泵系统管线局部凸起水锤防护措施的研究

泵系统管线局部凸起水锤防护措施的研究
泵系统管线局部凸起水锤防护措施的研究

第3l卷第5期华中科技大学学报(自然科学版)

2003年5月J.HbazllongunivofScl&Tcch(NatureSci∞ceEdition)vol31№5May2003

泵系统管线局部凸起水锤防护措施的研究

蒋劲赵红芳李继珊

(武汉大学动力与机械学院)

摘要:针对舒安泵站供水系统的特点,应用水锤基本理论和特征线方法,对系统无任何防护措施和加设水锤防护措施的事故停泵水力过渡过程进行了计算机数值模拟,对空气阀和单向调压塔两种防管道负压措施进行r比较分析计算结果表明,在局部凸起点附近加装单向凋压塔更能较好地避免液柱分离的发生.

关键词:泵站;液柱分离;水锤防护

中豳分类号:’rK7304文献标识码:A文章编号:167l一4512(2003)05—0065—03

本研究的对象是一座用于灌溉的提灌泵站,供水系统由两台离心泵经丽条供水管道并联向出水池提水,系统管线走势图如图l所示,由于管道沿地形铺设,管线在泵站出口形成较大凸起,这种形式的管段在事故停泵过程中极易导致水柱分离及再弥合,从而诱发较大的水锤升压,导致水锤事故,造成管道破裂,阀门损坏,严重时使泵房被淹,供水中断,造成重大损失.因此,对泵系统停泵水力过渡过程进行分析和计算十分必要,并以此作为系统设计的依据.泵系统详细资料如下:水泵型号800S47A;额定流量1408m3/s;额定扬程40m;额定转速740r/min;额定效率88%;机组转动惯量75kg-m2.针对该装置的具体条件,对空气阀和单向调压塔两种水锤防护措施进行了计算机数值模拟,经分析比较,认为在局部凸起点加装单向调压塔来防止水锤,对该系统较为适宜.

图1系统管线走势示意图

1水力过渡过程计算的数学模型

1.1管道内点计算的特征线法…

在特征条件dz/df=v±n的约束下,通过一阶近似的有限差分,管道瞬变流基本方程可以简化为如下形式:

fH。,=(cP+cM)/2;

lQ。,=(cP—HⅣ)/B=(HⅣ一cM)/B,

式中,cP=Hi—l+BQ,一l—RQ,lQ,ll;cM=

H,+l—BQ,+1+RQ,+lQ:+1I;管道的特征常数B=n/(觯);管道的摩阻特性常数R=,△z/(29DA2);V,H和Q分别表示管道的瞬态流速、瞬态压力水头和瞬态流量;D为管道直径;A为管道断面面积;n为水锤波速.

1.2水泵端边界条件

水泵的边界条件取决于水泵的全性能曲线以及水泵的惯性方程,水泵的水头平衡方程和惯性方程可分别用F1和F2来表示:

F1二Es—CM—BQR"+Hk(a2+u2)[Ao+Al(Ⅱ+arctan(u/n))]一

Hmu{口l/r2=0;

F2=(d2+"2)[Co+cl(Ⅱ+

arctan(u/口))]+岛一[Gj/(60△r)]?

(”R/n)(Ⅱ瞻)(ao—a)=O,

式中,E。为上游水位;QR,HR,TR,"R分别为水

泵额定流量、额定扬程、额定转矩及额定转速;a,v分别为泵的无量纲转速和无量纲流量;“o,岛分别为前一时段泵的无量纲转速和无量纲转矩;Hf。为阀门全开时的水头损失;r为阀门的无量纲开度系数;Gj为机组的转动惯量;Ao,Al,co,(:1为水泵全特性曲线的插值系数.

收稿日期:2t102一lO一08

作奢简介:蒋劲(1963.),男,副教授;武汉,武汉大学动力与机簟学院(43呻72)

华中科技大学学报(自然科学版)

1.3空气阀边界条件

为了方便地模拟空气阀对事故停泵水锤的影

响,假定气体流进流出空气阀时为等熵,且进人管

内的气体仅停留在空气阀附近,温度接近于液体

温度且遵守等温定律【2J.空气通过空气阀时的质

馈流量与管外大气的绝对压力p0、绝对温度丁。

及管内的绝对压力p和温度丁有关,空气的流动

速度分为亚音速和临界音速两种情况.

a.空气以亚音速流人和以临界速度流人时

空气质量流量的数学表达式为

c。叫。{7声opD[(p/声o)”1一

(p/po)”2]I‘/2(o.528po≤声≤户o);

(:.。cu。0.686po/(R丁o)1/2

(p<0.528户o).

b空气以亚音速流人和以临界速度流出时

空气质量流量的数学表达式为

一c洲。(£J州。p{(7/(R’丁))[(户o/声)“1

(po和)”2]}1,2(po≤户≤1894卢o)

一cout叫。utO686户/(R7T)1/2

(p>1.894户o),

式中,c.。和Cuu.分别为空气流人和流出阀时的流

量系数;m。和m。。为空气阀的开启面积;pn为大

气密度,Po=po/(R’To),R7为气体常数;nl=

1.4286,”2=1.7140

c.空气阀边界条件方程

卢{K+O5△f[Q,一Qn,一(cM+cP)/

fj+(2/B)[p/(解)十zl疗]]}=

[Ⅲ(1+0.5△f(州’(】+州)]R’丁,

式中,、,,为时段△f的初始气体体积;zl为空气

阀的高程;曰为气压计的压力头;…o为△£开始

前的初始空气质量流量;mo为△f开始时空气的

=第3l卷

质量流量

1.4单向调压塔边界条件

管道中加装单向调压塔后,事故停泵过程中,

当管道的瞬态压力小于单向调压塔的水位线时,

逆止阀打开,调压塔通过补水管向管道补水据

此,可建立其边界条件如下:

0。l=(CP—CM)/2B—Q∞/2,

Qp2=Qpl+Qp3,

Hp=CP—BQpl=CM十BQT吐,

式中,Q。l为管道中流进调压塔节点的流量;Q∞

为经过该节点后流出的流量;QD3为调压塔向主

管道的补给流量,由下式计算:

Q1)3=g(CdAp)2{一0.5(B+△}/A。)+

{0.25(B+△£/A“)2一lcP+CM+△£Q3/A。一

2(z2+sM+zr)]/[g(cdA。)]2}1,2},

式中,CdA。为连接管流量系数与面积的乘积;z2

为凋压塔所在节点高程;sM为调压塔水深;而

为连接管高度;A。为调压塔横截面积

2水锤过程数值模拟及水锤防护

21无防护措施条件下的水锤计算及分析

图2为绘制了系统中无任何防护措施时的事

故停泵水锤计算结果,从图中可以看出,事故停泵

后管道中压力迅速降至汽化压力形成液柱分

离…,持续7s后分离的水柱再弥合,产生的弥合

水锤压力水头为O.632MPa,可见水柱分离再弥

合引起了很大的压力升高.

