角相等,故选C.试题难度:三颗星知识点:平行线的性质5.如图,两直线a,b被直线c所截形成八个角,若a∥b,则下列结论错误的是( )A.∠1=∠2B.∠3+∠8=180°C.∠5=∠6D.∠7+∠8=180°答案:D解题思路:A选项:∵a∥b(已知)∴∠1=∠2(两直线平行,内错角相等)故A选项结论正确;B选项:∵a∥b(已知)∴∠3+∠2=180°(两直线平行,同旁内角互补)∵∠8=∠2(对顶角相等)∴∠3+∠8=180°(等量代换)故B选项结论正确;C选项:∵a∥b(已知)∴∠3=∠6(两直线平行,同位角相等)∵∠3=∠5(对顶角相等)∴∠5=∠6(等量代换)故C选项结论正确;D选项:∵a∥b(已知)∴∠1=∠8(两直线平行,同位角相等)∵∠1=∠7(对顶角相等)∴∠7=∠8(等量代换)故D选项结论错误.故选D.试题难度:三颗星知识点:平行线的性质6.如图,若AD∥BC,则一定正确的是( )A.∠1=∠2B.∠3=∠4C.∠1=∠2,∠3=∠4D.∠2=∠3答案:B解题思路:根据平行线的性质,由AD∥BC,要找角之间的关系,需要找两条平行直线AD和BC被第三条直线所截得到的角,四个选项中,只有∠3和∠4是两条平行直线AD和BC被直线BD所截得到的内错角,根据两直线平行,内错角相等,得∠3=∠4,故选B.试题难度:三颗星知识点:平行线的性质7.如图,能判定EB∥AC的条件是( )A.∠C=∠ABEB.∠A=∠EBDC.∠C=∠ABCD.∠A=∠ABE答案:D解题思路:要证平行,考虑找同位角,内错角,同旁内角,分析可得只有选项D中,∠A与∠ABE是直线EB和直线AC被直线AB所截的内错角,根据内错角相等,两直线平行,可以判定EB∥AC,故选D.试题难度:三颗星知识点:平行线的判定8.如图,若BE∥CF,则一定正确的是( )A.∠1=∠2B.∠3=∠4C.AB∥CDD.∠ABC=∠BCD答案:B解题思路:根据平行线的性质,由BE∥CF,可以得到角之间的关系,需要找两条平行直线BE和CF被第三条直线所截得到的角,只有∠3和∠4是两条平行直线BE和CF被直线BC所截得到的内错角,根据两直线平行,内错角相等,得∠3=∠4,故选B.试题难度:三颗星知识点:平行线的性质9.如图,DE∥BC,则下列结论正确的( )A.∠1=∠3B.∠2=∠3C.∠4=∠CD.∠2=∠C答案:B解题思路:根据平行线的性质,由DE∥BC,可以得到角之间的关系,需要找两条平行直线DE和BC被第三条直线所截得到的角,分析可得只有∠2和∠3是两条平行线DE和BC被直线BE所截得到的内错角,根据两直线平行,内错角相等,得∠2=∠3,故选B.试题难度:三颗星知识点:平行线的性质10.如图,AB∥CD,AD平分∠BAC,若∠BAD=70°,则∠1的度数为( )A.35°B.40°C.45°D.50°答案:B解题思路:解:如图,∵AD平分∠BAC(已知)∴∠BAC=2∠BAD(角平分线的定义)∵∠BAD=70°(已知)∴∠BAC=2×70°=140°(等量代换)∵AB∥CD(已知)∴∠1+∠BAC=180°(两直线平行,同旁内角互补)∴∠1=40°(等式的性质)故选B.试题难度:三颗星知识点:平行线的性质。