2.2加装水锤防护措施的水力过渡过程计算与

分析

图3和图4分别为在管线凸起处加装空气阀

和单向调压塔后,泵出口阀按两阶段关闭(快关时

图2无防护措施时事故停图3加空气阀后事故停图4加单向调压塔后事故泵压力变化曲线泵压力变化曲线停泵压力变化曲线

问4s,怏关角度70。,慢关时间20s,慢关角度持续时间不长时可以考虑采用该措施.图4表明,20。)的事故停泵水力过渡过程.从图3可以看出,单向调压塔是一种消除液柱分离的非常有效的措加装空气阀后,基本上消除了该处的负压,而且压施,该处不仅没有液柱分离现象,而且最大水锤压力升商也比无防护措施时大大降低,在管道负压力不超过O.2MPa,可见单向调压塔具有很好的

第5期蒋劲等:泵系统管线局部凸起水锤防护措施的研究

水锤防护效果

3讨论

a、牢气阀是通过补气来防止管道中因负压而造成的水锤事故,具有构造简单、不受安装条件限制等特点,但是由于管中允许吸人的气体量是有限的,岗此水锤防护作用也是有限的,同时,由于空气阀进、排气的阻力不相同,残留在管道中的自由空气叉形成了另一类气液两相流的过渡过程,敌对负压持续时间长的系统不太可靠.

b.单向调压塔是通过补水来防止管道中的负压,是?种经济可靠的水锤防护措施.单向调压塔一般可以防止箱内最高水位以下的管道部分不出现液柱分离,如果管道其他部分仍有液柱分离,可根据具体情况,考虑增加箱内水位或增设多个单向调压塔

c上述两种方法中更倾向于单向调压塔,因为输水管道中要尽量避免气液两相流的出现,而补气可能诱发新的气液两相流,补水则不会出现该问题,比补气更加安全可靠

参考文献

[1]刘竹溪,刘光临泵站水锤防护北京:水利水电出版社.1998

[2]怀利EB,斯特里特VL瞬变流清华大学流体传动与控制教研组译北京:水利电力出版社,1987

[3]蒋劲.李继珊,符向前等.小浪底电站技术供水回水系统水锤防护研究.华中科技大学学报.2002,30(4):8l~83

Waterh籼erpmtectionforpipewith10calsaH蛐ceinpumpsystem

』缸,孵^nzhdoH,醒廊ngLiJ渤&H

Abstract:Inac∞rdancewiththecharacteristicofwatersupplysyStematShu4anPumpStation,硎putersimulationwasnladeinIhetransitionprocessofaccidentalpump—stopwithpmtectionmeasuresandwithoutmeasuresbvthebasicthe()riesofwaterh捌m忸erandthemethod()fcharacteristicline.T}1eair—valvewasd衄paredw.th0ne—waytank,bothofwhichareusedforavoiding1iquidcolumnseparationinthep峨.Thecalcu】atjngresuksshdwedthatone_waytankwaseffectiveandjmport丑mtoimprovereJiabⅢtyofpumpsys—temanditsstability.

Keywords:pumpstation;liquidc【)lumnseparation;water}1arrlrnerprotection

JiangJinASSocProf.;C。1legeoff)0vver&Mech.Eng.,WuhanUniv.,Wuhan430072,china.

。+一+“+”+一一一+…+一+一十一一一…+“一十一一+…

i我校国际合作办学又出新成果

j近日,我校与英国华威大学和香港理工大学合作办学项目

{——综合深造工程商业管理(I(鹏)硕士学位课程获中华人民共

;和国教育部及中华人民共和国国务院学位委员会批准,这是国内

t首家得到教育部批准的、两所境外大学参与的联合硕士学位项目,

;也是我校国际合作办学的新成果.

t英国华威大学与香港理工大学联合开办的IGDs硕士学位课

;程是专门为中高层管理人士和技术人员而设的管理课程,于20世

j纪90年代初在香港开办.

L一一+H+一+一m+.+一+-++.一+~+。+一+++_++~..

建筑消防给水系统中停泵水锤的算法及防护措施

建筑消防给水系统中停泵水锤的算法及防护措施 Algorithms and prevention measures for stop-pump water hammer in building fire protection water supply system 摘要:介绍了建筑消防给水系统中水锤的概念与危害;阐述了目前常用的停泵水锤计算方法,并对各种算法的优缺点和适用条件进行了比较;最后,提出了建筑消防系统中停泵水锤的防护措施。 Abstract:Concept and hazard of water hammer in building fire protection water supply system were introduced. Various algorithms currently used for computing stop-pump water hammer were analyzed, and a comparison of the advantages and disadvantages as well as the applicable conditions was made. Finally, prevention measures for stop-pump water hammer in building fire protection water supply system were put forward. 关键词:消防给水停泵水锤防护措施 Key words: fire protection water supply, stop-pump water hammer, prevention measures 引言 水锤是管道瞬变流动中的一种压力波,它的产生是由于管道中某一截面液体流速发生了改变。这种改变可能是正常的流量调节,也可能是事故而使流量堵截,从而使该处压力产生一个突然的跃升或下跌。消防给水管网内的水体平时处于静止状态,检查测试或临警使用

水锤产生的原因危害及预防措施

谈水锤产生原因 、危害和预防措施 水锤产生原因、 我公司施工的绿城千岛湖度假公寓1#楼工程,空调管道中连接风机盘管的不锈钢软接出现多处断裂,造成吊顶泡水的严重后果。另外杭州金沙港旅游文化村度假用房某楼也发生了给水铜管管件断裂的事故,同样造成了吊顶泡水的严重后果。这二起事故都造成较大经济损和负面影响,经现场踏勘和相关情况的了解分析,造成这二起事故的原因为“水锤”。 先说说什么叫水锤、产生水锤的原因及其危害:水锤是在突然停泵或者在阀门关闭或打开太快时,由于压力水流的惯性,产生的水流冲击波,由于象锤子敲打一样,所以叫水锤。水锤产生的原因是: 1、阀门突然开启或关闭。由于管道内壁光滑,水流动自如,当阀门突然关闭,水流对阀门及管壁,主要是阀门会产生一个压力,后续水流在惯性的作用下,使压力迅速达到最大,并产生破坏作用,这是正水锤。相反,关闭的阀门在突然打开时,也会产生水锤,叫负水锤,也有一定的破坏力,但没有前者大。2、水泵突然停止或开启。水泵起动时,在不到1s的时间内,即可从静止状态加速到额定转速,管道内的流量则从零增加到额定流量。由于流体具有动量和一定程度的可压缩性,所以,流量的急剧变化将在管道内引起压强过压或过低的冲击,以及出现“空化”现象;水泵停止时,管道中的水靠惯性以逐渐减慢的速度继续向用水点流动,然后流速降到零,管道中的水在重力水头作用下,又开始向水泵倒流,速度由零逐渐增大。由于管道中水的流速变化,从而引起水锤的发生。3、管道中存在空气。空气柱在突然降压或升压时会膨胀或压缩推动水柱运动,这样气推水、水推气,形成水锤。另外管道向高处输水(高差超过20米);水泵总扬程(或工作压力)大;

停泵水锤的计算方法详解

停泵水锤计算及其防护措施 停泵水锤是水锤现象中的一种,是指水泵机组因突然断电或其他原因而造成的开阀状态下突然停车时,在水泵及管路系统中,因流速突然变化而引起的一系列急剧的压力交替升降的水力冲击现象。一般情况下停泵水锤最为严重,其对泵房和管路的安全有极大的威胁,国内有几座水泵房曾发生停泵水锤而导致泵房淹没或管路破裂的重大事故。 停泵水锤值的大小与泵房中水泵和输水管路的具体情况有关。在泵房和输水管路设计时应考虑可能发生的水锤情况,并采取相应的防范措施避免水锤的发生,或将水锤的影响控制在允许范围内。我院在综合国内外关于水锤的最新科研成果并结合多年工程实践的经验,以特征线法为基础开发了水锤计算程序。这一程序可较好地模拟各种工况条件下水泵及输水管路系统的水锤状况,为高扬程长距离输水工程提供设计依据。 1 停泵水锤的计算原理 停泵水锤的计算有多种方法:图解法、数解法和电算法。其基本原理是按照弹性水柱理论,建立水锤过程的运动方程和连续方程,这两个方程是双曲线族偏微分方程。 运动方程式为:

连续方程式为: 式中H ——管中某点的水头 V——管内流速 a——水锤波传播速度 x——管路中某点坐标 g——重力加速度 t——时间 f——管路摩阻系数 D——管径 通过简化求解得到水锤分析计算的最重要的基础方程: H-H0=F(t-x/a)+F(t+x/a) (3) V-V0=g/a×F(t-x/a)-g/a×F(t+x/a) (4) 式中F(t-x/a)——直接波 F(t+x/a)——反射波 在波动学中,直接波和反射波的传播在坐标轴(H,V)中的表现形式为射线,即特征线。它表示管路中某两点处在水锤过程中各自相应时刻的水头H与流速V之间的相互关系。为了方便计算机的计算,将上述方程组变

长距离供水管线水锤防护措施

长距离供水管线水锤防护措施 发表时间:2019-04-28T15:33:29.030Z 来源:《基层建设》2019年第6期作者:张楠楠邸海龙 [导读] 摘要:水锤是影响长距离压力输水工程安全运行的一个重要因素,不少工程因水锤而引起爆管,造成了严重的经济损失.长距离有压输水管道易发生水锤危害,尤以高扬程多起伏管道水锤防护难度最大,发生水锤的可能性最大。 中冶沈勘秦皇岛工程设计研究总院有限公司河北秦皇岛 066004 摘要:水锤是影响长距离压力输水工程安全运行的一个重要因素,不少工程因水锤而引起爆管,造成了严重的经济损失.长距离有压输水管道易发生水锤危害,尤以高扬程多起伏管道水锤防护难度最大,发生水锤的可能性最大。由于长距离输水工程管线长,管道起伏大,要求输水保证率高,因此工程的安全运行问题越来越受到科研、设计、施工及运行管理人员的重视。本文结合水锤特征,根据长距离输水管道系统的特点,提出有效的水锤防护措施。 关键词:长距离;输水系统;水锤防护 我国是一个水资源贫乏的国家,人均水资源占有量很低。有些地区水已成为制约经济发展的“瓶颈”。新中国成立以来,随着工农业的发展,科学技术的进步,我国兴建了40多万处泵站工程。已建和正在修建的许多大型泵站工程,向几十公里甚至更远的地方供水。 在长距离输水工程中,对加压供水系统安全危害较大的是水锤事故,不少工程因水锤而遭受严重破坏。水锤事故的成因不同,产生危害也不同,有的造成压力管道破坏(即爆管),有的造成泵房被淹,有的设备被打坏,伤及操作人员等,给正常的生活的生产带来了严重的影响和经济损失。由于泵站工程在国民经济建设中作用重大,其安全经济运行也备受人们重视。 1 水锤定义及特性 1.1 水锤定义 在有压管路中流动的液体,由于某种外界原因(如阀门突然关闭、水泵或水轮机组突然停车等)使得液体流速发生突然变化,并由于液体的惯性作用,引起压强急剧升高和降低的交替变化,这种水力现象称为水锤。 1.2 水锤特性 水锤实际上是由于水流速度变化而产生的惯性力。当突然启闭阀门时,由于启闭时间短、流量变化快,因而水击压力往往较大,而且整个变化过程是较快的。由于管壁具有弹性和水体的可压缩性,水击压力将以弹性波的形式沿管道传播。水击波传播过程中,在外部条件发生变化处均要发生波的反射。发射特性决定于边界处的物理特性。 2 长距离供水管线水锤防护的必要性 2.1 水锤产生原因 水锤是在突然停电或者在阀门关闭太快时,由于压力水流的惯性,产生水流冲击波,就象锤子敲打一样。水流冲击波来回产生的力,有时会很大,从而破坏阀门和水泵。在水管内部,管内壁光滑,水流动自如。当打开的阀门突然关闭,水流对阀门及管壁,主要是阀门会产生一个压力。后续水流在惯性的作用下,迅速达到最大,并产生破坏作用,这就是水利学当中的“水锤效应”,也就是正水锤。在水利管道建设中都要考虑这一因素。相反,关闭的阀门在突然打开后,也会产生水锤,叫负水锤,也有一定的破坏力,但没有前者大。 2.2 水锤危害 在长距离输水工程中,水柱弥合水锤的危害较大,输水管道的流速变化是经常出现的,管道中水流速度变化时,致使管道中水压力升高或降低,在压力低于水的气化压力时,水柱就被拉断,出现断流空腔,在空腔处的水流弥合时将产生强烈的撞击,从而导致管道中的水压力升高,继而形成断流弥合水锤。弥合水锤升值很大,在实验装置观测到的竟达到工作压力的2-4倍,因此对输水安全性的危害很大。 3 水锤防治方法 3.1 缓闭止回阀 缓闭止回阀是止回阀的一种,它是通过缓闭作用来进行水锤防护的。理论和实践证明目前性能较好的是水泵控制阀和液控蝶阀两种。对于较小管径使用水泵控制阀较好;中等管径两种阀门各有千秋;较大管径一般说来液控蝶阀技术优势更大。缓闭止回阀装设在水泵出口处,其口径与水泵出口口径一致。高扬程多起伏输水管道,尤其出现管道局部断流时,水流回冲流速较大,缓闭止回阀快慢二阶段关闭角度的确定更为重要。因此,较重要的工程应该经过水锤计算确定其工作参数,缓闭止回阀选用的公称压力等级也应经过计算确定,以增强安全可靠性。 3.2 双向调压塔 双向调压塔是一种兼有注水与泄水缓冲的水锤防护设备,其设置的主要目的是:防止压力输水干管中产生负压,一旦管道中压力降低,调压塔迅速向管道补水。当管道中水锤压力升高时,它允许高压水流入调压塔中,从而起到缓冲水锤升压的作用。双向调压塔结构简单,工作安全可靠,维护工作少,防护效果好。但是造价高,地形和压力限制塔的高度,水质易受污染以及防冻问题阻碍了双向调压塔的使用。 3.3 箱式双向调压塔 箱式双向调压塔完全具有普通双向调压塔的优点,且克服了超压泄压阀存在的拒动作和滞动作等问题,使管道泄压迅速及时,安全程度大幅度提高;当管道内出现负压时,该调压塔可迅速向管道内补水,以防止水柱拉断产生断流弥合水锤。在水锤防护性能上几乎完全等同于普通双向调压塔,而且其高度可大幅度降低,一般仅2m~5m即可,从而提高了双向调压塔的使用范围,大大降低了工程造价,对于长距离高扬程多起伏管道是一种安全可靠的水锤防护措施。 3.4 进排气阀和超压泄压阀 对于高扬程多起伏长距离输水管道,工况较复杂对水锤防护要求较高,应采用具有恒速缓冲功能的排气阀。恒速缓冲排气阀是恒速排气,既能保证管道中气体及时排出,又使气体在管道内起到一定气垫的作用,在排气结束时又具有缓闭功能,对消减断流弥合水锤效果明显。 3.5 其他防护措施 在水泵汇水总管处装空气罐,但通常空气罐体积较庞大,对于高扬程的输水系统在压力变化范围较大时不宜使用。在管道上装止回阀,可将管道中水柱人为地截成数段,从而减小每段的作用水头,但浪费能耗,管理维修麻烦,实际工程中很少采用。