平行线和垂直线的性质

平行线和垂直线的性质

平行线和垂直线的性质平行线和垂直线是几何学中常见的线段关系。

它们具有一些特殊的性质和定理。

本文将详细介绍这些性质,包括平行线之间的性质、平行线与垂直线之间的性质,以及垂直线之间的性质。

一、平行线之间的性质1. 平行线定义:在平面上,如果两条直线不存在交点,且在同一个平面内,那么称这两条直线为平行线。

用符号“||”表示。

2. 平行线的性质之一:平行线具有传递性。

如果直线a平行于直线b,直线b平行于直线c,那么直线a也平行于直线c。

换句话说,如果a || b,b || c,则有a || c。

3. 平行线的性质之二:平行线具有对应角相等。

对应角是指两条平行线被一条穿过它们的直线所切割而形成的角。

如果直线a与直线b平行,直线c与直线d平行,且直线c与直线d分别与平行线a、b相交,那么对应角α和对应角β相等。

4. 平行线的性质之三:平行线具有内错角相等。

内错角是指两条平行线被一条穿过它们的直线所切割而形成的两对内角。

如果直线a与直线b平行,直线c与直线d平行,且直线c与直线d分别与平行线a、b相交,那么内错角α和内错角β相等。

二、平行线与垂直线之间的性质1. 垂直线定义:在平面上,如果两条直线相交,且形成的四个角中,有两个角互为垂直角,那么称这两条直线为垂直线。

2. 平行线与垂直线性质之一:平行线与一条直线的交线上的对应角互为等角。

如果直线a与直线b平行,直线c与直线a相交,那么对应角α和直线c所与直线b的交线上的角度β相等。

3. 平行线与垂直线性质之二:平行线与一条直线的交线上的内错角互为等角。

如果直线a与直线b平行,直线c与直线a相交,那么内错角α和直线c所与直线b的交线上的角度β相等。

三、垂直线之间的性质1. 垂直线的性质之一:垂直线具有传递性。

如果直线a垂直于直线b,直线b垂直于直线c,那么直线a也垂直于直线c。

换句话说,如果a ⊥ b,b ⊥ c,则有a ⊥ c。

2. 垂直线的性质之二:垂直线与平行线的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行线的性质(2)的教学设计
北师大版七年级下册
第二章相交线与平行线
3.平行线的性质(2)
茂名市第十中学
授课老师:冯菊珍
一、教材内容分析:
从学生的实际水平出发,按照学生的学习情况。

老师在第一课时已经得到平行线的性质的基础上,本课时的主要教学任务是熟练应用平行线的性质和判别直线平行的条件。

因为学生在应用时非常容易把二者混淆,所以本节课的难点之一就是让学生继续辨别二者的异同,并能在不同的情境中正确运用。

另外,在第一课时中,对于二者只要求学生能正确应用即可,说理要求不高。

在本节课中就要有目的的引导学生从推理这一方面来探索,既要结合图形发现规律,又要采用推理的形式加以说明。

二、学生情况分析:
学生从小学升入七年级。

在一年的学习中,他们的学习能力有待提高。

如他们的认识问题和解决问题的能力不强。

学生的知识技能基础:在第一课时的学习中,学生已经初步经历了探索平行线性质的过程,得出了平行线的三条性质,初步具有了利用直线的位置关系来判断角的大小关系的意识。

同时,还认识了平行线的性质和判别直线平
行的条件的区别和联系,为本节课的继续探究打下了基础。

学生的活动经验基础:在第一课时的学习中,学生通过观察、测量、猜测、验证等活动,认识到了探索平行线性质的基本方法,获得了初步的数学活动经验和体验。

在活动中也培养了学生良好的情感态度,具备了一定的主动参与、合作意识和初步的观察、分析、抽象概括的能力,为本节课的初步学习几何推理奠定了良好的基础。

三、教学分析:
教学目标:
1、知识与技能目标:
(1)熟练应用平行线的性质和判别直线平行的条件解决问题。

(2)逐渐理解几何推理的要领,分清推理中“因为”、“所以”表达的意义,从而初步学会简单的几何推理。

2、过程与方法目标:
经历观察、讨论,推理、归纳等活动, 进一步发展空间观念,培养推理能力和有条理表达的能力。

3、情感态度目标:
使学生在积极参与探索、交流、推理、归纳等数学活动中,进一步体会数学的严密性,提高自己的逻辑思维能力。

课时:第2课时
教学重点难点:
教学重点:
平行线的三条性质以及综合运用平行线的性质、判定等知识解题。

教学难点:
区分性质和判定以及怎样灵活运用它们解题。

教学方法:自主学习法与引导发现法、合作法、探究法。

观察、讨论,推理、归纳等方法
教具准备:多媒体
教学过程
(两直线平行,内错角相等)
(内错角相等,两直线平行)。

1 = 37°,∠D =54°,,可以判定哪两条直线平行?根据可以判定哪两条直线平行?
图(1)图(
:小明在做一个如图的工艺插件,遇到一个问题,需要大家帮忙,小明已经量得
,要使∠B为多少度
板书设计
教学评价与分析
本节课共设计了五个步骤:
第一、回顾知识温故而知新;
第二、加深学习,推理论证;
第三:加强探究,步骤规范;
第四:牛刀小试,深化提高;
第五环节:课堂小结,反思提高。

三、教学设计反思:
1.在练习的设置过程中,从易到难,由简单的平行线性质的应用到两步或三步的推理,层层递进,学生容易接受。

而且,还设计了
知识的拓展提高环节,加深了学生对推理论证的理解。

本节课在第一课时的基础上,依据学生的认知基础,恰当确立教学起点。

从课的一开始,教师就从学生的认知基础上进行建构,充分体现了以学生为主体,以培养学生思维能力为重点的教学思想。

2.应加强这方面的训练。

同时,学生对基本图形的认识能力仍有待提高。

本节课的重点是能熟练运用平行线的性质和判定直线平行的条件解决实际问题,并培养学生的推理能力和有条理的表达能力,为后面学习证明打下基础。

因此要启发学生用推理的方法,进一步发展空间观念。

但是因为学生初次接触正规的推理,有的还不能理解它的意义,哪个放前、提哪个放结论还不能充分的理解,导致出现错误。

相关文档
最新文档