冷热水管道中的水锤现象

冷热水系统中的水锤现象 意大利卡莱菲公司北京办事处舒雪松 冷热水管道中的水锤现象指管道中的水流在极短的时间内迅速地停止或加速,因此所造成的有力的冲击。比如说,在迅速关闭水龙头,或水泵起停时,经常听到‘嘭’一声短暂的闷响。这就是典型的‘水锤现象’。这种冲击的能量来自于管道内水流速度突然的改变。 ‘水锤’这一名词来源于古代的一种兵器‘攻城槌’,它运用于攻克城墙或城门,它造成的冲击力与水锤现象类似。 图1 ‘攻城槌’由一个长木棒制成,在木棒的顶端有一个铁锤,它能产生的冲击力大小取决于操作武器的士兵的力量。(见图1) 而水锤力量的大小却由很多因素决定。 管道中静止的水只具有‘潜能’,即由它的定额所决定的能量。当定额降低并接近海平面时,其潜能减弱并消失。如果假定海平面为‘0’,高于海平面的海拔高度‘z’,物体质量为m,那么它所具备的能量为mgz:其中‘g’为重力加速度(9.81m/s2)。 如果管道中的水以一定的速度‘v’流动,在潜能上又加入了动能,约为1/2 mv2。这种运行的能量来源于mv, 它代表了水的运动量,即组成水的每一滴水的运动量总和。 就如前面提到的一样,当猛然关闭阀门或水泵时,水的流速突然变为零(v=0),其动能也消失(1/2 mv2=0)同样它的运动量也消失(mv=0)。

但是,水所具备的能量不可能就这样瞬间溶解,它改变为‘压力波’,以声速在管道内传送。这就是‘水锤现象’。它所产生的高压能超过100bar ,而其延续的时间也就仅百分之几秒。由于其速度如此快捷,管道上的压力表根本无法显示出管道系统内这种瞬间弹性的压力波动。 理论上说,水不能被压缩,但为了更好地解释高压的产生,我们必须承认水是能被压缩的,如同气体一样。根据Hoorce 定律,如果将1立方米水压缩1bar ,它体积将减少 50cm 3。当关闭一段管道末端的阀门时(如图2所示)。与阀门接触的水受到压缩,通俗地说, 水‘缩短’了。因此它的部分动能改变为压力能量。这时,其压力由P 变为P+△P ,△P 即是超出的压力。压力波沿着管道相反的方向传送到管道的起点,如水箱。在这儿,水箱的水受到膨胀。如果管道长度L (m )为阀门上游管道长度,c 为运动速度(m/s )(紊流传送的速度)。压力波到达管道起点的时间t=L/c (s)。这种情况下,管道内的水流是静止的(v=0)而且是被压缩的。 我们假设管道的起点为一个水箱的入口处,当压力波到达这个假定的入口处截面时,在入口处的水箱一端压力为Px+△P 。一部分可以忽略不计的水从管道回到水箱,这样一来,在水箱至阀门之间产生了负压一△P 。这个负压经过同样的L/c 的时间到达阀门。因此从关闭阀门到负压回到阀门共用时间tc=2 L/c ,称为‘持续时间’。 但是在阀门这儿又出现了一△P 的不平衡,此负压向上游方向延伸。因此在水箱与阀门之间又产生了压力波。这个时间段为3 L/C 。所有这些往返的压力波都在约百分之几秒内完成,如同前面讲到的一样。 如何界定关闭阀门的方式是否会造成水锤呢?我们将关闭的方式分为‘猛烈’式和‘平缓式’。通常说来, ‘猛烈关闭’的方式会带来水锤使压力升高。 当关闭的时间tc<2 L/c 时,这属于‘猛烈’关闭,当tc>2 L/c 时属于‘平缓’关闭。如果是猛烈关闭,超压(或负压)的最高值并不是出现在整个管道长度L (即水箱至阀门关闭处),而是出现在从阀门关闭处开始的Lx=L —(ctc/2)。经过这一段长度后,超压(或负压)将沿程逐渐降低(或增加)。(如图2所示)。如果关闭是‘瞬间的’,以上的压力值将会出现在整个管道内。 值得注意的是,猛烈地关闭阀门会造成超压,猛烈地开启阀门会造成降压。两者都会产生水锤现象。 区别只

灌溉系统中水锤的解决方案

灌溉系统中水锤的防治办法 供水管道总会产生一阵阵有节奏的异响,作为工程人员我们应知道,这是水锤现象会危害我们的管网及设备,必须尽早处理及时预防。 一、何为水锤现象? 在有压力管路中,由于某种外界原因(如阀门突然关闭、水泵机组突然停机)使水的流速突然发生变化,从而引起水击,这种水力现象称为水击或水锤。液体在管内流动时,它具有动能,当液体突然停止,它的运动能量必须被消除。这时能量变成自停止点开始的高压波,以近声音的传播速度沿管路系统来回传递,使管内液体膨胀并撞击管路,发出刺耳的噪声。 也就是说:快速地开泵、停泵、开关阀门,使水的流速发生急剧变化,就是产生水锤现象的基本原因。 二、水锤的危害 水锤效应有极大的破坏性:由于水锤的产生,使得管道中压力急剧增大至超过正常压力的几倍甚至十几倍、几十倍,其危害很大,严重时会引起管道的破裂,影响生产和生活。压强过高,将引起管子的破裂,反之,压强过低又会导致管子的瘪塌,还会损坏阀门和固定件。 水锤现象可以破坏管道、水泵、阀门、并引起水泵反转,管网压力降低等。 三、常见水锤现象的原因分析及对策 既然管道系统内水的流速的急剧变化是产生水锤的基本原因,我们有必要对此展开深入地探讨,以便寻求应对之策。 1.各种阀门突然开启或关闭,水泵机组突然停机或开启 将响应太快调整为响应迟钝,比如延长开阀和关阀时间,选择开关动作迟钝的阀门,或者选择关键点位安装止回阀。 2.输水管道中水流速度过大;管道过长,且地形变化大 降低输水管线的流速,可在一定程度上降低水锤压力,但会增大输水管管径,增加工程投资。 输水管线布置时应考虑尽量避免出现驼峰或坡度剧变。 减少输水管道长度,管线愈长,水锤值愈大。高山地区灌溉可选择截断管道减压的方式,解决管道铺设过长的问题。也可采用增加专用阀门的方式进行水锤的消除。 采用水力控制阀:一种采用液压装置控制开关的阀门,一般安装于水泵出口,该阀利用机泵出口与管网的压力差实现自动启闭,阀门上一般装有活塞缸或膜片室控制阀板启闭速度,通过缓闭来减小水锤冲击,从而有效消除水锤。 采用快闭式止回阀:该阀结构是在快闭阀板前采用导流结构,停泵时,阀板同时关闭,依靠快闭阀板支撑住回流水柱,使其没有冲击位移,从而避免产生停泵水锤。

PIPENET长距离供水停泵水锤设置原则

PIPENET软件用于长距离输水工程停泵水锤计算说明 1、水泵设置说明 1.1泵类型说明:停泵水锤计算需要应用TURBO PUMP,如图所示: 。 1.2定义TURBO PUMP需要参数如下: WH(x)、WB(x)即为泵的全特性曲线,即Suter Curve曲线。 该曲线一般厂家提供不了,只能由已有的全特性曲线通过数值拟合的方法得到。PIPENET 软件提供了EXCEL表格来拟合该曲线。PIPENET软件提供了国际上通用的三种比转速25、147、261的泵全特性曲线。 应用PIPENET提供的EXCEL表格拟合泵全特性曲线: 第一步:计算泵的比转速 如果泵的比转速接近25或在25一下,则直接选取比转速为25的全特性曲线即可; 在147周围直接选取147的曲线即可; 在261周围或大于261直接选取261曲线; 介于25‐147之间的,用比转速为25和147的曲线拟合得到该泵的全特性曲线; 介于147‐261之间的,用比转速为147和261的曲线拟合得到该泵的全特性曲线。 具体拟合方法请 参考EXCEL文档。 1.3停泵参数设置

泵上节点为信息节点,主要是设置泵的开度变化。正常运行给定为1,关闭则为0. 该泵停时,将该点设置为1。 在泵的属性部分的Trip time给定一个泵开始停止的时间点,例如从第10秒开始停,则设置为10.

2、阀门定义 带有启闭动作的阀门一律用Operating valve代替,。 2.1 阀门参数定义 PIPENET采用示意性模型建模,不管其是闸阀、蝶阀、球阀等各种类型阀门,只取其与水力计算相关的部分,即阀门的开度—流量特性曲线。定义阀门一般有两种方法,即流量系数或K值加阀门通径。 2.1.1 如果知道阀门的流量系数曲线,则在数据库选择valves建立阀门,如下图所示: 2.1.2 如果不知道其特性曲线,则采用直接定义的方法,需要定义其开闭方式。 已知阀门开度为1情况下的Cv值,则选用如下方法: ; 如果已知阀门K值及通径,则选取如下方法:

水锤产生的条件、危害及防护措施

水锤产生的条件、危害及防护措施 水锤简介 水锤又称水击。是指水或其他液体输送过程中,由于阀门突然开关、水泵骤然启停等原因,流速突然变化且压强大幅波动的现象。说的通俗些:突然停电或阀门关闭太快,由于压力水流的惯性,产生水流冲击波,就象锤子敲打一样,我们称之为水锤。 供水管道壁光滑,后续水流在惯性的“帮凶”下,水力迅速达到最大,所以容易造成破坏作用(如破坏阀门和水泵等),这就是水力学中的“水锤效应”,也叫正水锤;相反,阀门或水泵突然开启,也会产生水锤效应,叫负水锤。这种大幅波动的压力冲击波,极易导致管道因局部超压而破裂、损坏设备等。所以水锤效应防护是供水管道工程设计施工中必须要考虑的关键因素。 水锤产生的条件 1、阀门突然开启或关闭; 2、水泵机组突然停车或开启; 3、单管向高处输水(供水地形高差超过20米); 4、水泵总扬程(或工作压力)大; 5、输水管道中水流速度过大; 6、输水管道过长,且地形变化大。 7、不规范的施工是给水管道工程存在的隐患 7.1如三通、弯头、异径管等节点的水泥止推墩制作不符合要求。 水锤效应的危害 水锤引起的压强升高,可达管道正常工作压强的几倍,甚至几十倍。这种大幅度的压强波动,对管路系统造成的危害主要有: 1、引起管道强烈振动,管道接头断开; 2、破坏阀门,严重的压强过高造成管道爆管,供水管网压力降低; 3、反之,压强过低又会导致管子的瘪塌,还会损坏阀门和固定件; 4、引起水泵反转,破坏泵房内设备或管道,严重的造成泵房淹没,造成人身伤亡等重大事故,影响生产和生活。 消除或减轻水锤的防护措施 对于水锤的防护措施很多,但需根据水锤可能产生的原因,采取不同的措施。 1、降低输水管线的流速,可在一定程度上降低水锤压力,但会增大输水管管径,增加工程投资。输水管线布置时应考虑尽量避免出现驼峰或坡度剧变减少输水管道长度,管线愈长,停泵水锤值愈大。由一个泵站变两个泵站,用吸水井把两个泵站衔接起来。 停泵水锤的大小主要与泵房的几何扬程有关,几何扬程愈高,停泵水锤值也愈大。因此,应根据当地实际情况选用合理的水泵扬程。 事故停泵后,应待止回阀后管道充满水再启动水泵。 启泵时水泵出口阀门不要全开,否则会产生很大的水冲击。很多泵站的重大水锤事故多在这种情况下产生。 停泵水锤 所谓停泵水锤是指突然断电或其他原因造成开阀停车时,在水泵和压力管道中由于流速的突然变化而引起压力升降的水力冲击现象。例如电力系统或电器设备发生故障、水泵机组偶发故障等原因,都可能发生离心泵开阀停车,从而引发停泵水锤。 停泵水锤的最高压力可达正常工作压力的200%,甚至更高可以使管道及设备击毁,一般事故造成“跑水”、停水;严重事故造成泵房被淹、设备损坏、设施被毁,甚至于造成人身伤亡

Hammer软件在输水管道水锤分析中的应用

Hammer软件在市政管道中的应用 田文军(Bentley 软件(北京)有限公司) 摘要:本文介绍了水锤的基本概念,危害和工程中的预防。根据建设工程中的问题提出预防水锤发生的措施,以提高供水系统的运行安全和可靠性,进而降低投资成本简化运行。并通过Bentley Haestad HAMMER 展示电算法在水锤预防当中的应用。 关键词:Hammer 水锤供水系统长距离输水爆管建设成本运行管理水力计算计算机模拟 1.水锤危害及其防控 1)水锤的定义 水锤是指在压力管道中由于液体流速的急剧变化,造成管中的液体压力显著、反复、迅速地变化,(例如水泵骤停、突然关闭阀门),由液体的压缩性和管道的弹性引起的输送系统中的压力波动,在压力急剧升高的位置产生破坏。水锤的破坏力惊人,对管网的安全平稳运行是十分有害的,容易造成爆管事故。 防止水锤爆管事故的方法有:输水系统中加调压装置,改变管网布置和构成,以达到改变水锤冲击波频率和强度的目的。 2)水锤的危害 水泵启动和停机、阀门启闭、工况改变以及事故紧急停机等动态过渡过程造成的输水管道内压力急剧变化和水锤作用等,常常导致泵房和机组产生振动。由于水锤的产生,使得管道中压力急剧增大至超过正常压力的几倍甚至十几倍,其危害很大,会引起管道的破裂,影响生产和生活。因此必须在长距离压力管段输送系统中安装安全装置。 水锤有正水锤和负水锤之分,它们的危害有: 正水锤时,管道中的压力升高,可以超过管中正常压力的几十倍至几百倍,以致管壁产生很大的应力,而压力的反复变化将引起管道和设备的振动,管道的应力交变变化,将造成管道、管件和设备的损坏。 负水锤时,管道中的压力降低,应力交递变化,出会引起管道和设备振动。同时负水锤时,管中产生不利的真空,造成水柱断流,和再次结合形成的弥合水锤,对管道破坏更为严重。 目前我国泵站相关设计规范(室外给水设计规范GB50013-2006;泵站设计规范GB/T 50265-97)中对水锤防护的计算已经做以相应的规定。 3)管道系统设计和规划中的水锤因素 工程师在设计给水管网过程中需要考虑预算和技术因素,包括运行成本、概算、建设地点和地形条件等因素。在设计管网和消除水锤设备中需要不断进行复杂的风险评估和方案比选,以降低建设成本和运行风险。通常管线规划在平坦地区。在这些系统中需要调整管线平面走向和剖面位置,防止管道在高点积气或压力过低。

水锤现象及解决方案

当采用异步电机供水时,异步电机在全压起动时,从静止状态加速到额定转速所需时间极短。这就意味着在极短的时间里,水的流量从零猛到额定流量。由于流体具有具有动能和一定程度的压缩性,因此在极短的时间内流量的巨大变化将引起对管道的压强过高和过低的冲击。压力冲击将使管壁受力而产生噪声,犹如锤子敲击管道一样,故称为水锤效应。 水锤效应有极大的破坏性:压强过高,将引起管子的破裂,反之,压强过低又会导致管子的瘪塌,还会损坏阀门和固定件。 水力发电厂的水轮机在进水叶动作时也会发生这种现象.据我老师说他还碰到过进水叶因关闭过快而引起压水管爆裂的事故. 水锤效应是一种形象的说法.它是指给水泵在起动和停车时,水流冲击管道,产生的一种严重水击。由于在水管内部,管内壁是光滑的,水流动自如。当打开的阀门突然关闭或给水泵停车,水流对阀门及管壁,主要是阀门或泵会产生一个压力。由于管壁光滑,后续水流在惯性的作用下,水力迅速达到最大,并产生破坏作用,这就是水利学当中的“水锤效应”,也就是正水锤。相反,关闭的阀门在突然打开或给水泵启动后,也会产生水锤,叫负水锤,但没有前者大。 另一种关于水锤效应的说法:异步电动机在全压启动时,从静止状态加速到额定转速,水的流量从零猛增到额定流量.由于流体具有动量和一定程度的可压缩性,因此,在极短时间内流量的巨大变化将引起对管道的压强过高或过低的冲击,并产生空化现象.压力冲击将使管壁受力而产生噪音,就像锤子敲击管子一样,称为水锤效应. 采用恒压供水,可以通过对时间的预置来延长启动和停车过程,使动态转矩大为减小,从而从根本上消除水锤效应. 实际上,水锤出现在起泵和停泵两种情况下。停泵时,如果是扬程很高,泵通过关断电源自然停止,水会逆向砸下来,形成水锤。解决的办法是采用变频器或软起动器,用变频器最好,要多舒缓都可以,但是如果不需要调速,成本就高了,用软起动器就可以了,大多数软起动器具有软起和软停双重功能。 水锤产生的另一个原因是水管中有空气,空气柱在突然降压时会膨胀,推动水柱运动,这样气推水,水推气,形成水锤,形成大的破坏力。特别是第一次试水,必须排气,排气完了再停水。 水锤现象 在有压力管路中,由于某种外界原因(如阀门突然关闭、水泵机组突 然停车)使水的流速突然发生变化,从而引起压强急剧升高和降低的交替 变化,这种水力现象称为水击或水锤。 因开泵、停泵、开关闸阀过于快速,使水的速度发生急剧变化,特别 是突然停泵引起水锤,可以破坏管道、水泵、阀门、并引起水泵反转,管 网压力降低等,所以,预防水锤发生极为重要,平时预防水锤发生的措施 主要有以下几个方法: a. 开关阀门过快引起的水锤: (1)延长开阀和关阀时间。 (2)离心泵和混凝泵应在阀门半闭15%-30%时而不是全关时停泵。

管道水锤破坏的消除措施

管道水锤破坏的消除措施 [摘要]介绍了给水管道的水锤形成的各种原因及分类,针对水锤的形成原因提出了不同的水锤防护措施,并分析其工作原理,保证供水管道系统的正常运行,有很好的借鉴作用。 [关键词]给水管道;管道施工;水锤事故;预防措施 1.引言 社会经济的发展,人们生活水平的提高,要求我们城市供水系统的正常运作也要得到相应的保证。在城市管道事故中管道水锤现象是比较常见但是危害又相对较大的管道破坏形式。因此,对水锤破坏进行相关的分析并提出一些有效的防治措施具有很大的实际意义。 2.水锤 2.1水锤的定义。水锤是有压管道中的非恒定流现象。当阀门或水泵突然的打开,使水的流速突然发生变化,从而引起压强急剧升高和降低的交替变化,这种变化以一定的速度向上游或下游传播,并且在边界上发生反射,这种水力现象称为水锤。交替升降的压强称为水锤压强。 2.2水锤产生的原因和分类。水锤产生的主要物理原因是液体具有惯性和可压缩性,水锤现象的实质可归纳为由于管道内水体流速的改变,导致水体的动量发生改变而引起作用力变化的结果。一般说来,输水管道系统中的过渡过程的起因大体有:启泵和停泵,机组转速发生变化或运行不稳定、动力故障;空气进入水泵或管道系统,泵内发生回流,阀门启闭,线路分流、激流等。其中以事故停机引起的水锤破坏尤为的严重。从不同的角度划分,水锤主要分为以下几种:(1)依照理论分析可以分为刚性水锤和弹性水锤;(2)按关阀历时和水锤相位的关系可以分为直接水锤和简介水锤;(3)按外部成因可以分为启动水锤、关阀水锤和停泵水锤;(4)按水锤发生的不同输水道可以分为封闭管道的水锤、明渠中的水锤和明满交替的水锤;(5)按水锤波动的现象分为水柱连续的水锤和水柱分离的水锤现象。 2.3水锤的危害。水锤有极大的破坏性。由于水锤产生的瞬时压强可达管道中正常工作压强的几十倍甚至于数百倍,这种大幅度的压强波动,可导致管道系统强烈振动产生噪声,可能破坏管道、水泵、阀门,并引起水泵反转,管网压力降低等。 3.水锤的消除措施 针对上述水锤形成的机理分析,笔者通过结合工程实践提出几种管道施工过程中经常用到的防护措施。

《水泵》课程教学大纲

水泵课程教学大纲 一、课程性质及目的 1、课程性质:农业水利工程专业的专业基础选修课 2、课程目的:结合新疆农田灌溉特点,介绍农田灌溉工程中常用叶片泵的基本性能和使用方法,使学生在做节水灌溉系统设计时能正确地选择水泵,或能正确进行井灌区规划。 二、课程内容及要求 第一章泵的基础知识2学时 本章要求学生了解泵的定义和分类、机电排灌常用泵的典型结构;理解叶片泵的主要部件及作用;掌握泵的基本性能参数。 本章采用课堂讲授为主,多媒体课件为辅的教学方法和教学形式。 第二章叶片泵的基本理论8学时 本章要求学生了解轴流泵的叶轮理论;理解论叶片泵的主要部件及作用;掌握离心泵的叶轮理论、叶片泵的相似理论、比转速。 本章采用课堂讲授为主,多媒体课件为辅的教学方法和教学形式。 第三章叶片泵的性能曲线2学时 本章要求学生了解离心泵的理论性能曲线;理解叶片泵的综合性能曲线(型谱)图、叶片泵的相对性能曲线;掌握叶片泵的基本性能曲线。 本章采用课堂讲授为主,多媒体课件为辅的教学方法和教学形式。 第四章叶片泵的运行工况与调节4学时 本章要求学生了解工况相似的条件、等效工况的概念和比例律的应用条件;理解图解法求叶片泵装置的工况点;掌握水泵装置总扬程、图解法求叶片泵装置的工况点。 本章采用课堂讲授为主,多媒体课件为辅的教学方法和教学形式。 第五章水泵并联和串联工况2学时 本章要求学生了解水泵并联工作的意义及特点、水泵串联工作的意义及特点;理解并联特性曲线产生方法;掌握并联工况的图解法、图解法求串联工况点。 本章采用课堂讲授为主,多媒体课件为辅的教学方法和教学形式。

第六章水泵气蚀及安装高度的确定2学时 本章要求学生了解吸水管中压力变化及计算公式推导,气穴和气蚀;气蚀余量的概念及应用方法;理解气蚀相似律和气蚀比转速;掌握气蚀性能参数及水泵安装高度的确定。 本章采用课堂讲授为主,多媒体课件为辅的教学方法和教学形式。 第七章灌排泵站工程规划2学时 本章要求学生了解提水灌区的划分、站址选择;理解和掌握泵站主要设计参数的确定。 本章采用课堂讲授为主,多媒体课件为辅的教学方法和教学形式。 第八章泵站管理2学时 本章要求学生了解泵站管理的基本概况。 本章采用课堂讲授为主,多媒体课件为辅的教学方法和教学形式。 三、参考教材 采用教材:《水泵及水泵站》(第三版),刘竹溪,刘景植主编,中国水利水电出版社 参考教材: 1、《水泵及水泵站》(第三版),姜乃昌主编,金锥主审,中国建筑工业出版社,1998 2、《泵站》丘传忻编,中国水利水电出版社,2004 3、《停泵水锤及其防护》金锥,姜乃昌,汪兴华编,中国建筑工业出版社,1998 四、学习要求 要求学生具有扎实的水力学知识,课前要复习《水力学》课程,课后要做练习。 五、成绩评定方式 本门课程成绩采用百分制计分,笔试,闭卷 成绩构成:平时成绩30%,笔试70%。 平时成绩构成及要求:1、考勤10% 2、课堂讨论5% 3、平时作业15%

管道水锤

能源环境 管道水锤破坏的消除措施 中色十二冶金建设有限公司(山西河津) 段效坚 【摘 要】介绍了给水管道的水锤形成的各种原因及分类,针对水锤的形成原因提出了不同的水锤防护措施,并分析其工作原理,保证供水管道系统的正常运行,有很好的借鉴作用。 【关键词】给水管道;管道施工;水锤事故;预防措施 1.引言 社会经济的发展,人们生活水平的提高,要求我们城市供水系统的正常运作也要得到相应的保证。在城市管道事故中管道水锤现象是比较常见但是危害又相对较大的管道破坏形式。因此,对水锤破坏进行相关的分析并提出一些有效的防治措施具有很大的实际意义。 2.水锤 2.1水锤的定义。水锤是有压管道中的非恒定流现象。当阀门或水泵突然的打开,使水的流速突然发生变化,从而引起压强急剧升高和降低的交替变化,这种变化以一定的速度向上游或下游传播,并且在边界上发生反射,这种水力现象称为水锤。交替升降的压强称为水锤压强。 2.2水锤产生的原因和分类。水锤产生的主要物理原因是液体具有惯性和可压缩性,水锤现象的实质可归纳为由于管道内水体流速的改变,导致水体的动量发生改变而引起作用力变化的结果。一般说来,输水管道系统中的过渡过程的起因大体有:启泵和停泵,机组转速发生变化或运行不稳定、动力故障;空气进入水泵或管道系统,泵内发生回流,阀门启闭,线路分流、激流等。其中以事故停机引起的水锤破坏尤为的严重。从不同的角度划分,水锤主要分为以下几种:(1)依照理论分析可以分为刚性水锤和弹性水锤;(2)按关阀历时和水锤相位的关系可以分为直接水锤和简介水锤;(3)按外部成因可以分为启动水锤、关阀水锤和停泵水锤;(4)按水锤发生的不同输水道可以分为封闭管道的水锤、明渠中的水锤和明满交替的水锤;(5)按水锤波动的现象分为水柱连续的水锤和水柱分离的水锤现象。 2.3水锤的危害。水锤有极大的破坏性。由于水锤产生的瞬时压强可达管道中正常工作压强的几十倍甚至于数百倍,这种大幅度的压强波动,可导致管道系统强烈振动产生噪声,可能破坏管道、水泵、阀门,并引起水泵反转,管网压力降低等。 3.水锤的消除措施 针对上述水锤形成的机理分析,笔者通过结合工程实践提出几种管道施工过程中经常用到的防护措施。 3.1空气罐防护。空气罐是一内部充有一定量压缩气体的金属水罐装置,一般情况下载在水泵出口附近的管道上安装。在因事故停泵后,管道中的压力降低,罐内空气迅速膨胀,在空气压力作用下下层水体迅速补充给主管道,防止水柱分离;倒泻水流会使得水泵进入水轮机工况后,泵出口的逆止阀迅速关闭,管中压力上升,出水管中的高压使水流入空气罐中,使罐内空气压缩,从而减小管道中的压力上升。为防止管道中产生过低的压力,入流量和出流量相等时差压孔口水头损失比值应控制在2:5:1左右。 3.2进排气阀。长距离输水管道在开始输水、停止输水和流量调节及事故停泵的不同工况下,需将管内空气排出或将管外空气补进管内,使压力管道系统不受气体、水锤负压等危害而安全运行的主要防护措施之一。可以把它的作用归纳为三方面:一是是管道发生水锤事故产生负压时,能及时的补充空气,不致负压过大而水柱分离;二是管道在运行情况下,能随时排出水中逸出的气体,避免气体的聚集、扩散而使输水量下降、管道漏水或引发气爆型水锤;三是空管道充水时及时排除管内空气,以免产生气阻而引发启泵水锤。 3.3单向调压塔防护。单向调压塔是一种用于防止产生水柱分离的经济可靠的防护措施,常设于容易产生负压的部位。这种调压塔由一个水塔与辅助支管、阀件等组成。水塔通过逆止阀与泵站主管道相连接,逆止阀的启闭由出水管道的压力控制。水泵起动时,逆止阀处于关闭状态,并补水管立即向水塔充水:当水位达到正常水位后,补水管出口的浮球阀关闭,自动保持塔里面的水位。非正常的停泵后,当出水管道压力下降到调压塔正常水位以下时,逆止阀将会迅速打开,通过辅助支管向主管道进行补水,防止管道因压力降低而产生水柱分离的现象,也很大程度降低了调压塔的高度。但是在实际应用工程中如果应用单向调压塔防护时应注意两点:(1)调压塔对于出水管道的保护范围是有限的,一般是相当于塔内最高水位以下的管道部分。如果在此高程以上的管道还可能产生水柱分离,则应根据管道的纵断面及最低压力线情况装设两个或多个调压塔。(2)补水后,调压塔应能迅速充水,准备下一次动作。因此,补水管应设计有足够的直径,水塔顶端的球阀应动作可靠。 3.4其他防护介绍。在常用的水锤防护措施中还有防爆膜、止回阀加旁通管、水锤消除器等几种,接下来将分别作简单的介绍。 1)防爆膜。防暴膜是在需要保护的管道上用一支管连接,并在其端部用一塑性金属膜片密封,当管中升压超过预定值时,膜片爆破,泄掉一部分高压水,以保证主管道的安全,起到水锤防护的效果。一般用于小流量、高扬程的泵站,作为其他防护措施的后备保护。2)惯性飞轮。在水泵机组主轴上增设惯性飞轮是为了加大水泵机组转动部分的转动惯量,以延长水泵机组的正转时间,有效避免管路中流速和水压的急剧降低、改善水锤压力猛烈波动状况,从而在一定程度上消弱了负压,防止了水柱分离现象的出现。3)止回阀加旁通管。对管线纵断面有凸部系统,水柱分离通常在某一凸部附近形成,且气穴会在一定范围内逐渐向高处波及,形成气穴流,当管路水流发生倒流后,气穴体积将迅速减小直至溃灭,产生很高的水柱弥合水锤,如能在水柱分离段的末端布置一逆止阀和旁通管,则可减小水柱弥合的升压和减小下游其他部位的水力波动。4)水锤消除器。水锤消除器实际上是具有一定泄水能力、并适合于泵站停泵水锤压力变化过程的安全阀。 4.新型水锤防护设备 以往防止水锤的办法是在压力管道上设置调压水箱、空气室、爆破膜片、水锤消除器、机组装设飞轮等。这些办法都可以在不同程度上防止水锤,但是它们普遍存在着占用厂房面积大,土建工程投资大的问题,而且运行不方便,目前可应用一些新型水锤防护设备。 4.1液控缓闭蝶阀。该阀在断电时可按预定的时间和角度,分快、慢二阶段关闭,能有效地降低管网中压力波动,消除流体在管网中的水锤危害,控制水泵反转,从而保证水泵和管网系统的安全可靠运行。 4.2缓闭止回阀。目的该类阀门有重锤式和蓄能式两种,可以根据需要在一定范围内对阀门关闭时间进行调整。缓闭止回阀克服了普通止回阀的缺点,具有如下特点:(1)泵启动后阀门能及时迅速打开。(2)正常运行时,要求阀瓣有尽可能大的开启角,并能稳定在全开位置。(3)停泵时阀门有优良的关闭特性,在突然停泵时既能阻止水倒流,保护水泵不致发生反转,达到保护水泵的目的;又能使其在关闭的最后阶段实现缓闭,减少突然关闭造成管路中的水锤,达到保护管路的。 5.结论 文章通过分析水锤形成原因,有针对性地提出了切实可行的水锤防护措施,如提出空气罐防护等,同时结合水锤防护的发展趋势,给出了未来水锤防护设备,以为同类工程提供参考借鉴。 参考文献 [1]柯勰,胡云进,万五一.缓闭式空气阀水锤防护效果研究[J].四川建材,2006,27(02):74-75. [2]高润清.水锤的研究与防护[J].价值工程,2007,29(06):101-103. [3]毕延龄.输水系统的水锤及水锤防护[J].建筑技术通讯(给水排水),2011,31(02):46-49.

停泵水锤的基本理论及计算方法

停泵水锤的基本理论及计算方法 一、停泵水锤的基本理论 在压力管流中因流速剧烈变化引起水分子动量转换,从而在管路中产生一系列急骤的压力交替变化的水力撞击现象,称为水锤现象。它是流体的一种非稳定流动,在液体运动中所有空间点处的一切运动要素不仅随空间位置而改变,而且随时间而改变。水锤可从多个方面进行分类,根据不同的划分方法分为以下四种: (1)直接水锤和间接水锤; (2)起泵水锤、停泵水锤和关阀水锤; (3)刚性水锤和弹性水锤; (4)无水柱分离产生的水锤和水柱分离产生的水锤。 停泵水锤是指水泵机组因突然断电或其他原因而造成开阀突然停车时,在水泵及管路系统中,因流速突然变化而引起一系列急骤的压力夺替升降的水力冲击现象。 停泵水锤发生的主要特点是:突然停泵后,水泵由稳态进入水力过渡过程,主动力矩的消失使水泵机组失去了正常运转时的力矩平衡状态,在惯性的作用下继续保持正转,但转速降低。广一水泵机组突然降低的转速导致压力降低和流量减少,所以压力降低先在泵站处产生。此降压波由泵站及管路首端向管路末端的高位水池传播,并在高位水池处产生升压波,此升压波由高位水池向泵站及管路首端传播。压力管路中的水,在停泵后的最初瞬间,主要依靠惯性作用,向高位水池以逐渐减慢的速度继续流动,在重力和阻力的作用下,使其流速降低至零,但这样的状态是不稳定的;管路系统中的水因重力水头的作用又开始向水泵站倒流,且速度逐渐增大,以后的技术特点,由水泵压出口处不同的边界条件来决定。 水柱分离产生的水锤现象,是指在管路系统中出现了大空腔,当大空腔溃灭,即两股水柱重新弥合时,大空腔内的水蒸气会迅速凝结,两股水柱互相猛烈碰撞,造成升压很高的断流弥合水锤现象。关于水柱分离产生的原因,有两种论点,分别为:“拉断说”和“汽化说”。 “拉断说”认为:当水锤波在管路系统中传播时,水体质点呈现出周期性的疏密变化,水体质点群时而受压,时而受拉,由于水体的承拉能力非常差,当承受不住拉力时,连续水柱就会断裂,并彼此分离开,产生一些大空腔,破坏了水流的连续性,造成水柱分离。 “汽化说”认为:当管路上某点的水压降到汽化压以下时,液态水将迅速汽化,并产生大空腔,破坏了水流的连续性,造成水柱分离。 将连续水流截成两段的大空腔内均充满水蒸气,空腔中压强保持为小于或等于汽化压,产生的水柱分离现象称为水柱分离(汽)或水柱分离(V);当管路中出现真空,经空气阀将空气吸入管内并形成充满空气的大空腔,产生的水柱分离现象称为水柱分离(空)或水柱分离(A)。 水柱分离(汽)产生的前提是密封非常完好的管路,但实际的输水管路并非如此,沿途会设有一定数量的空气阀,因此,在水力过渡过程中,水柱分离(空)产生的可能性并不比水柱分离(汽)小。在相同的技术条件情况下,因水柱分离(空)而形成的充满空气的空气腔的最大长度比传统的以水蒸气为主充填的蒸汽腔的最大长度要大得多。如果在空气腔缩小乃至消失的过程中,即两股水柱重新弥

高扬程大起伏地形长距离输水工程水锤防护实例研究

高扬程大起伏地形长距离输水工程水锤防护实例研究 针对我国某长距离压力输水工程,通过不同防护设备方案比选对管道进行水锤防护实例研究。结果证明,在高扬程大起伏地形长输管线中,以空气阀作为必备的基础防护措施,合理设置抗水锤气压罐可有效保证高扬程大起伏地形长距离输水工程的管道运行安全。 标签:压力长输管道;高扬程;大起伏地形;水锤 引言 长距离输水工程作为一种解决缺水地区水资源问题的重要方法,已在多处地区使用,但长距离有压输水管道中水锤现象经常发生,尤其高扬程大起伏地形长输管线更易产生水锤,由此造成的损失及伤害不可估量。因此,现针对高扬程大起伏长距离输水工程的特点进行水锤防护实例研究。 1 工程概况 某长距离压力输水工程全长13km,最大落差135m,蓄水池水位515m,吸水前池水位512m。管线起伏大,高点处易发生断流空腔水锤及断流空腔再弥合水锤。稳态计算结果管线建议承压能力为1.0~2.8Mpa,如图1所示,经分析,全线自由水头均在承压范围之内。 2 水锤防护方案的对比研究 本工程实例中主要采取两种水锤防护方案,单向调压塔方案和抗水锤气压罐方案(以下简称“气压罐方案”),这两个方案均以空气阀为必备基础防护措施。 首先,在无任何水锤防护措施的情况下,根据电算成果绘制出此工况下的压力包络线,全线多处出现负压,如图1所示。 图1 管线无水锤防护压力包络线图2空气阀位置图 根据该工程扬程高、落差大等特点及以往工程经验,为了水锤防护及通水,在管线坡峰处设置三级缓排式空气阀,在管线起伏不大处设置复合式空气阀作为水锤防护基础措施。本工程共设置复合式空气阀10处,三级缓排式空气阀7处。 由图2分析可知,复合式空气阀及三级缓排式空气阀不能有效缓解管线负压问题,当发生停泵水锤时,整个输水管路沿线仍多段出现水柱拉断现象,不满足水锤防护计算要求,需增加水锤防护设备,以保证管线安全运行。 2.1 单向调压塔方案

相关文档
最新文档